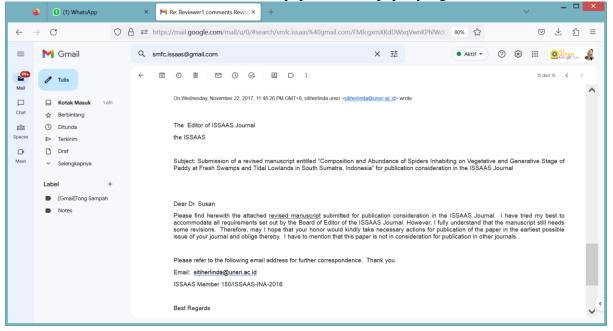
BUKTI KORESPONDENSI ARTIKEL JURNAL INTERNATIONAL TERINDEKS SCOPUS Q4

Judul artikel : Species richness and abundance of spiders inhabiting rice in fresh swamps and tidal lowlands in South Sumatra, Indonesia


Jurnal : Journal of the International Society for Southeast Asian Agricultural Sciences

Penulis: Siti Herlinda, Sandi Yudha, Rosdah Thalib, Khodijah, Suwandi, Benyamin Lakitan, Marieska Verawaty

Bukti korespondensi

No.	Perihal	Tanggal
1.	Bukti Konfirmasi submit paper dan full paper yang disubmit	22 Noveember
		2017
2.	Bukti konfirmasi review pertama dan hasil revisi pertama	13 Desember
		2017
3.	Bukti konfirmasi review kedua dan hasil revisi kedua	8 Januari 2018
4.	Bukti konfirmasi review ketiga dan hasil revisi ketiga	14 Januari 2018
5.	Bukti konfirmasi paper accepted, uncorrected Proof dan hasil	17 Mei 2018
	koreksi penulis	
6.	Bukti tagihan untuk penerbitan artikel	24 Mei 2018

1. Bukti Konfirmasi submit paper dan full paper yang disubmit

Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative

Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia

Siti Herlinda1, 2*, Sandi Yudha3, Rosdah Thalib1, Khodijah4, Suwandi1,2, Benyamin Lakitan1,2, Marieska Verawaty5 1College of Agriculture, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia 30662 2Research Center for Sub-optimal Lands (PUR-PLSO), Universitas Sriwijaya, Palembang, South Sumatra, Indonesia 30139 3Alumnus of College of Agriculture, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia 30662 4College of Agriculture, Universitas Palembang, Palembang, Indonesia 30139 .5College of Mathematic and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia *Corresponding author: sitiherlinda@unsri.ac.id

ABSTRACT

Different planting methods at fresh swamps and tidal lowlands and rice stages may support different abundance and species richness of arthropods therefore quantifying arthropod assemblages needs to be carried out. This research objective was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamp and tidal lowland ecosystems in South Sumatra. Arboreal spiders were sampled using insect nets, and soil-dwelling spiders were sampled using pitfall traps. Families of the arboreal spiders found during the vegetative and generative stages of rice from both ecosystems were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae. The most dominant family and species of the arboreal spiders found were Tetragnathidae and Tetragnatha virescens, respectively. Species richness of the arboreal spider during the vegetative (P = 0.1857) and generative (P = 0.8067) stages at the fresh swamp ecosystems was not significantly different from that at the tidal lowland ecosystems. Families of soildwelling spiders found during the vegetative and generative stages were Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae. The most dominant family and species of the soil-dwelling spiders found were Lycosidae and Pardosa pseudoannulata, respectively. Species richness of the soil-dwelling spiders during the rice vegetative (P = (0.5290) and generative (P = 0.9813) stages at the fresh swamps was not significantly different from that at the tidal lowlands. This study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

Keywords: arboreal, arthropod, rice, soil dwelling

INTRODUCTION

Wetlands in Indonesia, are characterized by two distinct ecosystems, differentiated based on sea tide influence; i.e. tidal lowlands for those directly influenced by sea tide but fresh swamps for those not affected by sea tide. At the tidal lowland ecosystems, soil needs specific handling due to thick pyritic layers therefore it should be preserved (Hidayat et al., 2010). The local farmers do not fully manage the soil to prevent the pyrite layers from destructions (Suriadikarta et al., 2013) and they generally plant rice twice a year (planting index) by using broadcast seeding, drum seeding, or seedling in a digged-hole ("tugal") (Raharjo et al., 2013). Contrary to the farmers at the tidal lowlands, farmers at fresh swamps usually plant rice using transplanting system and they only plant rice once a year (Mulyani & Sarwani, 2013; Lakitan et al., 2018). Different rice planting methods and index at the both ecosystems may also affect the arthropod abundance and species diversity or richness (Zhang et al., 2013; Parry et al., 2015). Weedy paddies at direct planting ecosystems have more abundant arthropods than those at clean ecosystems (Hu et al., 2012). No soil tillage or conservation tillage at paddies also support higher arthropod abundance (Pereira et al., 2010). No application of synthetic insecticides at fresh swamp ecosystems also enhances abundance of predatory arthropods, especially spiders (Herlinda et al., 2004; Herlinda et al., 2008).

In addition to planting method and index, vegetative and generative stages of rice also influence species richness and abundance of the arthropods (Herlinda *et al.* 2008). At the vegetative and generative stages, soil-dwelling arthropods are more abundant and more diverse at the tidal lowlands than those at the fresh swamp ecosystems (Khodijah *et al.*, 2012; Herlinda *et al.*, 2014). However, the arboreal artropods are more abundant and richer at the fresh swamp ecosystems than those at the tidal lowland ecosystems (Khodijah *et al.*, 2012; Sunariah *et al.*, 2016). Different planting methods and index at the both ecosystems and

different stages of rice may support different abundance and species richness of arthropods, therefore quantifying arthropod assemblages needs to be carried out. The purpose of this study was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamps and tidal lowlands in South Sumatra.

MATERIAL AND METHODS

Time and Location

Surveys were carried out at rice production centers of fresh swamps and tidal lowlands in South Sumatra throughout February 2012 to March 2013. Survey locations of the rice production centers for fresh swamp ecosystems were: (1) Gandus, Palembang City; (2) Pelabuhan Dalam Village of Ogan Ilir District; (3) Maryana Village of Banyuasin District; and (4) Sungai Waru Village of Kabupaten Banyuasin District. Survey locations of the rice production centers for tidal lowlands were: (1) Banyu Urip Village of Tanjung Lago Subdistrict, Banyuasin District' (2) Telang Karya Village of Muara Telang Subdistrict, Banyuasin District; (3) Telang Rejo Village of Muara Telang Subdistrict, Banyuasin District; (4) Srikaton Damai Village of Air Saleh Subdistrict, Banyuasin District; (5) Srimulyo Village of Kecamatan Air Saleh Subdistrict, Banyuasin District; (6) Makarti Jaya Village of Makarti Java Subdistrict, Banyuasin District; (7) Tirta Mulya Village of Makarti Java Subdistrict, Banyuasin District; and (8) Tirta Kencana Village of Makarti Jaya Subdistrict, Banyuasin District. In each location, three sampling plots of a minimum size of 1 ha were surveyed twice during one rice season (4 mounts). The first survey was done when rice crop was 4 weeks old and the second one when rice crop was at milk grain stage (9 weeks old). Rice variety used at the fresh swamps was Ciherang, whereas Inpara variety was used at the tidal lowland ecosystems.

Sampling

Arboreal spiders. The arboreal spiders were sampled using insect nets, following methods used by Herlinda *et al.* (2014). Net sweeping consisted of 'double swings', totalling 30 swings/ha in all plots.

Soil-dwelling spiders. Soil-dwelling spiders were sampled using pitfall traps, following methods used by Herlinda *et al.* (2004). Plastic pitfall traps (60 mm in diameter and 90 mm in height) were filled to a volume of 70 mL with 4% formaldehide solution and buried in the ground flush with the soil surface. Traps were installed with density of 18 units/ha, spaced in a grid 3 x 6, then collected after 48 hours. All specimens collected were cleaned and sorted from other debris and stored in vials containing 70% ethanol. Identification to family- and species-level was carried out at Laboratory of Entomology, at the Plant Pest and Disease Department, College of Agriculture, Universitas Sriwijaya, using taxonomic keys provided in Barrion and Litsinger (1995).

Data Analysis

The spider abundance data between samples from the fresh swamp and tidal lowland ecosystems were not normally distributed. Hence, insect counts in this study were found to fit a negative binomial distribution and were analyzed by Proc Genmod using SAS University Edition (SAS Institute Inc., Cary, NC, U.S.A.). Species richness was analysed using Menhinick's index (D) (Magurran, 1988).

RESULTS

Arboreal Spiders at Fresh Swamp and Tidal Lowland Ecosystems

From this survey during rice vegetative stage, a total of 7 families of arboreal spiders found were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae at the fresh swamp and tidal lowland ecosystems (Table 1). Tetragnathidae was the most dominant family of the arboreal spider found during the rice vegetative stage. A total of 92.750 spiders at the fresh swamp ecosystems and 62.875 spiders at the tidal lowland ecosystems were captured (P = 0.3124). The abundance of *Tetragnatha vermiformis* (P = 0.0011) and *Oxyopes bikakaeus* (P = 0.0074) at the fresh swamp ecosystems were significantly higher than those at the tidal lowland ecosystems. A total of the arboreal spider species found during the rice vegetative stage were 26 species from the fresh swamp ecosystems and 23 species from the tidal lowland ecosystem. Spider species richness at the fresh swamp ecosystems was not significantly different (P = 0.1857) from those at the tidal lowland ecosystems.

A total of spider families found during rice generative stage were only 5 families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae and Salticidae) at the fresh swamp ecosystems and 7 families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae) at the tidal lowland ecosystems (Table 2). However, abundance of Araneidae (P = 0.8030), Tetragnathidae (P = 1.0000), Linyphiidae (P = (0.7202), Oxyopidae (P = 0.0958), Thomisidae (P = 1.0000), Theridiidae (P = 1.0000), and Salticidae (P = 0.6336) at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. The most dominant family of the arboreal spiders found on the both ecosystems was Tetragnathidae. A total of spider abundance for all species at the fresh swamp ecosystems (47.750 spiders/30 nets) were not significantly different (P =0.5206) from those at the tidal lowland ecosystems (54,250 spiders/30 nets). However, average of spider abundance from the both ecosystems was significantly different (P =0,000). The most dominant arboreal species found on the both ecosystems was Tetragnatha virescens. A total of arboreal spider species recorded were 16 species from the fresh swamp ecosystems and 21 species from the tidal lowland ecosystem. However, the arboreal spider species richness at the fresh swamp ecosystems were not also significantly different (P =0.8067) from those at the tidal lowland ecosystems.

Soil-dwelling Spiders at Fresh Swamps and Tidal Lowlands

At vegetative stage of rice, soil-dwelling spiders found were only 2 families (Lycosidae and Linyphiidae) from the fresh swamp ecosystems and 5 families (Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae) from the tidal lowland ecosystems (Table 3). We did not find Araneidae, Thomisidae, and Theridiidae at the fresh swamp ecosystems. The most dominant family of soil-dwelling spiders found during the rice vegetative stage was Lycosidae and the most dominant species was *Pardosa pseudoannulata*. A total of soil-dwelling spider species found were 9 species at the fresh swamp ecosystems and 16 species at tidal lowland ecosystems. Nonetheless, species richness of the soil-dwelling spider at the fresh swamp ecosystems were not significantly different (P = 0.5290) from those at the tidal lowland ecosystems.

A total of the soil-dwelling spider families found during generative stage of rice were 3 families (Lycosidae, Araneidae, and Linyphiidae) from the fresh swamp ecosystems and 4 families (Lycosidae, Araneidae, Linyphiidae, and Salticidae) from the tidal lowland ecosystems (Table 4). The most dominant family of the soil dwelling spiders found was Lycosidae. The species numbers of soil-dwelling spiders recorded were 8 and 12 from the fresh swamp and the tidal lowland ecosystems, respectively. Species richness of the soil-dwelling spiders during the rice generative stage at the fresh swamp ecosystems were not significantly different (P = 0.9813) from those at the tidal lowland ecosystems were also not significantly different from those at the tidal lowland ecosystems (P = 0.2950).

DISCUSSION

Spider families found on rice canopy at fresh swamp and tidal lowland ecosystems during the rice vegetative and generative stages in this study consisted of Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. These arboreal spiders found comprised both web- (Araneidae, Tetragnathidae, Linyphiidae, Theridiidae) and active-hunting (Oxyopidae, Thomisidae, and Salticidae) species, commonly found at the fresh swamp or tidal lowland ecosystems (Schmidt & Tscharntke, 2005). Abundance of species belonging to Tetragnathidae (*T. vermiformis*) and Oxyopidae (*O. bikakaeus*) at the fresh swamp ecosystems in this study were significantly higher than those at the tidal lowland ecosystems. Tetragnathidae and Oxyopidae are more dominant spiders at wetland ecosystems (Betz & Tscharntke, 2017) because the fresh swamp ecosystems are commonly submerged longer (more than 6 mounts) than those at the tidal lowland ecosystems (Mulyani & Sarwani, 2013).

Spider family, Tetragnathidae in this study was the most dominant family of the arboreal spider found during the rice vegetative and generative stages. Species of arboreal spiders dominantly found on paddies at the fresh swamp and tidal lowland ecosystems were similar which consisted of T. virescens and T. javana. Barrion et al. (2012) stated that in the species of Tetragnathidae, such as species of T. virescens and T. javana were classified as keystone species. Such species were playing a critical role in maintaining population of rice pest insect, such leafhopper (Betz & Tscharntke, 2017). Species from Tetragnathidae was reported by Shepard et al. (1987) and Betz and Tscharntke (2017) as dominant web spiders found at wetland ecosystems. The number of Tetragnathidae in this study were more abundant at the rice vegetative stage than those at the rice generative stage. Betz and Tscharntke (2017) stated that abundant of Tetragnathidae was influenced by the number of leafhoppers (Homoptera) which are commonly occured at vegetative stage of rice. The both species of spiders are predators of rice pest insects, such as order of Homoptera and Lepidoptera (Tahir et al., 2009). This also accords with findings of Betz and Tscharntke (2017), which showed highest increase of Tetragnathidae with increasing abundance of Lepidoptera and leafhoppers.

Species abundance of arboreal spiders either at the fresh swamp and tidal lowland ecosystems were higher at vegetative stage of rice than those at generative stage of rice because spider abundance is closely related to their prey population (Riechert & Lockley, 1984). Abundant prey population will attract these spiders to assemble on prey rich ecosystems (Widiarta *et al.*, 2006). The main prey for this spiders was rice insect pests, such as brown planthoppers (Karindah, 2011) that had higher population at vegetative stage of rice than that during generative stage of rice resulting in higher abundance of spiders at the vegetative stage of rice than that of the generative stage of rice. According to Arofah *et al.* (2013) dominant insect pests at vegetative stage of rice was rice bugs. Thus, rice stages at both ecosystems affects the species abundance of spiders.

Spider families found on soil surface of the fresh swamp ecosystems only consisted of Lycosidae and Linyphiidae, whereas Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae were found at the tidal lowland ecosystems. Web spiders, such as Araneidae, Linyphiidae, and Theridiidae could be found on soil surface. This was due to the fact that these spiders were found on immature stage. According to Iida and Fujisaki (2007) and Suana and Haryanto (2013), immature web spiders had capability to produce small like ballon ball so that they could be moved by wind or moving to other places or descend upon or fallen on soil surface.

A total of abundance and species richness of soil-dwelling spiders during the rice vegetative and generative stages at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. Nonetheless, the most dominant family of the soil-dwelling spiders was Lycosidae and the most dominant species was *P*. *pseudoannulata*. Barrion *et al.* (2012) list some species in the Lycosid family, such as wolf spider, *P. pseudoannulata* as keystone species. This wolf spider plays the role of a keystone

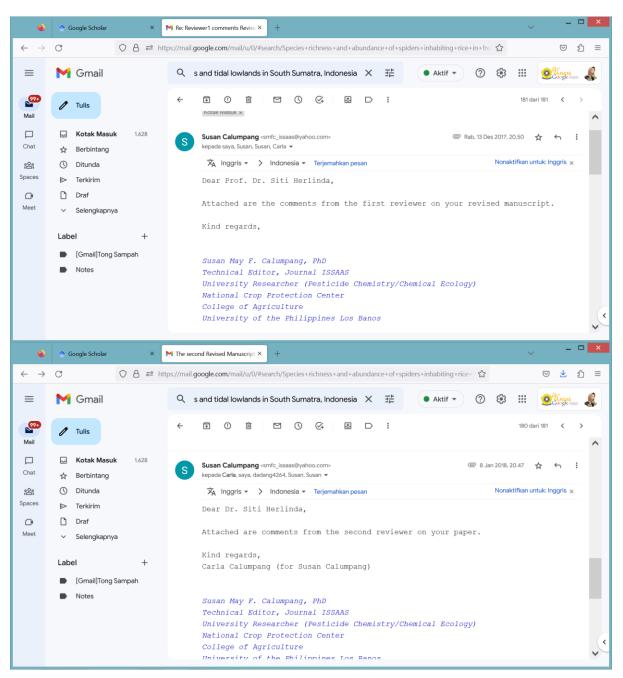
predator within this rice ecosystem by preying leafhoppers (Lou *et al.* 2013). High mobility of the wolf spiders allow them to move and to run or to jump for capturing their preys (Ishijima *et al.*, 2006). Abundance of Lycosidae during the rice generative stage at the fresh swamp ecosystems was higher than that at the tidal lowland ecosystems. One explanation why the abundance of Lycosidae was higher at the fresh swamp ecosystems is because farmers culturally do not apply synthetic insecticides to control pest insects. Herlinda (2010) reported that application of the synthetic insecticides at the fresh swamp ecosystems in South Sumatra was rare. Such ecosystems tend to produce high diversity of invertebrate fauna (Mahrub, 1999; Rizali *et al.*, 2002). Rice ecosystems without synthetic insecticides application had higher dominance of predatory arthropods, especially spiders (Herlinda *et al.*, 2008; Herlinda *et al.*, 2004; Zi-yang *et al.*, 2011).

CONCLUSION

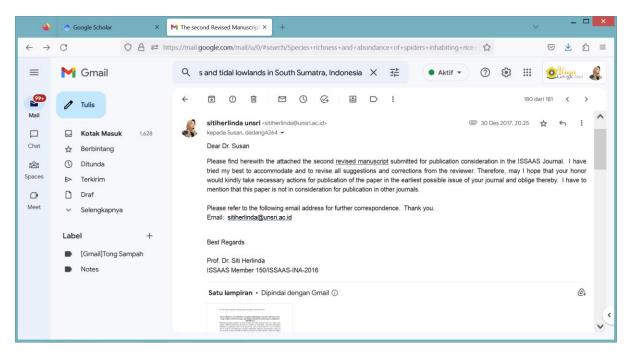
The most dominant family and species of the arboreal spiders found were Tetragnathidae and *T. virescens*, respectively, while the most dominant family and species of the soil-dwelling spiders were Lycosidae and *P. pseudoannulata*, respectively. Species richness of the arboreal and soil-dwelling spiders during the rice vegetative and generative stages at the fresh swamp ecosystems was not significantly different from those at the tidal lowland ecosystems. This findings of the study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

ACKNOWLEDGEMENT

This research was supported by HIKOM of Directorate General of Development and Research Enhancement, Ministry of Research, Technology and Higher Education, Republic of Indonesia. We would like to express our appreciation to the Institute of Research and Community Service (LPPM), Universitas Sriwijaya, Indonesia for facilitating this research. Special thanks to Ricky Davit Simamora for his assistance with the field work.


REFERENCES

- Arofah, S., I. Trisnawati, and D. Tjahjaningrum. 2013. Pengaruh habitat termodifikasi menggunakan serai terhadap serangga herbivora dan produktivitas padi varietas IR-64 di Desa Purwosari, Pasuruan. Jurnal Sains dan Seni Pomits 2(2): 2337-3520.
- Barrion, A.T. and J.A. Litsinger. 1995. Riceland Spiders of South and Southeast Asia. International Rice Research Institute. Philippines. 716p.
- Barrion, A.T., S.S. Villareal, J.L.A. Catindig, D. Cai, Q.H. Yuan, and K.L. Heong. 2012.The spider fauna in the rice agricultural landscape of Hainan Island, China:Composition, abundance and feeding structure. ASIA Life Sciences 21(2): 625-651.
- Betz, L. and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. Journal of Insect Conservation.21(3): 495-508.
- Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against *Aphis gossypii* Glover (Homoptera: Aphididae). Tropical Life Sciences Research 21(1): 13-21.
- Herlinda, S., A. Rauf, S. Sosromarsono, U. Kartosuwondo, Siswadi, and P. Hidayat. 2004. Artropoda musuh alami penghuni ekosistem persawahan di daerah Cianjur, Jawa Barat. Jurnal Entomologi Indonesia. 1(1): 9-15.
- Herlinda, S., H.N. Manalu, A.F. Aldina, Suwandi, and A. Wijaya, Khodijah, and D. Meidalima. 2014. Kelimpahan dan keanekaragaman spesies laba-laba predator hama padi ratun di sawah pasang surut. Jurnal Hama dan Penyakit Tumbuhan Tropika. 14(1): 1-7.


- Herlinda, S., Waluyo, S.P. Estuningsih, and C. Irsan. 2008. Perbandingan keanekaragaman spesies dan kelimpahan arthropoda predator penghuni tanah di sawah lebak yang diaplikasi dan tanpa aplikasi insektisida. Jurnal Entomologi Indonesia. 5(2): 96-107.
- Hidayat, T., N.K. Pandjaitan, A.H. Dharmawan, M.T. Wahyu, and F.Sitorus. 2010.
 Kontestasi sains dengan pengetahuan lokal petani dalam pengelolaan lahan rawa pasang surut. Jurnal Transdisiplin Sosiologi, Komunikasi, dan Ekologi Manusia. 4(1): 1-16.
- Hu, S., D. Fu, X. Liu, T. Zhao, Z. Han, Lü, J. Lu, H. Wan, and H. Ye. 2012. Diversity of planthoppers associated with the winter rice agroecosystems in Southern Yunnan, China. Journal of Insect Science.12(29): 1-11.
- Iida, H. and K. Fujisaki. 2007. Seasonal changes in resource allocation within an individual offspring of the wolf spider, *Pardosa pseudoannulata* (Araneae: Lycosidae).Physiological Entomology. 32(1): 81-86.
- Ishijima, C. and A. Taguchi, M. Takagi, T. Motobayashi, M. Nakai, and Y. Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Applied Entomology and Zoology. 41(2): 195-200.
- Karindah, S. 2011. Predation of five generalist predators on brown planthopper (*Nilaparvata lugens* Stål). Jurnal Entomologi Indonesia. 8(2): 55-62.
- Khodijah, S. Herlinda, C. Irsan, Y. Pujiastuti, and R. Thalib. 2012. Artropoda predator penghuni ekosistem persawahan lebak dan pasang surut Sumatera Selatan. Jurnal Lahan Suboptimal. 1(1): 57-63.
- Lakitan, B., A. Alberto, L. Lindiana, K. Kartika, S. Herlinda, and A. Kurnianingsih.. 2018.The Benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra. Indonesia. CMUJ Natural Sciences. 17(2): April (In press).

- Lou, Y.G., G.R. Zhang, W.Q. Zhang, Y. Hu, and J. Zhang. 2013. Biological control of rice insect pests in China. Biol Control. 67: 8-20.
- Magurran, A.E. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall. 192 p.
- Mahrub, E. 1999. Kajian keanekaragaman artropoda pada lahan padi sawah tanpa pestisida dan manfaatnya dalam pengendalian hama terpadu. Jurnal Perlindungan Tanaman Indonesia. 5(1): 35-41.
- Mulyani, A. and M. Sarwani. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lokal. 7(1): 47-55.
- Parry, H.R., S. Macfadyen, J.E. Hopkinson, F.J.J.A. Bianchi, M.P. Zalucki, A. Bourne, and N.A. Schellhorn. 2015. Plant composition modulates arthropod pest and predator abundance: Evidence for culling exotics and planting natives. Basic and Applied Ecology. 30: 1-13.
- Pereira, J. L., M.C. Picanc, E.J.G. Pereira, A.A. Silva, A. Jakelaitis, R.R. Pereira, and V.M. Xavier. 2010. Influence of crop management practices on bean foliage arthropods.Bulletin of Entomological Research. 100: 679-688.
- Raharjo, B., I.S. Marpaung, and Y. Hutapea. 2013. Kajian kinerja alat tanam dan varietas unggul baru padi di lahan pasang surut Sumatera Selatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian. 16(3): 191-201.
- Riechert, S.E. and T. Lockley 1984. Spiders as Biological Control Agents. Annual Review of Entomology. 29: 299-320.
- Rizali, A., D. Buchori, and H. Triwidodo. 2002. Insect diversity at the forest margin-rice field interface: indicator for a healthy ecosystem. HAYATI Journal of Biosciences. 9(2): 41-48.

- Schmidt, M.H. and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography. 32(3): 467-473.
- Shepard, B.M, A.T. Barrion, and J.A. Litsinger. 1987. Friends of the Rice Farmer: Helpful Insects, Spiders, and Pathogens. International Rice Research Institute. Philippines. 136p.
- Suana, I.W. and H. Haryanto. 2013. Keanekaragaman laba-laba dan potensinya sebagai musuh alami hama tanaman jambu mete. Jurnal Entomologi Indonesia. 10(1): 24-30.
- Sunariah, F., S. Herlinda, C. Irsan, and Y. Windusari. 2016. Kelimpahan dan kekayaan artropoda predator pada tanaman padi yang diaplikasi bioinsektisida *Bacillus thuringiensis*. Jurnal Hama dan Penyakit Tumbuhan Tropika. 16 1: 42-50.
- Suriadikarta, D.A. and M.T. Sutriadi. 2007. Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa. Jurnal Litbang Pertanian. 26(3): 115-122.
- Tahir HM, Butt A, Sherawat SM (2009) Foraging strategies and diet composition of two orb web spiders in rice ecosystems. J Arachnol. 37: 357–362.
- Widiarta, I.N, D. Kusdiaman, and Suprihanto. 2006. Keragaman arthropoda pada padi sawah dengan pengelolaan tanaman terpadu. Jurnal Hama dan Penyakit Tumbuhan Tropika. 6(2):61-69.
- Zhang, J., X. Zheng, H. Jian, X. Qin, F. Yuan, and R. Zhang. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida Entomologist. 96(1): 1-9.
- Zi-yang, Z., H. Xian-cai, M. Ling, X. Tongzhou, and L. Bao-ping. 2011. Arthropod diversity on plants at field margins of organic farming paddy rice. Chinese Journal of Ecology. 30(7):1347-1353.

1. Bukti konfirmasi review pertama dan hasil revisi pertama

Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia

ABSTRACT

Different planting methods at fresh swamps and tidal lowlands and rice stages may support different abundance and species richness of arthropods therefore quantifying arthropod assemblages needs to be carried out. This research objective was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamp and tidal lowland ecosystems in South Sumatra. Arboreal spiders were sampled using sweep nets, and soil-dweller spiders were sampled using pitfall traps at the vegetative and generative stages of rice. Families of the arboreal spiders found during the vegetative and generative stages of rice from both ecosystems were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae. The most dominant family and species of the arboreal spider during the vegetative (P = 0.186) and generative (P = 0.807) stages at the fresh swamp ecosystems was not significantly different from that at the tidal lowland ecosystems. Families of soil-dweller spiders found during the vegetative and generative (P = 0.807) stages at the fresh swamp ecosystems was not significantly different from that at the

generative stages were Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae. The most dominant family and species of the soil-dweller spiders found were Lycosidae and *Pardosa pseudoannulata*, respectively. Species richness of the soil-dweller spiders during the rice vegetative (P = 0.529) and generative (P = 0.981) stages at the fresh swamps was not significantly different from that at the tidal lowlands. This study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

Keywords: arboreal, arthropod, rice field, soil-dweller

INTRODUCTION

Wetlands in Indonesia, are characterized by two distinct ecosystems, differentiated based on sea tide influence; i.e. tidal lowlands for those directly influenced by sea tide but fresh swamps for those not affected by sea tide (Mulyani & Sarwani, 2013). At the tidal lowland ecosystems, soil needs specific handling due to thick pyritic layers therefore it should be preserved (Hidayat *et al.*, 2010). The local farmers do not fully manage the soil to prevent the pyrite layers from destructions (Suriadikarta *et al.*, 2013) and they generally plant rice twice a year (planting index) by using broadcast seeding, drum seeding, or seedling in a digged-hole ("tugal") (Raharjo *et al.*, 2013). Contrary to the farmers at the tidal lowlands, farmers at fresh swamps usually plant rice using transplanting system and they only plant rice once a year (Mulyani & Sarwani, 2013; Lakitan *et al.*, 2018). Different rice planting methods and index at the both ecosystems may also affect the arthropod abundance and species diversity or richness (Zhang *et al.*, 2013; Parry *et al.*, 2015). Weedy paddies at direct planting ecosystems have more abundant arthropods than those at clean ecosystems (Hu *et al.*, 2012). No soil tillage or conservation tillage at paddies also support higher arthropod abundance (Pereira *et al.*, 2010). No application of synthetic insecticides at fresh

swamp ecosystems also enhances abundance of predatory arthropods, especially spiders (Herlinda *et al.*, 2004; Herlinda *et al.*, 2008).

In addition to planting method and index, vegetative and generative stages of rice also influence species richness and abundance of the arthropods (Herlinda *et al.* 2008). At the vegetative and generative stages, soil- dweller arthropods are more abundant and more diverse at the tidal lowlands than those at the fresh swamp ecosystems (Khodijah *et al.*, 2012; Herlinda *et al.*, 2014). However, the arboreal artropods are more abundant and richer at the fresh swamp ecosystems than those at the tidal lowland ecosystems (Khodijah *et al.*, 2012; Sunariah *et al.*, 2016). Different planting methods and index at the both ecosystems and different stages of rice may support different abundance and species richness of arthropods, therefore quantifying arthropod assemblages needs to be carried out. The purpose of this study was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamps and tidal lowlands in South Sumatra.

MATERIAL AND METHODS

Study Site

Surveys were carried out at rice production centers of fresh swamps and tidal lowlands in South Sumatra throughout February 2012 and March 2013. Survey locations of the rice production centers for fresh swamp ecosystems were: (1) Gandus, Palembang City; (2) Pelabuhan Dalam Village of Ogan Ilir District; (3) Maryana Village of Banyuasin District; and (4) Sungai Waru Village of Kabupaten Banyuasin District. Survey locations of the rice production centers for tidal lowlands were: (1) Banyu Urip Village of Tanjung Lago Subdistrict, Banyuasin District' (2) Telang Karya Village of Muara Telang Subdistrict, Banyuasin District; (3) Telang Rejo Village of Muara Telang Subdistrict; (4) Srikaton Damai Village of Air Saleh Subdistrict, Banyuasin District; (5) Srimulyo Village of Kecamatan Air Saleh Subdistrict, Banyuasin District; (6) Makarti Jaya Village of Makarti Jaya Subdistrict, Banyuasin District; (7) Tirta Mulya Village of Makarti Jaya Subdistrict, Banyuasin District; and (8) Tirta Kencana Village of Makarti Jaya Subdistrict, Banyuasin District. In each location, three sampling plots with a minimum size of 1 ha were surveyed twice during one rice season (4 mounts). The first survey was done when rice crop was 4 weeks old and the second one when rice crop was at milk grain stage (9 weeks old). Rice variety used at the fresh swamps was Ciherang, whereas Inpara variety was used at the tidal lowland ecosystems.

Sampling

Arboreal spiders. The arboreal spiders were sampled using sweep nets, following methods used by Herlinda *et al.* (2014). Net sweeping consisted of 'double swings', totalling 30 swings/ha in all plots.

Soil-dweller spiders. Soil-dweller spiders were sampled using pitfall traps, following methods used by Herlinda *et al.* (2004). Plastic pitfall traps (60 mm in diameter and 90 mm in height) were filled to a volume of 70 mL with 4% formaldehide solution and buried in the ground flush with the soil surface. Traps were installed with density of 18 units/ha, spaced in a grid 3 x 6, then collected after 48 hours. All specimens collected were cleaned and sorted from other debris and stored in vials containing 70% ethanol. Identification to family- and species-level was carried out at Laboratory of Entomology, at the Plant Pest and Disease Department, College of Agriculture, Universitas Sriwijaya, using taxonomic keys provided in Barrion and Litsinger (1995).

Data Analysis

The spider abundance data between samples from the fresh swamp and tidal lowland ecosystems were not normally distributed. Hence, insect counts in this study were found to fit a negative binomial distribution and were analyzed by Proc Genmod using SAS University Edition (SAS Institute Inc., Cary, NC, U.S.A.). Species richness was analysed using Menhinick's index (D) (Magurran, 1988).

RESULTS

Arboreal Spiders at Fresh Swamp and Tidal Lowland Ecosystems

From this survey during rice vegetative stage, a total of seven families of arboreal spiders found were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae at the fresh swamp and tidal lowland ecosystems (Table 1). Tetragnathidae was the most dominant family of the arboreal spider found during the rice vegetative stage. A total of 92.750 spiders/30 nets at the fresh swamp ecosystems and 62.875 spiders/30 nets at the tidal lowland ecosystems were captured (P = 0.312). The abundance of *Tetragnatha vermiformis* (P = 0.001) and *Oxyopes bikakaeus* (P = 0.007) at the fresh swamp ecosystems were significantly higher than those at the tidal lowland ecosystems. A total of the arboreal spider species found during the rice vegetative stage were 26 species from the fresh swamp ecosystems and 23 species from the tidal lowland ecosystem. Spider species richness at the fresh swamp ecosystems was not significantly different (P = 0.186) from those at the tidal lowland ecosystems.

A total of spider families found during rice generative stage were only five families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae and Salticidae) at the fresh swamp ecosystems and seven families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae) at the tidal lowland ecosystems (Table 2). However, abundance of Araneidae (P = 0.803), Tetragnathidae (P = 1.000), Linyphiidae (P = 0.720), Oxyopidae (P = 0.096), Thomisidae (P = 1.000), Theridiidae (P = 1.0000), and Salticidae (P = 0.6336) at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. The most dominant family of the arboreal spiders found on the both ecosystems was Tetragnathidae. A total of spider abundance for all species

at the fresh swamp ecosystems (47.750 spiders/30 nets) were not significantly different (P = 0.521) from those at the tidal lowland ecosystems (54.250 spiders/30 nets). However, average of spider abundance from the both ecosystems was significantly different (P = 0.000). The most dominant arboreal species found on the both ecosystems was *Tetragnatha virescens*. A total of arboreal spider species recorded were 16 species from the fresh swamp ecosystems and 21 species from the tidal lowland ecosystem. However, the arboreal spider species richness at the fresh swamp ecosystems were not also significantly different (P = 0.8067) from those at the tidal lowland ecosystems.

Soil-dweller Spiders at Fresh Swamps and Tidal Lowlands

At vegetative stage of rice, soil-dweller spiders found were only two families (Lycosidae and Linyphiidae) from the fresh swamp ecosystems and five families (Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae) from the tidal lowland ecosystems (Table 3). We did not find Araneidae, Thomisidae, and Theridiidae at the fresh swamp ecosystems. The most dominant family of soil-dweller spiders found during the rice vegetative stage was Lycosidae and the most dominant species was *Pardosa pseudoannulata*. A total of soil-dweller spider spider species found were nine species at the fresh swamp ecosystems and 16 species at tidal lowland ecosystems. Nonetheless, species richness of the soil-dweller spider at the fresh swamp ecosystems were not significantly different (P = 0.5290) from those at the tidal lowland ecosystems.

A total of the soil-dweller spider families found during generative stage of rice were three families (Lycosidae, Araneidae, and Linyphiidae) from the fresh swamp ecosystems and four families (Lycosidae, Araneidae, Linyphiidae, and Salticidae) from the tidal lowland ecosystems (Table 4). The most dominant family of the soil-dweller spiders found was Lycosidae. The species numbers of soil-dweller spiders recorded were eight and 12 from the fresh swamp and the tidal lowland ecosystems, respectively. Species richness of the soildweler spiders during the rice generative stage at the fresh swamp ecosystems were not significantly different (P = 0.981) from those at the tidal lowland ecosystems. A total of abundance of soil-dweller spiders at the fresh swamp ecosystems were also not significantly different from those at the tidal lowland ecosystems (P = 0.295).

DISCUSSION

Spider families found on rice canopy at fresh swamp and tidal lowland ecosystems during the rice vegetative and generative stages in this study consisted of Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. These arboreal spiders found comprised both web-building (Araneidae, Tetragnathidae, Linyphiidae, Theridiidae) and non-web building (Oxyopidae, Thomisidae, and Salticidae) species, commonly found at the fresh swamp or tidal lowland ecosystems (Schmidt & Tscharntke, 2005). Abundance of species belonging to Tetragnathidae (*T. vermiformis*) and Oxyopidae (*O. bikakaeus*) at the fresh swamp ecosystems in this study were significantly higher than those at the tidal lowland ecosystems. Tetragnathidae and Oxyopidae are more dominant spiders at wetland ecosystems (Betz & Tscharntke, 2017) because the fresh swamp ecosystems are commonly submerged longer (more than 6 mounts) than those at the tidal lowland ecosystems (Mulyani & Sarwani, 2013).

Spider family, Tetragnathidae in this study was the most dominant family of the arboreal spider found during the rice vegetative and generative stages. Species of arboreal spiders dominantly found on paddies at the fresh swamp and tidal lowland ecosystems were similar which consisted of *T. virescens* and *T. javana*. Barrion et al. (2012) stated that in the species of Tetragnathidae, such as species of *T. virescens* and *T. javana* were classified as keystone species. Such species were playing a critical role in maintaining population of rice pest insect, such leafhopper (Betz & Tscharntke, 2017). Species from Tetragnathidae was reported by Shepard *et al.* (1987) and Betz and Tscharntke (2017) as dominant web spiders

found at wetland ecosystems. The number of Tetragnathidae in this study were more abundant at the rice vegetative stage than those at the rice generative stage. Betz and Tscharntke (2017) stated that abundant of Tetragnathidae was influenced by the number of leafhoppers (Homoptera) which are commonly occured at vegetative stage of rice. The both species of spiders are predators of rice pest insects, such as order of Homoptera and Lepidoptera (Tahir *et al.*, 2009). This also accords with findings of Betz and Tscharntke (2017), which showed highest increase of Tetragnathidae with increasing abundance of Lepidoptera and leafhoppers.

Species abundance of arboreal spiders either at the fresh swamp and tidal lowland ecosystems were higher at vegetative stage of rice than those at generative stage of rice because spider abundance is closely related to their prey population (Riechert & Lockley, 1984). Abundant prey population will attract these spiders to assemble on prey rich ecosystems (Widiarta *et al.*, 2006). The main prey for this spiders was rice insect pests, such as brown planthoppers (Karindah, 2011) that had higher population at vegetative stage of rice than that during generative stage of rice resulting in higher abundance of spiders at the vegetative stage of rice than that of the generative stage of rice. According to Arofah *et al.* (2013) dominant insect pests at vegetative stage of rice were planthoppers, whereas dominant insect pest at generative stage of rice was rice bugs. Thus, rice stages at both ecosystems affects the species abundance of spiders.

Spider families found on soil surface of the fresh swamp ecosystems only consisted of Lycosidae and Linyphiidae, whereas Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae were found at the tidal lowland ecosystems. Web spiders, such as Araneidae, Linyphiidae, and Theridiidae could be found on soil surface. This was due to the fact that these spiders were found on immature stage. According to Iida and Fujisaki (2007) and Suana and Haryanto (2013), immature web spiders had capability to produce small like balloon ball so that they could be moved by wind or moving to other places or descend upon or fallen on soil surface.

A total of abundance and species richness of soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. Nonetheless, the most dominant family of the soil-dweller spiders was Lycosidae and the most dominant species was P. pseudoannulata. Barrion et al. (2012) list some species in the Lycosid family, such as wolf spider, P. pseudoannulata as keystone species. This wolf spider plays the role of a keystone predator within this rice ecosystem by preying leafhoppers (Lou et al. 2013). High mobility of the wolf spiders allow them to move and to run or to jump for capturing their prevs (Ishijima et al., 2006). Abundance of Lycosidae during the rice generative stage at the fresh swamp ecosystems was higher than that at the tidal lowland ecosystems. One explanation why the abundance of Lycosidae was higher at the fresh swamp ecosystems is because farmers culturally do not apply synthetic insecticides to control pest insects. Herlinda (2010) reported that application of the synthetic insecticides at the fresh swamp ecosystems in South Sumatra was rare. Such ecosystems tend to produce high diversity of invertebrate fauna (Mahrub, 1999; Rizali et al., 2002). Rice ecosystems without synthetic insecticides application had higher dominance of predatory arthropods, especially spiders (Herlinda et al., 2008; Herlinda et al., 2004; Zi-yang et al., 2011).

CONCLUSION

The most dominant family and species of the arboreal spiders found were Tetragnathidae and *T. virescens*, respectively, while the most dominant family and species of the soil-dweller spiders were Lycosidae and *P. pseudoannulata*, respectively. Species richness of the arboreal and soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems was not significantly different from those at the tidal lowland ecosystems. This findings of the study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

ACKNOWLEDGEMENT

This research was supported by HIKOM of Directorate General of Development and Research Enhancement, Ministry of Research, Technology and Higher Education, Republic of Indonesia. We would like to express our appreciation to the Institute of Research and Community Service (LPPM), Universitas Sriwijaya, Indonesia for facilitating this research. Special thanks to Ricky Davit Simamora for his assistance with the field work.

REFERENCES

- Arofah, S., I. Trisnawati, and D. Tjahjaningrum. 2013. Pengaruh habitat termodifikasi menggunakan serai terhadap serangga herbivora dan produktivitas padi varietas IR-64 di Desa Purwosari, Pasuruan. Jurnal Sains dan Seni Pomits 2(2): 2337-3520.
- Barrion, A.T. and J.A. Litsinger. 1995. Riceland Spiders of South and Southeast Asia. International Rice Research Institute. Philippines. 716p.
- Barrion, A.T., S.S. Villareal, J.L.A. Catindig, D. Cai, Q.H. Yuan, and K.L. Heong. 2012.The spider fauna in the rice agricultural landscape of Hainan Island, China:Composition, abundance and feeding structure. ASIA Life Sciences 21(2): 625-651.
- Betz, L. and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. Journal of Insect Conservation.21(3): 495-508.
- Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against *Aphis gossypii* Glover (Homoptera: Aphididae). Tropical Life Sciences Research 21(1): 13-21.

- Herlinda, S., A. Rauf, S. Sosromarsono, U. Kartosuwondo, Siswadi, and P. Hidayat. 2004. Artropoda musuh alami penghuni ekosistem persawahan di daerah Cianjur, Jawa Barat. Jurnal Entomologi Indonesia. 1(1): 9-15.
- Herlinda, S., H.N. Manalu, A.F. Aldina, Suwandi, and A. Wijaya, Khodijah, and D. Meidalima. 2014. Kelimpahan dan keanekaragaman spesies laba-laba predator hama padi ratun di sawah pasang surut. Jurnal Hama dan Penyakit Tumbuhan Tropika. 14(1): 1-7.
- Herlinda, S., Waluyo, S.P. Estuningsih, and C. Irsan. 2008. Perbandingan keanekaragaman spesies dan kelimpahan arthropoda predator penghuni tanah di sawah lebak yang diaplikasi dan tanpa aplikasi insektisida. Jurnal Entomologi Indonesia. 5(2): 96-107.
- Hidayat, T., N.K. Pandjaitan, A.H. Dharmawan, M.T. Wahyu, and F.Sitorus. 2010.
 Kontestasi sains dengan pengetahuan lokal petani dalam pengelolaan lahan rawa pasang surut. Jurnal Transdisiplin Sosiologi, Komunikasi, dan Ekologi Manusia. 4(1): 1-16.
- Hu, S., D. Fu, X. Liu, T. Zhao, Z. Han, Lü, J. Lu, H. Wan, and H. Ye. 2012. Diversity of planthoppers associated with the winter rice agroecosystems in Southern Yunnan, China. Journal of Insect Science.12(29): 1-11.
- Iida, H. and K. Fujisaki. 2007. Seasonal changes in resource allocation within an individual offspring of the wolf spider, *Pardosa pseudoannulata* (Araneae: Lycosidae).Physiological Entomology. 32(1): 81-86.
- Ishijima, C. and A. Taguchi, M. Takagi, T. Motobayashi, M. Nakai, and Y. Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Applied Entomology and Zoology. 41(2): 195-200.

- Karindah, S. 2011. Predation of five generalist predators on brown planthopper (*Nilaparvata lugens* Stål). Jurnal Entomologi Indonesia. 8(2): 55-62.
- Khodijah, S. Herlinda, C. Irsan, Y. Pujiastuti, and R. Thalib. 2012. Artropoda predator penghuni ekosistem persawahan lebak dan pasang surut Sumatera Selatan. Jurnal Lahan Suboptimal. 1(1): 57-63.
- Lakitan, B., A. Alberto, L. Lindiana, K. Kartika, S. Herlinda, and A. Kurnianingsih.. 2018.The Benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra. Indonesia. CMUJ Natural Sciences. 17(2): April (In press).
- Lou, Y.G., G.R. Zhang, W.Q. Zhang, Y. Hu, and J. Zhang. 2013. Biological control of rice insect pests in China. Biol Control. 67: 8-20.
- Magurran, A.E. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall. 192 p.
- Mahrub, E. 1999. Kajian keanekaragaman artropoda pada lahan padi sawah tanpa pestisida dan manfaatnya dalam pengendalian hama terpadu. Jurnal Perlindungan Tanaman Indonesia. 5(1): 35-41.
- Mulyani, A. and M. Sarwani. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lokal. *7*(1): 47-55.
- Parry, H.R., S. Macfadyen, J.E. Hopkinson, F.J.J.A. Bianchi, M.P. Zalucki, A. Bourne, and N.A. Schellhorn. 2015. Plant composition modulates arthropod pest and predator abundance: Evidence for culling exotics and planting natives. Basic and Applied Ecology. 30: 1-13.
- Pereira, J. L., M.C. Picanc, E.J.G. Pereira, A.A. Silva, A. Jakelaitis, R.R. Pereira, and V.M. Xavier. 2010. Influence of crop management practices on bean foliage arthropods. Bulletin of Entomological Research. 100: 679-688.

- Raharjo, B., I.S. Marpaung, and Y. Hutapea. 2013. Kajian kinerja alat tanam dan varietas unggul baru padi di lahan pasang surut Sumatera Selatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian. 16(3): 191-201.
- Riechert, S.E. and T. Lockley 1984. Spiders as Biological Control Agents. Annual Review of Entomology. 29: 299-320.
- Rizali, A., D. Buchori, and H. Triwidodo. 2002. Insect diversity at the forest margin-rice field interface: indicator for a healthy ecosystem. HAYATI Journal of Biosciences. 9(2): 41-48.
- Schmidt, M.H. and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography. 32(3): 467-473.
- Shepard, B.M, A.T. Barrion, and J.A. Litsinger. 1987. Friends of the Rice Farmer: Helpful Insects, Spiders, and Pathogens. International Rice Research Institute. Philippines. 136p.
- Suana, I.W. and H. Haryanto. 2013. Keanekaragaman laba-laba dan potensinya sebagai musuh alami hama tanaman jambu mete. Jurnal Entomologi Indonesia. 10(1): 24-30.
- Sunariah, F., S. Herlinda, C. Irsan, and Y. Windusari. 2016. Kelimpahan dan kekayaan artropoda predator pada tanaman padi yang diaplikasi bioinsektisida *Bacillus thuringiensis*. Jurnal Hama dan Penyakit Tumbuhan Tropika. 16 1: 42-50.
- Suriadikarta, D.A. and M.T. Sutriadi. 2007. Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa. Jurnal Litbang Pertanian. 26(3): 115-122.
- Tahir HM, Butt A, Sherawat SM (2009) Foraging strategies and diet composition of two orb web spiders in rice ecosystems. J Arachnol. 37: 357–362.
- Widiarta, I.N, D. Kusdiaman, and Suprihanto. 2006. Keragaman arthropoda pada padi sawah dengan pengelolaan tanaman terpadu. Jurnal Hama dan Penyakit Tumbuhan Tropika. 6(2):61-69.

- Zhang, J., X. Zheng, H. Jian, X. Qin, F. Yuan, and R. Zhang. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida Entomologist. 96(1): 1-9.
- Zi-yang, Z., H. Xian-cai, M. Ling, X. Tongzhou, and L. Bao-ping. 2011. Arthropod diversity on plants at field margins of organic farming paddy rice. Chinese Journal of Ecology. 30(7):1347-1353.

No.			Average spider abundance	
	Family. and Species	(per 30 nets)		P _{value} (0.05
		Fresh Swamps	Tidal Lowlands	
	Araneidae	6.500	2.750	0.152
1.	Araneus inustus	1.500	0.625	0.303
2.	Cylosa insulana	1.750	0.750	0.241
3.	Cylosa mulmeinensis	0.500	0.000	0.225
4.	Gea subarmata	2.750	1.375	0.550
	Tetragnathidae	54.250	32.750	0.175
5.	Tetragnatha javana	8.250	12.000	0.495
6.	Tetragnatha virescens	21.000	8.875	0.107
7.	Tetragnatha mandibulata	8.500	8.500	1.000
8.	Tetragnatha ilavaca	1.000	0.125	0.089
9.	Tetragnatha maxillosa	3.000	1.500	0.500
10.	Tetragnatha desaguni	1.250	0.750	0.676
11.	Tetragnatha vermiformis	8.250	0.750	0.001*
12.	Tetragnatha okumae	1.750	0.000	1.000
13.	Dyschiriognatha hawigtenera	1.250	0.250	0.202
	Linyphiidae	8.750	9.375	0.944
14.	Bathyphantes tagalogensis	4.750	7.125	0.687
15.	Atypena adelinae	3.250	2.250	0.773
16.	Erigone bifurca	0.750	0.000	1.000
	Oxyopidae	18.000	13.875	0.616
17.	Oxyopes javanus	6.250	7.250	0.843
18.	Oxyopes matiensis	5.750	6.250	0.842
19.	Oxyopes bikakaeus	3.250	0.125	0.007*
20.	Oxyopes pingasus	2.750	0.250	0.118
	Thomisidae	0.750	0.750	1.000
21.	Diaea tadtadtinika	0.500	0.500	1.000
22.	Stiphropus sangayus	0.250	0.250	1.000
	Theridiidae	0.250	0.250	1.000
23.	Coleosoma octomaculatum	0.250	0.000	0.364
24.	Theridion sp.	0.000	0.250	0.495
	Salticidae	4.250	3.125	0.753
25.	Myrmarachne bidentata	0.500	0.250	0.677
26.	Simaetha damongpalaya	3.000	0.750	0.422
27.	Hyllus maskaranus	0.750	2.125	0.479
	Total of Abundance (N)	92.750	62.875	0.312
	Average of Abundance	13.250	8.982	0.309
	Species Richness (D)	1.700	1.195	0.186

Table 1. The comparison of arboreal spider abundance found on vegetative stage of rice at fresh swamps and tidal lowlands in South Sumatra

*= significantly different

Table 2. The comparison of arboreal spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

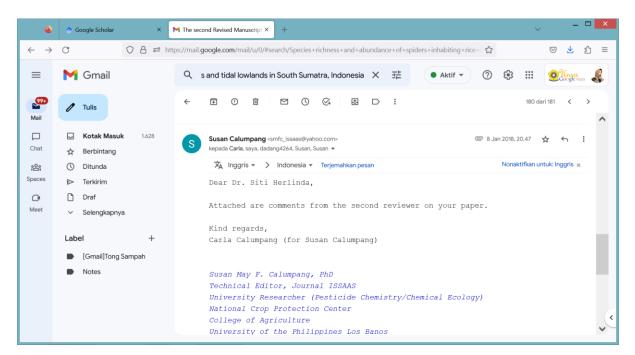
No.	Family. and Species	Average spider abundance (per 30 nets)	Pvalue (0.05)
-----	---------------------	---	---------------

Araneidae 5.000 4.500 0.803 1. Araneus inustus 0.750 1.125 0.481 2. Cylosa insulana 1.000 0.500 0.327 3. Cylosa mulmeinensis 0.750 0.125 0.260 4. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 5. Tetragnathidae 7.250 7.750 0.548 7. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha maxillosa 0.500 1.125 0.320 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis			Fresh Swamps	Tidal Lowlands	
2. Cylosa insulana 1.000 0.500 0.327 3. Cylosa mulmeinensis 0.750 0.125 0.260 4. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 5. Tetragnathidae 7.250 7.250 1.000 6. Tetragnatha iavana 7.250 7.750 0.548 7. Tetragnatha iavaca 0.000 0.875 1.000 9. Tetragnatha maxillosa 0.500 1.125 0.320 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115		Araneidae	1		0.803
3. Cylosa mulmeinensis 0.750 0.125 0.260 4. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 5. Tetragnatha javana 7.250 7.750 0.548 7. Tetragnatha virescens 7.250 7.750 0.548 8. Tetragnatha virescens 7.250 7.750 0.548 8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha desaguni 0.000 0.000 1.000 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha havigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 <t< td=""><td>1.</td><td>Araneus inustus</td><td>0.750</td><td>1.125</td><td>0.481</td></t<>	1.	Araneus inustus	0.750	1.125	0.481
3. Cylosa mulmeinensis 0.750 0.125 0.260 4. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 5. Tetragnatha javana 7.250 7.750 0.548 7. Tetragnatha virescens 7.250 7.750 0.548 8. Tetragnatha virescens 7.250 7.750 0.548 8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha desaguni 0.000 0.000 1.000 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha havigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 <t< td=""><td>2.</td><td>Cylosa insulana</td><td></td><td>0.500</td><td>0.327</td></t<>	2.	Cylosa insulana		0.500	0.327
4. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 5. Tetragnatha iavana 7.250 7.250 1.000 6. Tetragnatha virescens 7.250 7.750 0.548 7. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha mandibulata 0.000 0.875 1.000 9. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000		•	0.750	0.125	0.260
5. Tetragnatha javana 7.250 7.250 1.000 6. Tetragnatha virescens 7.250 7.750 0.548 7. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha maxillosa 0.000 0.875 1.000 9. Tetragnatha desaguni 0.000 0.000 1.000 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha desaguni 0.000 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.558 19. Oxyopes matiensis 4.750 6.125 0.500	4.	•	2.500	2.750	0.912
5. Tetragnatha javana 7.250 7.250 1.000 6. Tetragnatha virescens 7.250 7.750 0.548 7. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 12. Tetragnatha kowmae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes matiensis 0.000 0.250 1.000		Tetragnathidae	26.000	26.000	1.000
6. Tetragnatha virescens 7.250 7.750 0.548 7. Tetragnatha mandibulata 3.500 4.375 0.548 8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha maxillosa 0.500 1.125 0.320 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha vermiformis 6.750 4.625 0.188 12. Tetragnatha kvimae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 0.250 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000	5.		7.250	7.250	1.000
8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha maxillosa 0.500 1.125 0.320 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha vermiformis 6.750 4.625 0.188 12. Tetragnatha okumae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 0Xyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 0.375 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000	6.		7.250	7.750	0.548
8. Tetragnatha ilavaca 0.000 0.875 1.000 9. Tetragnatha maxillosa 0.500 1.125 0.320 10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha vermiformis 6.750 4.625 0.188 12. Tetragnatha okumae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22.	7.	Tetragnatha mandibulata	3.500	4.375	0.548
10. Tetragnatha desaguni 0.000 0.000 1.000 11. Tetragnatha vermiformis 6.750 4.625 0.188 12. Tetragnatha okumae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.000 1.000 20. Oxyopes pingasus 0.000 0.250 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiina sp. 0.000 0.250 1.000 2	8.	0	0.000	0.875	1.000
11. Tetragnatha vermiformis 6.750 4.625 0.188 12. Tetragnatha okumae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 1.000 20. Oxyopes pingasus 0.000 0.250 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 1.000 25.	9.	Tetragnatha maxillosa	0.500	1.125	0.320
12. Tetragnatha okumae 0.750 0.000 1.000 13. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes pingasus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.255 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiidae 2.000 2.750 0.634 25. Myrmarachne bidentata<	10.	Tetragnatha desaguni	0.000	0.000	1.000
13. Dyschriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes pingasus 0.000 0.000 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bident	11.	Tetragnatha vermiformis	6.750	4.625	0.188
Linyphiidae 6.250 4.750 0.720 14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.558 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes pingasus 0.000 0.625 1.000 20. Oxyopes pingasus 0.000 0.375 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya	12.	Tetragnatha okumae	0.750	0.000	1.000
14. Bathyphantes tagalogensis 3.250 0.875 0.115 15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.200 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiinae 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 1.000 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 26. <td< td=""><td>13.</td><td>Dyschiriognatha hawigtenera</td><td>0.000</td><td>0.000</td><td>1.000</td></td<>	13.	Dyschiriognatha hawigtenera	0.000	0.000	1.000
15. Atypena adelinae 3.000 3.875 0.723 16. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 1.000 25. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 26. Simaetha damongpalaya 1.250 2.500 0.560 27. H		Linyphiidae	6.250	4.750	0.720
16. $Erigone bifurca$ 0.0000.0001.000 Oxyopidae 8.50015.6250.09617. $Oxyopes javanus$ 3.7507.6250.05818. $Oxyopes matiensis$ 4.7506.1250.55819. $Oxyopes bikakaeus$ 0.0001.2501.00020. $Oxyopes pingasus$ 0.0000.6251.00021. $Diaea tadtadtinika$ 0.0000.2501.00022. $Stiphropus sangayus$ 0.0000.2501.00023. $Coleosoma octomaculatum$ 0.0000.2501.00024. $Theridiidae$ 2.0002.7500.63425. $Myrmarachne bidentata$ 0.0000.2500.49526. $Simaetha damongpalaya$ 1.2502.5000.56027. $Hyllus maskaranus$ 0.7500.0001.000Total of Abundance (N) 47.750 54.2500.521Average of Abundance	14.	Bathyphantes tagalogensis	3.250	0.875	0.115
Oxyopidae 8.500 15.625 0.096 17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 27. Hyllus maskaranus 0.750 0.000 1.000 27. Hyllus maskaranus 0.750 0.000 1.000 27. Hyllus	15.	Atypena adelinae	3.000	3.875	0.723
17. Oxyopes javanus 3.750 7.625 0.058 18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 27. Hyllus maskaranus 0.750 0.000 1.000 <td>16.</td> <td>Erigone bifurca</td> <td>0.000</td> <td>0.000</td> <td>1.000</td>	16.	Erigone bifurca	0.000	0.000	1.000
18. Oxyopes matiensis 4.750 6.125 0.558 19. Oxyopes bikakaeus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiidae 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Oxyopidae	8.500	15.625	0.096
19. Oxyopes bikakaeus 0.000 1.250 1.000 20. Oxyopes pingasus 0.000 0.625 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiidae 0.000 0.250 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	17.	Oxyopes javanus	3.750	7.625	0.058
20. Oxyopes pingasus 0.000 0.625 1.000 Thomisidae 0.000 0.375 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.000 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	18.	Oxyopes matiensis	4.750	6.125	0.558
Thomisidae 0.000 0.375 1.000 21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 22. Stiphropus sangayus 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridiin sp. 0.000 0.000 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	19.	Oxyopes bikakaeus	0.000	1.250	1.000
21. Diaea tadtadtinika 0.000 0.250 1.000 22. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.000 1.000 25. Myrmarachne bidentata 0.000 0.250 0.634 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	20.	Oxyopes pingasus	0.000	0.625	1.000
22. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.000 1.000 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Thomisidae	0.000	0.375	1.000
Theridiidae 0.000 0.250 1.000 23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	21.	Diaea tadtadtinika	0.000	0.250	1.000
23. Coleosoma octomaculatum 0.000 0.250 1.000 24. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	22.	Stiphropus sangayus	0.000	0.125	1.000
24. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Theridiidae	0.000	0.250	1.000
Salticidae 2.000 2.750 0.634 25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	23.	Coleosoma octomaculatum	0.000	0.250	1.000
25. Myrmarachne bidentata 0.000 0.250 0.495 26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	24.	Theridion sp.	0.000	0.000	1.000
26. Simaetha damongpalaya 1.250 2.500 0.560 27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Salticidae	2.000	2.750	0.634
27. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	25.	Myrmarachne bidentata	0.000	0.250	0.495
Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	26.	Simaetha damongpalaya	1.250	2.500	0.560
Average of Abundance 6.821 1.417 0.000*	27.	÷	0.750	0.000	1.000
		Total of Abundance (N)	47.750	54.250	0.521
Species Richness (D) 1.467 1.573 0.807		Average of Abundance	6.821	1.417	0.000*
		Species Richness (D)	1.467	1.573	0.807

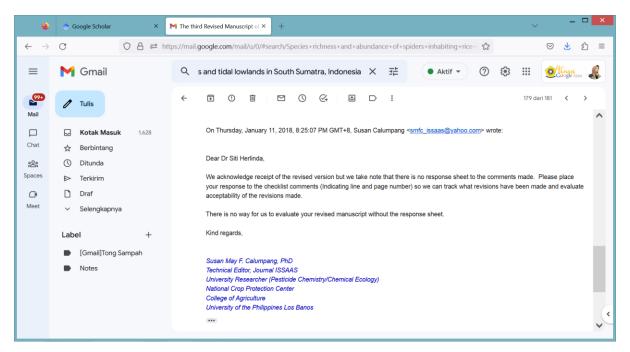
*= significantly different Table 3. The comparison of soil-dweller spider abundance found on vegetative stage of rice at fresh swamp and tidal lowland in South Sumatra

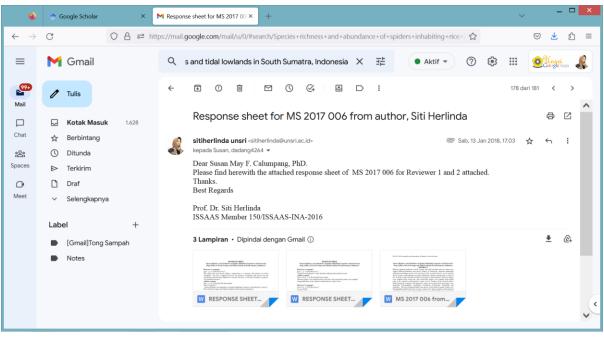
No.	Family. and Species	U	Average spider abundance (per 18 traps)	
		Fresh Swamps Tidal Lowlands		-
	Lycosidae	24.250	22.125	0.664
1.	Pardosa pseudoannulata	17.000	14.625	0.618
2.	Pardosa sumatrana	3.750	2.625	0.177
3.	Pardosa birmanica	0.750	0.625	0.836
4.	Pardosa mackenziei	0.500	1.875	0.135

5.	Pardosa patapensis	0.250	0.000	0.364	
6.	Hogna rizali	0.000	1.750	1.000	
7.	Arctosa tanakai	2.000	0.625	0.244	
	Araneidae	0.000	1.625	1.000	
8.	Araneus inustus	0.000	0.500	1.000	
9.	Cylosa insulana	0.000	0.875	1.000	
10.	Gea subarmata	0.000	0.250	1.000	
	Linyphiidae	5.000	1.250	1.000	
11.	Bathyphantes tagalogensis	2.500	0.250	0.009	
12.	Atypena adelinae	2.000	0.500	0.112	
13.	Erigone bifurca	0.500	0.500	1.000	
	Thomisidae	0.000	0.875	1.000	
14.	Diaea tadtadtinika	0.000	0.750	1.000	
15.	Stiphropus sangayus	0.000	0.125	1.000	
	Theridiidae	0.000	0.375	1.000	
16.	Coleosoma octomaculatum	0.000	0.125	1.000	
17.	Theridion sp.	0.000	0.250	1.000	
	Salticidae	0.000	0.000	1.000	
18.	Hyllus maskaranus	0.000	0.000	1.000	
	Total of Abundance (N)	29.250	26.250	0.451	
	Average of Abundance	4.875	4.375	0.466	
	Species Richness (D)	0.983	1.272	0.529	


*= significantly different Table 4. The comparison of soil-dweller spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.		Average spid	Pvalue (0.05)		
	Family. and Species	(per 18 traps)		▪ value (0.05)	
		Fresh Swamps	Tidal Lowlands		
	Lycosidae	27.250	20.000	0.041*	
1.	Pardosa pseudoannulata	15.750	12.250	0.326	
2.	Pardosa sumatrana	5.500	5.125	0.699	
3.	Pardosa birmanica	0.500	0.500	1.000	
4.	Pardosa mackenziei	0.000	0.000	1.000	
5.	Pardosa patapensis	0.000	0.625	1.000	
6.	Hogna rizali	1.500	0.250	0.141	
	Arctosa tanakai	4.000	1.250	0.012*	
7.	Araneidae	0.000	0.250	0.495	
8.	Araneus inustus	0.000	0.125	0.742	
9.	Cylosa insulana	0.000	0.000	1.000	
	Gea subarmata	0.000	0.125	0.742	
10.	Linyphiidae	4.500	4.875	0.936	
11.	Bathyphantes tagalogensis	3.000	2.250	0.753	
12.	Atypena adelinae	1.250	2.250	0.532	
	Erigone bifurca	0.250	0.375	0.715	
13.	Thomisidae	0.000	0.000	1.000	
14.	Diaea tadtadtinika	0.000	0.000	1.000	
	Stiphropus sangayus	0.000	0.000	1.000	
15.	Theridiidae	0.000	0.000	1.000	
16.	Coleosoma	0.000	0.000		
	octomaculatum	0.000	0.000	1.000	


	Theridion sp.	0.000	0.000	1.000
17.	Salticidae	0.000	0.125	0.742
	Hyllus maskaranus	0.000	0.125	0.742
	Total of Abundance (N)	31.750	25.250	0.295
	Average of Abundance	5.292	4.208	0.329
	Species Richness (D)	1.058	1.052	0.981
	······································			


*= significantly different

3. Bukti konfirmasi review kedua dan hasil revisi kedua

۷	◆ Google Scholar ×	M The third Revised Manuscript of × + -	×
$\leftarrow \ \ \rightarrow$	C C A = http://www.	ps://mail.google.com/mail/u/0/#search/Species+richness+and+abundance+of+spiders+inhabiting+rice+1 🏠 🛛 💆 🖞	≡
≡	M Gmail	🔍 s and tidal lowlands in South Sumatra, Indonesia 🗙 🕂 🔹 Aktif 👻 🕐 🚯 🏢 🧕	
Mail	🖉 Tulis	← 〒 ① 前 ⊠ ① ♀ B ⊃ : 179 dari 181 < >	•
	Kotak Masuk 1.628	The third Revised Manuscript of Siti Herlinda et al. Kotak Masuk x 🕺 🗧 🖸	
Chat	☆ Berbintang	sitiherlinda unsri «sitiherlinda@unsri.ac.id» @ Rab, 10 Jan 2018, 21.50 🛠 🕤 : kepada Susan, dadang4264 👻	
Spaces	▷ Terkirim	Dear Dr. Susan	
⊡ • Meet	 Draf Selengkapnya 	Please find herewith the attached the third <u>revised manuscript</u> submitted for publication consideration in the ISSAAS Journal. I have tried my best to accommodate and to revise all suggestions and corrections from the second reviewer. Therefore, may I hope that your honor would kindly take necessary actions for publication of the paper in the earliest possible issue of your journal and oblige thereby. I have to mention that this paper is not in consideration for publication in	
	Label +	other journals.	
	[Gmail]Tong Sampah	Please refer to the following email address for further correspondence. Thank you. Email: sitherlinda@unsri.ac.id	
	Notes	Best Regards	
		Prof. Dr. Siti Herlinda ISSAAS Member 150/ISSAAS-INA-2016	
		Satu lampiran • Dipindai dengan Gmail 🛈 🖉	× (

RESPONSE SHEET

"Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia"

Reviewer 1 comments

Line: 1, p: 1 at MS Reviewer 1

This paper does not directly address composition as a measure. All analyses are about abundance. You have compared diversity (ie richness) of families and species but not specifically analysed these differences. Can add 'diversity' to the title if numbers of species are included in analyses

Author response

Line: 1, p: 1 at The third MS from author The revised title is: "Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia"

Reviewer 1 comments

Line: 5, p: 1 at MS Reviewer 1

Add sentence explaining importance of quantifying arthropod assemblages in these two ecosystems

Author response

Line: 4-5, p: 1 at The third MS from author

Different planting methods at fresh swamps and tidal lowlands and rice stages may support different abundance and species richness of arthropods therefore quantifying arthropod assemblages needs to be carried out.

Reviewer 1 comments

Line: 15-18, p: 1 at MS Reviewer 1

This sentence is confusing. I suggest it be re-worded

Author response

Line: 19-22, p: 1 at The third MS from author

Re-worded:

The most dominant family and species of the soil-dweller spiders found were Lycosidae and *Pardosa pseudoannulata*, respectively. Species richness of the soil-dweller spiders during the rice vegetative (P = 0.529) and generative (P = 0.981) stages at the fresh swamps was not significantly different from that at the tidal lowlands.

Reviewer 1 comments

Line: 21, p: 1 at MS Reviewer 1 What is the local custom?

Author response

Line: 22-23, p: 1 at The third MS from author

The revision:

"This study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects"

Reviewer 1 comments

Line: 32, p: 2 at MS Reviewer 1 What is the 'economical level'? **Author response** We have deleted the sentence.

Reviewer 1 comments

Line: 51-52, p: 2 at MS Reviewer 1

Need to explain why you assess assemblages in these two paddy stages and how this is relevant to the use of insecticides, which seems to be the main focus of the Introduction **Author response:**

Line: 46-55, p: 1-2 at The third MS from author

We have explained it and put the ecosystems and rice stages for the main focus of the introduction, as follows:

"In addition to planting method and index, vegetative and generative stages of rice also influence species richness and abundance of the arthropods (Herlinda *et al.* 2008). At the vegetative and generative stages, soil- dweller arthropods are more abundant and more diverse at the tidal lowlands than those at the fresh swamp ecosystems (Khodijah *et al.*, 2012; Herlinda *et al.*, 2014). However, the arboreal artropods are more abundant and richer at the fresh swamp ecosystems than those at the tidal lowland ecosystems (Khodijah *et al.*, 2012; Sunariah *et al.*, 2016). Different planting methods and index at the both ecosystems and different stages of rice may support different abundance and species richness of arthropods, therefore quantifying arthropod assemblages needs to be carried out."

Reviewer 1 comments

Line: 74-75, p: 4 at MS Reviewer 1 How many weeks following first survey, approximately? **Author response:** Line: 74-76, p: 4 at The third MS from author the revisions made: The first survey was done when rice crop was 4 weeks old and the second one when rice crop was at milk grain stage (9 weeks old).

Reviewer 1 comments

Line: 76, p: 4 at MS Reviewer 1 The different rice types used can surely affect the species present. Maybe good to raise this in the Discussion **Author response:** Line: 180-190, p: 9 at The third MS from author We have raised and discussed them from Line 180, p 8 until Line 190, p 9.

Reviewer 1 comments

Line: 77, p: 4 at MS Reviewer 1 May be better to consistently use the term 'aboreal' **Author response:** We have done it consistently

Reviewer 1 comments

Line: 96, p: 5 at MS Reviewer 1 Were traps spaced in a grid 2 x 9 or 3 x 6?

Author response:

Line: 84-85, p: 4 at The third MS from author Traps were installed with density of 18 units/ha, spaced in a grid 3 x 6, then collected after 48 hours.

Reviewer 1 comments

Line: 105-108, p: 5 at MS Reviewer 1 Best to have this here because it applies to both sets of sampling **Author response:** We absolutely agree

Reviewer 1 comments Line: 109, p: 5 at MS Reviewer 1 You have only analysed differences in species abundances not of species diversity nor of composition. Is this the goal?

Author response:

Line: 94-95, p: 5 at The third MS from author Species richness was analysed using Menhinick's index (D) (Magurran, 1988).

Reviewer 1 comments Line: 121, p: 6 at MS Reviewer 1 Habitat or ecosystem?

Author response: We have replaces the word of habitat to ecosystem

Reviewer 1 comments Line: 128, p: 6 at MS Reviewer 1 If species are given in the Table no need to list them in the text **Author response:** Line: 98-109, p: 5 at The third MS from author We have removed them from the list

Reviewer 1 comments Line: 138, p: 6at MS Reviewer 1 Give exact P-value Author response: Line: 103 and 109, p: 5 at The third MS from author Give exact P-value

Reviewer 1 comments

Line: 142-145, p: 7 at MS Reviewer 1 Probably better to talk about families first, then species, so move this section to the beginning of the paragraph **Author response:** Line: 98-109, p: 5 at The third MS from author

We did it

Reviewer 1 comments Line: 199, p: 9 at MS Reviewer 1 Does this sentence refer to species or family abundance? Author response: The sentence refer to species.

Reviewer 1 comments Line: 233-235, p: 10 at MS Reviewer 1 Confusing. Re-word Author response: We removed the sentence.

Reviewer 1 comments Line: 247, p: 11 at MS Reviewer 1 What does this mean? All spiders are surely predators of insect pests **Author response:** We removed the sentence.

Reviewer 1 comments

Line: 253, p: 11 at MS Reviewer 1

Has this been assessed here or in another study? If not, cant make this claim with such certainty

Author response:

Line: 180-184, p 8 at The third MS from author We put references for the statements.

Reviewer 1 comments

Line: 264-265, p 12 at MS Reviewer 1

You haven't assessed this directly. Need to say that you speculate this is the cause for differences in assemblages, but you also mentioned differences in prey and in rice production.

Author response:

We removed the sentence.

Reviewer 1 comments:

Overall, I think it is a good article and is acceptable for publication pending some revisions to the text (and errors in the tables) and perhaps a few additional analyses on species richness if the 'diversity' aspect of the manuscripts means to be highlighted.

Author response:

We have added an additional analyses on species richness for all the data on the tables

RESPONSE SHEET

"Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia"

Reviewer 2 comments

Line: 7, p: 1 at MS Reviewer 2 Vegetative and generative stage should be defined in the method section **Author response** Line: 8-10, p: 1 at The third MS from author Arboreal spiders were sampled using sweep nets, and soil-dweller spiders were sampled using pitfall traps at the vegetative and generative stages of rice.

Reviewer 2 comments

Line: 8, p: 1 at MS Reviewer 2 Is it rice field? **Author response** No. It is rice or paddy

Reviewer 2 comments

Line: 9, p: 1 at MS Reviewer 2 Insect net = sweep net?

Author response Yes, it is, so that we replaced it

Reviewer 2 comments

Line: 11-12, p: 1 at MS Reviewer 2 Were there any other family groups of spiders which were not mentioned? **Author response** We just found those family groups and there were no the others.

Reviewer 2 comments

Line: 14, p: 1 at MS Reviewer 2 Three decimals would be better. Please correct it throughout the text. **Author response** We have corrected it throughout the text.

Reviewer 2 comments

Line: 17, p: 1 at MS Reviewer 2 Araneidae, Linyphiidae and Theridiidae are not soil-dwelling spiders. Is would be appropriate to define soil-dwellers. Normally, the terminology web-building and non-web building spiders

Author response We have replace soil-dwelling to soil-dweller throughout the text.

Reviewer 2 comments Line: 27-19, p: 2 at MS Reviewer 2 References? **Author response** Line: 30 p: 2 at The third MS from author We have put the References

Reviewer 2 comments

Line: 79-81, p: 4 at MS Reviewer 2

Define arboreal spiders and define soil -welling spiders. I am a bit sceptical on the double swing methods as spiders on bark would not be captured. Normally, they would be hand picked.

Author response

The swing methods for capturing spiders on rice canopy were effective in this research.

Reviewer 2 comments

Line: 104, p: 5 at MS Reviewer 2 92.750 individuals? **Author response**

Yes it is.

Reviewer 2 comments

Line: 105, p: 5 at MS Reviewer 2 How do you calculate this? In %? **Author response** No, it is not, it is in individuals.

Reviewer 2 comments

Line: 137-139, p: 6 at MS Reviewer 2 Write like this in the abstract and throughout the text **Author response** We did it.

Reviewer 2 comments

Line: 150, p: 7 at MS Reviewer 2 Three decimal point is sufficient. Correct throughout the text **Author response** We did it.

Reviewer 2 comments

Line: 159, p: 7 at MS Reviewer 2 Now you changed the term from arboreal and soil dwelling? Please be consistent with the terminology used throughout the text

Author response

We have been consistent with the terminology used throughout the text

Reviewer 2 comments

Line: 166-167, p: 8 at MS Reviewer 2 So they are able to adapt? Put a sentence after this the reason of the two species to be dominant

Author response

Yes. We have added the senteces at Line 157-163 p. 7 at The third MS from author

Reviewer 2 comments

Line: 333, p: 16 at MS Reviewer 2

There is a list of spiders for Indonesia. Be careful when you list the species name as some may not even be found in swamp ecosystem (Checklist of spiders from Indonesia and New Guinea)

Author response

All the species on the list were found in swamp ecosystem.

Species Richness and Abundance of Spiders Inhabiting Vegetative and Generative Stage of Rice at Fresh Swamps and Tidal Lowlands in South Sumatra, Indonesia

ABSTRACT

Different planting methods at fresh swamps and tidal lowlands and rice stages may support different abundance and species richness of arthropods therefore quantifying arthropod assemblages needs to be carried out. This research objective was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamp and tidal lowland ecosystems in South Sumatra. Arboreal spiders were sampled using sweep nets, and soil-dweller spiders were sampled using pitfall traps at the vegetative and generative stages of rice. Families of the arboreal spiders found during the vegetative and generative stages of rice from both ecosystems were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae. The most dominant family and species of the arboreal spiders found were Tetragnathidae and Tetragnatha virescens, respectively. Species richness of the arboreal spider during the vegetative (P = 0.186) and generative (P =0.807) stages at the fresh swamp ecosystems was not significantly different from that at the tidal lowland ecosystems. Families of soil-dweller spiders found during the vegetative and generative stages were Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae. The most dominant family and species of the soil-dweller spiders found were Lycosidae and Pardosa pseudoannulata, respectively. Species richness of the soil-dweller spiders during the rice vegetative (P = 0.529) and generative (P = 0.981) stages at the fresh swamps was not significantly different from that at the tidal lowlands. This study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

Keywords: arboreal, arthropod, rice field, soil-dweller

INTRODUCTION

Wetlands in Indonesia, are characterized by two distinct ecosystems, differentiated based on sea tide influence; i.e. tidal lowlands for those directly influenced by sea tide but fresh swamps for those not affected by sea tide (Mulyani & Sarwani, 2013). At the tidal lowland ecosystems, soil needs specific handling due to thick pyritic layers therefore it should be preserved (Hidayat et al., 2010). The local farmers do not fully manage the soil to prevent the pyrite layers from destructions (Suriadikarta et al., 2013) and they generally plant rice twice a year (planting index) by using broadcast seeding, drum seeding, or seedling in a digged-hole ("tugal") (Raharjo et al., 2013). Contrary to the farmers at the tidal lowlands, farmers at fresh swamps usually plant rice using transplanting system and they only plant rice once a year (Mulyani & Sarwani, 2013; Lakitan et al., 2018). Different rice planting methods and index at the both ecosystems may also affect the arthropod abundance and species diversity or richness (Zhang et al., 2013; Parry et al., 2015). Weedy paddies at direct planting ecosystems have more abundant arthropods than those at clean ecosystems (Hu et al., 2012). No soil tillage or conservation tillage at paddies also support higher arthropod abundance (Pereira et al., 2010). No application of synthetic insecticides at fresh swamp ecosystems also enhances abundance of predatory arthropods, especially spiders (Herlinda et al., 2004; Herlinda et al., 2008).

In addition to planting method and index, vegetative and generative stages of rice also influence species richness and abundance of the arthropods (Herlinda *et al.* 2008). At the vegetative and generative stages, soil- dweller arthropods are more abundant and more diverse at the tidal lowlands than those at the fresh swamp ecosystems (Khodijah *et al.*, 2012; Herlinda *et al.*, 2014). However, the arboreal artropods are more abundant and richer at the fresh swamp ecosystems than those at the tidal lowland ecosystems (Khodijah *et al.*, 2012; Sunariah *et al.*, 2016). Different planting methods and index at the both ecosystems and

different stages of rice may support different abundance and species richness of arthropods, therefore quantifying arthropod assemblages needs to be carried out. The purpose of this study was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamps and tidal lowlands in South Sumatra.

MATERIAL AND METHODS

Study Site

Surveys were carried out at rice production centers of fresh swamps and tidal lowlands in South Sumatra throughout February 2012 and March 2013. Survey locations of the rice production centers for fresh swamp ecosystems were: (1) Gandus, Palembang City; (2) Pelabuhan Dalam Village of Ogan Ilir District; (3) Maryana Village of Banyuasin District; and (4) Sungai Waru Village of Kabupaten Banyuasin District. Survey locations of the rice production centers for tidal lowlands were: (1) Banyu Urip Village of Tanjung Lago Subdistrict, Banyuasin District' (2) Telang Karya Village of Muara Telang Subdistrict, Banyuasin District; (3) Telang Rejo Village of Muara Telang Subdistrict, Banyuasin District; (4) Srikaton Damai Village of Air Saleh Subdistrict, Banyuasin District; (5) Srimulyo Village of Kecamatan Air Saleh Subdistrict, Banyuasin District; (6) Makarti Jaya Village of Makarti Java Subdistrict, Banyuasin District; (7) Tirta Mulya Village of Makarti Java Subdistrict, Banyuasin District; and (8) Tirta Kencana Village of Makarti Jaya Subdistrict, Banyuasin District. In each location, three sampling plots with a minimum size of 1 ha were surveyed twice during one rice season (4 mounts). The first survey was done when rice crop was 4 weeks old and the second one when rice crop was at milk grain stage (9 weeks old). Rice variety used at the fresh swamps was Ciherang, whereas Inpara variety was used at the tidal lowland ecosystems.

Sampling

Arboreal spiders. The arboreal spiders were sampled using sweep nets, following methods used by Herlinda *et al.* (2014). Net sweeping consisted of 'double swings', totalling 30 swings/ha in all plots.

Soil-dweller spiders. Soil-dweller spiders were sampled using pitfall traps, following methods used by Herlinda *et al.* (2004). Plastic pitfall traps (60 mm in diameter and 90 mm in height) were filled to a volume of 70 mL with 4% formaldehide solution and buried in the ground flush with the soil surface. Traps were installed with density of 18 units/ha, spaced in a grid 3 x 6, then collected after 48 hours. All specimens collected were cleaned and sorted from other debris and stored in vials containing 70% ethanol. Identification to family- and species-level was carried out at Laboratory of Entomology, at the Plant Pest and Disease Department, College of Agriculture, Universitas Sriwijaya, using taxonomic keys provided in Barrion and Litsinger (1995).

Data Analysis

The spider abundance data between samples from the fresh swamp and tidal lowland ecosystems were not normally distributed. Hence, insect counts in this study were found to fit a negative binomial distribution and were analyzed by Proc Genmod using SAS University Edition (SAS Institute Inc., Cary, NC, U.S.A.). Species richness was analysed using Menhinick's index (D) (Magurran, 1988).

RESULTS

Arboreal Spiders at Fresh Swamp and Tidal Lowland Ecosystems

From this survey during rice vegetative stage, a total of seven families of arboreal spiders found were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae at the fresh swamp and tidal lowland ecosystems (Table 1). Tetragnathidae was the most dominant family of the arboreal spider found during the rice vegetative stage. A total of 92.750 spiders/30 nets at the fresh swamp ecosystems and

62.875 spiders/30 nets at the tidal lowland ecosystems were captured (P = 0.312). The abundance of *Tetragnatha vermiformis* (P = 0.001) and *Oxyopes bikakaeus* (P = 0.007) at the fresh swamp ecosystems were significantly higher than those at the tidal lowland ecosystems. A total of the arboreal spider species found during the rice vegetative stage were 26 species from the fresh swamp ecosystems and 23 species from the tidal lowland ecosystem. Spider species richness at the fresh swamp ecosystems was not significantly different (P = 0.186) from those at the tidal lowland ecosystems.

A total of spider families found during rice generative stage were only five families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae and Salticidae) at the fresh swamp ecosystems and seven families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae) at the tidal lowland ecosystems (Table 2). However, abundance of Araneidae (P = 0.803), Tetragnathidae (P = 1.000), Linyphiidae (P =(P = 0.096), Thomisidae (P = 1.000), Theridiidae (P = 1.000), and Salticidae (P = 0.633) at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. The most dominant family of the arboreal spiders found on the both ecosystems was Tetragnathidae. A total of spider abundance for all species at the fresh swamp ecosystems (47.750 spiders/30 nets) were not significantly different (P =0.521) from those at the tidal lowland ecosystems (54.250 spiders/30 nets). However, average of spider abundance from the both ecosystems was significantly different (P =0.000). The most dominant arboreal species found on the both ecosystems was Tetragnatha virescens. A total of arboreal spider species recorded were 16 species from the fresh swamp ecosystems and 21 species from the tidal lowland ecosystem. However, the arboreal spider species richness at the fresh swamp ecosystems were not also significantly different (P =0.8067) from those at the tidal lowland ecosystems.

Soil-dweller Spiders at Fresh Swamps and Tidal Lowlands

At vegetative stage of rice, soil-dweller spiders found were only two families (Lycosidae and Linyphiidae) from the fresh swamp ecosystems and five families (Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae) from the tidal lowland ecosystems (Table 3). We did not find Araneidae, Thomisidae, and Theridiidae at the fresh swamp ecosystems. The most dominant family of soil-dweller spiders found during the rice vegetative stage was Lycosidae and the most dominant species was *Pardosa pseudoannulata*. A total of soil-dweller spider spider species found were nine species at the fresh swamp ecosystems and 16 species at tidal lowland ecosystems. Nonetheless, species richness of the soil-dweller spider at the fresh swamp ecosystems were not significantly different (P = 0.5290) from those at the tidal lowland ecosystems.

A total of the soil-dweller spider families found during generative stage of rice were three families (Lycosidae, Araneidae, and Linyphiidae) from the fresh swamp ecosystems and four families (Lycosidae, Araneidae, Linyphiidae, and Salticidae) from the tidal lowland ecosystems (Table 4). The most dominant family of the soil-dweller spiders found was Lycosidae. The species numbers of soil-dweller spiders recorded were eight and 12 from the fresh swamp and the tidal lowland ecosystems, respectively. Species richness of the soildweler spiders during the rice generative stage at the fresh swamp ecosystems were not significantly different (P = 0.981) from those at the tidal lowland ecosystems. A total of abundance of soil-dweller spiders at the fresh swamp ecosystems were also not significantly different from those at the tidal lowland ecosystems (P = 0.295).

DISCUSSION

Spider families found on rice canopy at fresh swamp and tidal lowland ecosystems during the rice vegetative and generative stages in this study consisted of Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. These arboreal spiders found comprised both web-building (Araneidae, Tetragnathidae, Linyphiidae, Theridiidae) and non-web building (Oxyopidae, Thomisidae, and Salticidae) species, commonly found at the fresh swamp or tidal lowland ecosystems (Schmidt & Tscharntke, 2005). Abundance of species belonging to Tetragnathidae (*T. vermiformis*) and Oxyopidae (*O. bikakaeus*) at the fresh swamp ecosystems in this study were significantly higher than those at the tidal lowland ecosystems. Tetragnathidae and Oxyopidae are more dominant spiders at wetland ecosystems (Betz & Tscharntke, 2017) because the fresh swamp ecosystems are commonly submerged longer (more than 6 mounts) than those at the tidal lowland ecosystems (Mulyani & Sarwani, 2013).

Spider family, Tetragnathidae in this study was the most dominant family of the arboreal spider found during the rice vegetative and generative stages. Species of arboreal spiders dominantly found on paddies at the fresh swamp and tidal lowland ecosystems were similar which consisted of T. virescens and T. javana. Barrion et al. (2012) stated that in the species of Tetragnathidae, such as species of T. virescens and T. javana were classified as keystone species. Such species were playing a critical role in maintaining population of rice pest insect, such leafhopper (Betz & Tscharntke, 2017). Species from Tetragnathidae was reported by Shepard et al. (1987) and Betz and Tscharntke (2017) as dominant web spiders found at wetland ecosystems. The number of Tetragnathidae in this study were more abundant at the rice vegetative stage than those at the rice generative stage. Betz and Tscharntke (2017) stated that abundant of Tetragnathidae was influenced by the number of leafhoppers (Homoptera) which are commonly occured at vegetative stage of rice. The both species of spiders are predators of rice pest insects, such as order of Homoptera and Lepidoptera (Tahir et al., 2009). This also accords with findings of Betz and Tscharntke (2017), which showed highest increase of Tetragnathidae with increasing abundance of Lepidoptera and leafhoppers.

Species abundance of arboreal spiders either at the fresh swamp and tidal lowland ecosystems were higher at vegetative stage of rice than those at generative stage of rice because spider abundance is closely related to their prey population (Riechert & Lockley, 1984). Abundant prey population will attract these spiders to assemble on prey rich ecosystems (Widiarta *et al.*, 2006). The main prey for this spiders was rice insect pests, such as brown planthoppers (Karindah, 2011) that had higher population at vegetative stage of rice than that during generative stage of rice resulting in higher abundance of spiders at the vegetative stage of rice than that of the generative stage of rice. According to Arofah *et al.* (2013) dominant insect pests at vegetative stage of rice was rice bugs. Thus, rice stages at both ecosystems affects the species abundance of spiders.

Spider families found on soil surface of the fresh swamp ecosystems only consisted of Lycosidae and Linyphiidae, whereas Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae were found at the tidal lowland ecosystems. Web spiders, such as Araneidae, Linyphiidae, and Theridiidae could be found on soil surface. This was due to the fact that these spiders were found on immature stage. According to Iida and Fujisaki (2007) and Suana and Haryanto (2013), immature web spiders had capability to produce small like balloon ball so that they could be moved by wind or moving to other places or descend upon or fallen on soil surface.

A total of abundance and species richness of soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. Nonetheless, the most dominant family of the soil-dweller spiders was Lycosidae and the most dominant species was *P*. *pseudoannulata*. Barrion *et al.* (2012) list some species in the Lycosid family, such as wolf spider, *P. pseudoannulata* as keystone species. This wolf spider plays the role of a keystone

predator within this rice ecosystem by preying leafhoppers (Lou *et al.* 2013). High mobility of the wolf spiders allow them to move and to run or to jump for capturing their preys (Ishijima *et al.*, 2006). Abundance of Lycosidae during the rice generative stage at the fresh swamp ecosystems was higher than that at the tidal lowland ecosystems. One explanation why the abundance of Lycosidae was higher at the fresh swamp ecosystems is because farmers culturally do not apply synthetic insecticides to control pest insects. Herlinda (2010) reported that application of the synthetic insecticides at the fresh swamp ecosystems in South Sumatra was rare. Such ecosystems tend to produce high diversity of invertebrate fauna (Mahrub, 1999; Rizali *et al.*, 2002). Rice ecosystems without synthetic insecticides application had higher dominance of predatory arthropods, especially spiders (Herlinda *et al.*, 2008; Herlinda *et al.*, 2004; Zi-yang *et al.*, 2011).

CONCLUSION

The most dominant family and species of the arboreal spiders found were Tetragnathidae and *T. virescens*, respectively, while the most dominant family and species of the soil-dweller spiders were Lycosidae and *P. pseudoannulata*, respectively. Species richness of the arboreal and soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems was not significantly different from those at the tidal lowland ecosystems. This findings of the study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

ACKNOWLEDGEMENT

This research was supported by HIKOM of Directorate General of Development and Research Enhancement, Ministry of Research, Technology and Higher Education, Republic of Indonesia. We would like to express our appreciation to the Institute of Research and Community Service (LPPM), Universitas Sriwijaya, Indonesia for facilitating this research. Special thanks to Ricky Davit Simamora for his assistance with the field work.

REFERENCES

- Arofah, S., I. Trisnawati, and D. Tjahjaningrum. 2013. Pengaruh habitat termodifikasi menggunakan serai terhadap serangga herbivora dan produktivitas padi varietas IR-64 di Desa Purwosari, Pasuruan. Jurnal Sains dan Seni Pomits 2(2): 2337-3520.
- Barrion, A.T. and J.A. Litsinger. 1995. Riceland Spiders of South and Southeast Asia. International Rice Research Institute. Philippines. 716p.
- Barrion, A.T., S.S. Villareal, J.L.A. Catindig, D. Cai, Q.H. Yuan, and K.L. Heong. 2012.The spider fauna in the rice agricultural landscape of Hainan Island, China:Composition, abundance and feeding structure. ASIA Life Sciences 21(2): 625-651.
- Betz, L. and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. Journal of Insect Conservation.21(3): 495-508.
- Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against *Aphis gossypii* Glover (Homoptera: Aphididae). Tropical Life Sciences Research 21(1): 13-21.
- Herlinda, S., A. Rauf, S. Sosromarsono, U. Kartosuwondo, Siswadi, and P. Hidayat. 2004. Artropoda musuh alami penghuni ekosistem persawahan di daerah Cianjur, Jawa Barat. Jurnal Entomologi Indonesia. 1(1): 9-15.
- Herlinda, S., H.N. Manalu, A.F. Aldina, Suwandi, and A. Wijaya, Khodijah, and D. Meidalima. 2014. Kelimpahan dan keanekaragaman spesies laba-laba predator hama padi ratun di sawah pasang surut. Jurnal Hama dan Penyakit Tumbuhan Tropika. 14(1): 1-7.

- Herlinda, S., Waluyo, S.P. Estuningsih, and C. Irsan. 2008. Perbandingan keanekaragaman spesies dan kelimpahan arthropoda predator penghuni tanah di sawah lebak yang diaplikasi dan tanpa aplikasi insektisida. Jurnal Entomologi Indonesia. 5(2): 96-107.
- Hidayat, T., N.K. Pandjaitan, A.H. Dharmawan, M.T. Wahyu, and F.Sitorus. 2010.
 Kontestasi sains dengan pengetahuan lokal petani dalam pengelolaan lahan rawa pasang surut. Jurnal Transdisiplin Sosiologi, Komunikasi, dan Ekologi Manusia. 4(1): 1-16.
- Hu, S., D. Fu, X. Liu, T. Zhao, Z. Han, Lü, J. Lu, H. Wan, and H. Ye. 2012. Diversity of planthoppers associated with the winter rice agroecosystems in Southern Yunnan, China. Journal of Insect Science.12(29): 1-11.
- Iida, H. and K. Fujisaki. 2007. Seasonal changes in resource allocation within an individual offspring of the wolf spider, *Pardosa pseudoannulata* (Araneae: Lycosidae).Physiological Entomology. 32(1): 81-86.
- Ishijima, C. and A. Taguchi, M. Takagi, T. Motobayashi, M. Nakai, and Y. Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Applied Entomology and Zoology. 41(2): 195-200.
- Karindah, S. 2011. Predation of five generalist predators on brown planthopper (*Nilaparvata lugens* Stål). Jurnal Entomologi Indonesia. 8(2): 55-62.
- Khodijah, S. Herlinda, C. Irsan, Y. Pujiastuti, and R. Thalib. 2012. Artropoda predator penghuni ekosistem persawahan lebak dan pasang surut Sumatera Selatan. Jurnal Lahan Suboptimal. 1(1): 57-63.
- Lakitan, B., A. Alberto, L. Lindiana, K. Kartika, S. Herlinda, and A. Kurnianingsih.. 2018.The Benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra. Indonesia. CMUJ Natural Sciences. 17(2): April (In press).

- Lou, Y.G., G.R. Zhang, W.Q. Zhang, Y. Hu, and J. Zhang. 2013. Biological control of rice insect pests in China. Biol Control. 67: 8-20.
- Magurran, A.E. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall. 192 p.
- Mahrub, E. 1999. Kajian keanekaragaman artropoda pada lahan padi sawah tanpa pestisida dan manfaatnya dalam pengendalian hama terpadu. Jurnal Perlindungan Tanaman Indonesia. 5(1): 35-41.
- Mulyani, A. and M. Sarwani. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lokal. 7(1): 47-55.
- Parry, H.R., S. Macfadyen, J.E. Hopkinson, F.J.J.A. Bianchi, M.P. Zalucki, A. Bourne, and N.A. Schellhorn. 2015. Plant composition modulates arthropod pest and predator abundance: Evidence for culling exotics and planting natives. Basic and Applied Ecology. 30: 1-13.
- Pereira, J. L., M.C. Picanc, E.J.G. Pereira, A.A. Silva, A. Jakelaitis, R.R. Pereira, and V.M. Xavier. 2010. Influence of crop management practices on bean foliage arthropods.Bulletin of Entomological Research. 100: 679-688.
- Raharjo, B., I.S. Marpaung, and Y. Hutapea. 2013. Kajian kinerja alat tanam dan varietas unggul baru padi di lahan pasang surut Sumatera Selatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian. 16(3): 191-201.
- Riechert, S.E. and T. Lockley 1984. Spiders as Biological Control Agents. Annual Review of Entomology. 29: 299-320.
- Rizali, A., D. Buchori, and H. Triwidodo. 2002. Insect diversity at the forest margin-rice field interface: indicator for a healthy ecosystem. HAYATI Journal of Biosciences. 9(2): 41-48.

- Schmidt, M.H. and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography. 32(3): 467-473.
- Shepard, B.M, A.T. Barrion, and J.A. Litsinger. 1987. Friends of the Rice Farmer: Helpful Insects, Spiders, and Pathogens. International Rice Research Institute. Philippines. 136p.
- Suana, I.W. and H. Haryanto. 2013. Keanekaragaman laba-laba dan potensinya sebagai musuh alami hama tanaman jambu mete. Jurnal Entomologi Indonesia. 10(1): 24-30.
- Sunariah, F., S. Herlinda, C. Irsan, and Y. Windusari. 2016. Kelimpahan dan kekayaan artropoda predator pada tanaman padi yang diaplikasi bioinsektisida *Bacillus thuringiensis*. Jurnal Hama dan Penyakit Tumbuhan Tropika. 16 1: 42-50.
- Suriadikarta, D.A. and M.T. Sutriadi. 2007. Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa. Jurnal Litbang Pertanian. 26(3): 115-122.
- Tahir HM, Butt A, Sherawat SM (2009) Foraging strategies and diet composition of two orb web spiders in rice ecosystems. J Arachnol. 37: 357–362.
- Widiarta, I.N, D. Kusdiaman, and Suprihanto. 2006. Keragaman arthropoda pada padi sawah dengan pengelolaan tanaman terpadu. Jurnal Hama dan Penyakit Tumbuhan Tropika. 6(2):61-69.
- Zhang, J., X. Zheng, H. Jian, X. Qin, F. Yuan, and R. Zhang. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida Entomologist. 96(1): 1-9.
- Zi-yang, Z., H. Xian-cai, M. Ling, X. Tongzhou, and L. Bao-ping. 2011. Arthropod diversity on plants at field margins of organic farming paddy rice. Chinese Journal of Ecology. 30(7):1347-1353.

No.			Average spider abundance		
	Family. and Species	(per 30 nets)		$P_{\text{value}(0.05)}$	
		Fresh Swamps	Tidal Lowlands		
	Araneidae	6.500	2.750	0.152	
28.	Araneus inustus	1.500	0.625	0.303	
29.	Cylosa insulana	1.750	0.750	0.241	
30.	Cylosa mulmeinensis	0.500	0.000	0.225	
31.	Gea subarmata	2.750	1.375	0.550	
	Tetragnathidae	54.250	32.750	0.175	
32.	Tetragnatha javana	8.250	12.000	0.495	
33.	Tetragnatha virescens	21.000	8.875	0.107	
34.	Tetragnatha mandibulata	8.500	8.500	1.000	
35.	Tetragnatha ilavaca	1.000	0.125	0.089	
36.	Tetragnatha maxillosa	3.000	1.500	0.500	
37.	Tetragnatha desaguni	1.250	0.750	0.676	
38.	Tetragnatha vermiformis	8.250	0.750	0.001*	
39.	Tetragnatha okumae	1.750	0.000	1.000	
40.	Dyschiriognatha hawigtenera	1.250	0.250	0.202	
	Linyphiidae	8.750	9.375	0.944	
41.	Bathyphantes tagalogensis	4.750	7.125	0.687	
42.	Atypena adelinae	3.250	2.250	0.773	
43.	Erigone bifurca	0.750	0.000	1.000	
	Oxyopidae	18.000	13.875	0.616	
44.	Oxyopes javanus	6.250	7.250	0.843	
45.	Oxyopes matiensis	5.750	6.250	0.842	
46.	Oxyopes bikakaeus	3.250	0.125	0.007*	
47.	Oxyopes pingasus	2.750	0.250	0.118	
	Thomisidae	0.750	0.750	1.000	
48.	Diaea tadtadtinika	0.500	0.500	1.000	
49.	Stiphropus sangayus	0.250	0.250	1.000	
	Theridiidae	0.250	0.250	1.000	
50.	Coleosoma octomaculatum	0.250	0.000	0.364	
51.	Theridion sp.	0.000	0.250	0.495	
	Salticidae	4.250	3.125	0.753	
52.	Myrmarachne bidentata	0.500	0.250	0.677	
53.	Simaetha damongpalaya	3.000	0.750	0.422	
54.	Hyllus maskaranus	0.750	2.125	0.479	
	Total of Abundance (N)	92.750	62.875	0.312	
	Average of Abundance	13.250	8.982	0.309	
	Species Richness (D)	1.700	1.195	0.186	

Table 1. The comparison of arboreal spider abundance found on vegetative stage of rice at fresh swamps and tidal lowlands in South Sumatra

*= significantly different

Table 2. The comparison of arboreal spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

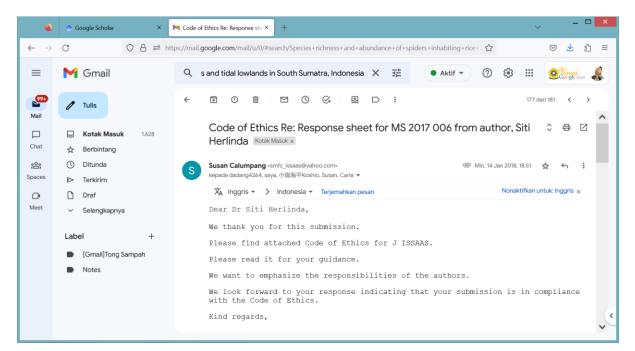
No.	Family. and Species	Average spider abundance (per 30 nets)	Pvalue (0.05)
-----	---------------------	---	---------------

Araneidae 5.000 4.500 0.803 28. Araneus inustus 0.750 1.125 0.481 29. Cylosa insulana 1.000 0.500 0.327 30. Cylosa mulmeinensis 0.750 0.125 0.260 31. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 32. Tetragnathidae 7.250 7.250 1.000 33. Tetragnatha javana 7.250 7.750 0.548 34. Tetragnatha ilavaca 0.000 0.875 1.000 35. Tetragnatha desaguni 0.000 0.875 1.000 36. Tetragnatha desaguni 0.000 0.000 1.000 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linpphidae 6.250			Fresh Swamps	Tidal Lowlands	
29. Cylosa insulana 1.000 0.500 0.327 30. Cylosa mulmeinensis 0.750 0.125 0.260 31. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 32. Tetragnathidae 26.000 26.000 1.000 33. Tetragnathi javana 7.250 7.250 1.000 34. Tetragnatha ivescens 7.250 7.750 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 36. Tetragnatha desaguni 0.000 0.000 1.000 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.723 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Aty		Araneidae	.		0.803
30. Cylosa mulmeinensis 0.750 0.125 0.260 31. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 32. Tetragnatha javana 7.250 7.750 0.548 34. Tetragnatha virescens 7.250 7.750 0.548 35. Tetragnatha virescens 7.250 7.750 0.548 36. Tetragnatha virescens 0.000 0.875 1.000 36. Tetragnatha desaguni 0.000 0.000 1.000 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha kawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000	28.	Araneus inustus	0.750	1.125	0.481
31. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 32. Tetragnathi javana 7.250 7.250 1.000 33. Tetragnatha virescens 7.250 7.750 0.548 34. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 36. Tetragnatha mandibulata 3.500 1.125 0.320 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723	29.	Cylosa insulana	1.000	0.500	0.327
31. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 32. Tetragnatha javana 7.250 7.250 1.000 33. Tetragnatha virescens 7.250 7.750 0.548 34. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 0.500 1.125 0.320 36. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000	30.	Čylosa mulmeinensis	0.750	0.125	0.260
32. Tetragnatha javana 7.250 7.250 1.000 33. Tetragnatha virescens 7.250 7.750 0.548 34. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 36. Tetragnatha maxillosa 0.000 0.875 1.000 36. Tetragnatha desaguni 0.000 0.000 1.000 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.558 46. Oxyopes pingasus 0.000 0.250 1.000 Theridii	31.	•	2.500	2.750	0.912
32. Tetragnatha javana 7.250 7.250 1.000 33. Tetragnatha virescens 7.250 7.750 0.548 34. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha mandibulata 3.500 4.375 0.548 36. Tetragnatha maxillosa 0.000 0.875 1.000 36. Tetragnatha desaguni 0.000 0.000 1.000 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha kawigtenera 0.000 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558		Tetragnathidae	26.000	26.000	1.000
34. Tetragnatha mandibulata 3.500 4.375 0.548 35. Tetragnatha ilavaca 0.000 0.875 1.000 36. Tetragnatha maxillosa 0.500 1.125 0.320 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.058 44. Oxyopes matiensis 4.750 6.125 0.558 45. Oxyopes pingasus 0.000 0.250 1.000 47. Oxyopes pingasus 0.000 0.250 1.000 48. Diaea tadtadtinika	32.	Tetragnatha javana	7.250	7.250	1.000
35. Tetragnatha ilavaca 0.000 0.875 1.000 36. Tetragnatha maxillosa 0.500 1.125 0.320 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha desaguni 0.000 0.000 1.000 39. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 0.250 1.000 47. Oxyopes pingasus 0.000 0.250 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000	33.	Tetragnatha virescens	7.250	7.750	0.548
36. Tetragnatha maxillosa 0.500 1.125 0.320 37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 0.250 1.000 47. Oxyopes pingasus 0.000 0.250 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 50. <t< td=""><td>34.</td><td>Tetragnatha mandibulata</td><td>3.500</td><td>4.375</td><td>0.548</td></t<>	34.	Tetragnatha mandibulata	3.500	4.375	0.548
37. Tetragnatha desaguni 0.000 0.000 1.000 38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes matiensis 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 0.250 1.000 47. Oxyopes pingasus 0.000 0.250 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 51. Theridiidae 0.000 0.250 1.000 52.	35.	Tetragnatha ilavaca	0.000	0.875	1.000
38. Tetragnatha vermiformis 6.750 4.625 0.188 39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 0.250 1.000 47. Oxyopes pingasus 0.000 0.250 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.250 0.495 52.	36.	Tetragnatha maxillosa	0.500	1.125	0.320
39. Tetragnatha okumae 0.750 0.000 1.000 40. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.558 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes bikakaeus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.375 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiidae 2.000 2.750 0.634 52. Myrmarachne bidentata	37.	Tetragnatha desaguni	0.000	0.000	1.000
40. Dyschriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.588 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 1.000 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpal	38.	Tetragnatha vermiformis	6.750	4.625	0.188
Linyphiidae 6.250 4.750 0.720 41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 47. Oxyopes angayus 0.000 0.250 1.000 47. Oxyopes angayus 0.000 0.250 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiion sp. 0.0	39.	Tetragnatha okumae	0.750	0.000	1.000
41. Bathyphantes tagalogensis 3.250 0.875 0.115 42. Atypena adelinae 3.000 3.875 0.723 43. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes pingasus 0.000 1.200 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiinae 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 1.000 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 54.	40.	Dyschiriognatha hawigtenera	0.000	0.000	1.000
42.Atypena adelinae 3.000 3.875 0.723 43.Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 44.Oxyopes javanus 3.750 7.625 0.058 45.Oxyopes matiensis 4.750 6.125 0.558 46.Oxyopes bikakaeus 0.000 1.250 1.000 47.Oxyopes pingasus 0.000 0.625 1.000 48.Diaea tadtadtinika 0.000 0.250 1.000 49.Stiphropus sangayus 0.000 0.250 1.000 50.Coleosoma octomaculatum 0.000 0.250 1.000 51.Theridii ae 0.000 0.250 1.000 52.Myrmarachne bidentata 0.000 0.250 0.634 52.Myrmarachne bidentata 0.000 0.250 0.495 53.Simaetha damongpalaya 1.250 2.500 0.560 54.Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521		Linyphiidae	6.250	4.750	0.720
43. $Erigone bifurca$ 0.0000.0001.000 Oxyopidae 8.50015.6250.09644.Oxyopes javanus3.7507.6250.05845.Oxyopes matiensis4.7506.1250.55846.Oxyopes bikakaeus0.0001.2501.00047.Oxyopes pingasus0.0000.6251.00048.Diaea tadtadtinika0.0000.2501.00049.Stiphropus sangayus0.0000.2501.00050.Coleosoma octomaculatum0.0000.2501.00051.Theridiidae2.0002.7500.63452.Myrmarachne bidentata0.0000.2500.00053.Simaetha damongpalaya1.2502.5000.56054.Hyllus maskaranus0.7500.0001.000Total of Abundance47.75054.2500.521Average of Abundance6.8211.4170.000*	41.	Bathyphantes tagalogensis	3.250	0.875	0.115
Oxyopidae 8.500 15.625 0.096 44. Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes bikakaeus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 47. Oxyopes pingasus 0.000 0.375 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 54. A	42.	Atypena adelinae	3.000	3.875	0.723
44. Oxyopes javanus 3.750 7.625 0.058 45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes bikakaeus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 49. Stiphropus sangayus 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	43.	Erigone bifurca	0.000	0.000	1.000
45. Oxyopes matiensis 4.750 6.125 0.558 46. Oxyopes bikakaeus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiidae 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Oxyopidae	8.500	15.625	0.096
46. Oxyopes bikakaeus 0.000 1.250 1.000 47. Oxyopes pingasus 0.000 0.625 1.000 47. Oxyopes pingasus 0.000 0.375 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiidae 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	44.	Oxyopes javanus	3.750	7.625	0.058
47. Oxyopes pingasus 0.000 0.625 1.000 Thomisidae 0.000 0.375 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiidae 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	45.	Oxyopes matiensis	4.750	6.125	0.558
Thomisidae 0.000 0.375 1.000 48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridiion sp. 0.000 0.250 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	46.	Oxyopes bikakaeus	0.000	1.250	1.000
48. Diaea tadtadtinika 0.000 0.250 1.000 49. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.000 1.000 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	47.	Oxyopes pingasus	0.000	0.625	1.000
49. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Thomisidae	0.000	0.375	1.000
Theridiidae 0.000 0.250 1.000 50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.000 1.000 52. Myrmarachne bidentata 0.000 0.250 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	48.	Diaea tadtadtinika	0.000	0.250	1.000
50. Coleosoma octomaculatum 0.000 0.250 1.000 51. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	49.	Stiphropus sangayus	0.000	0.125	1.000
51. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Theridiidae	0.000	0.250	1.000
Salticidae 2.000 2.750 0.634 52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	50.	Coleosoma octomaculatum	0.000	0.250	1.000
52. Myrmarachne bidentata 0.000 0.250 0.495 53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	51.	Theridion sp.	0.000	0.000	1.000
53. Simaetha damongpalaya 1.250 2.500 0.560 54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Salticidae	2.000	2.750	0.634
54. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	52.	Myrmarachne bidentata	0.000	0.250	0.495
Total of Abundance (N)47.75054.2500.521Average of Abundance6.8211.4170.000*	53.	Simaetha damongpalaya	1.250	2.500	0.560
Average of Abundance 6.821 1.417 0.000*	54.	Hyllus maskaranus		0.000	
		Total of Abundance (N)	47.750	54.250	0.521
Species Richness (D) 1.467 1.573 0.807		Average of Abundance	6.821	1.417	0.000*
		Species Richness (D)	1.467	1.573	0.807

*= significantly different Table 3. The comparison of soil-dweller spider abundance found on vegetative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.	Family. and Species		Average spider abundance (per 18 traps)	
		Fresh Swamps	Tidal Lowlands	-
	Lycosidae	24.250	22.125	0.664
19.	Pardosa pseudoannulata	17.000	14.625	0.618
20.	Pardosa sumatrana	3.750	2.625	0.177
21.	Pardosa birmanica	0.750	0.625	0.836
22.	Pardosa mackenziei	0.500	1.875	0.135

	.000
0.625 0	.000
0.025 0).244
1.625 1	.000
0.500 1	.000
0.875 1	.000
0.250 1	.000
1.250 1	.000
0.250 0	0.009
0.500 0	0.112
0.500 1	.000
0.875 1	.000
0.750 1	.000
0.125 1	.000
0.375 1	.000
0.125 1	.000
0.250 1	.000
0.000 1	.000
0.000 1	.000
26.250 0).451
4.375 0).466
1.272 0).529
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


*= significantly different Table 4. The comparison of soil-dweller spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.		• •	ler abundance	Pvalue (0.05)
	Family. and Species	(per 18	(per 18 traps)	
		Fresh Swamps	Tidal Lowlands	
	Lycosidae	27.250	20.000	0.041*
18.	Pardosa pseudoannulata	15.750	12.250	0.326
19.	Pardosa sumatrana	5.500	5.125	0.699
20.	Pardosa birmanica	0.500	0.500	1.000
21.	Pardosa mackenziei	0.000	0.000	1.000
22.	Pardosa patapensis	0.000	0.625	1.000
23.	Hogna rizali	1.500	0.250	0.141
	Arctosa tanakai	4.000	1.250	0.012*
24.	Araneidae	0.000	0.250	0.495
25.	Araneus inustus	0.000	0.125	0.742
26.	Cylosa insulana	0.000	0.000	1.000
	Gea subarmata	0.000	0.125	0.742
27.	Linyphiidae	4.500	4.875	0.936
28.	Bathyphantes tagalogensis	3.000	2.250	0.753
29.	Atypena adelinae	1.250	2.250	0.532
	Erigone bifurca	0.250	0.375	0.715
30.	Thomisidae	0.000	0.000	1.000
31.	Diaea tadtadtinika	0.000	0.000	1.000
	Stiphropus sangayus	0.000	0.000	1.000
32.	Theridiidae	0.000	0.000	1.000
33.	Coleosoma	0.000	0.000	
	octomaculatum	0.000	0.000	1.000

	Theridion sp.	0.000	0.000	1.000
34.	Salticidae	0.000	0.125	0.742
	Hyllus maskaranus	0.000	0.125	0.742
	Total of Abundance (N)	31.750	25.250	0.295
	Average of Abundance	5.292	4.208	0.329
	Species Richness (D)	1.058	1.052	0.981
	······································			

*= significantly different

4. Bukti konfirmasi review kedua dan hasil revisi kedua

۲	🗢 Google Scholar 🛛 🗙 🖠	M Code of Ethics Re: Response shir X + -
- →		ps://mail.google.com/mail/u/0/#search/Species+richness+and+abundance+of+spiders+inhabiting+rice+ 🏠 🕑 🛃 🖞
=	M Gmail	🔍 s and tidal lowlands in South Sumatra, Indonesia 🗙 🚌 💿 Aktif 🗸 🕜 🔅 🏢 💇
Mail	/ Tulis	← ☜ ① ⅲ № ① ④ ↔ 본 ▷ : 177 dari 181 < >
Chat Chat Daces	Kotak Masuk 1.628 ☆ Berbintang ③ Ditunda ▷ Terkirim □ Draf ✓ Selengkapnya	sitherlinda unsrl «sitherlinda@unsrl.ac.id» 14 Jan 2018, 21.31 14 Jan 2018, 21.3
	[Gmail]Tong SampahNotes	We agree that the copyrights of our article are transferred to J ISSAAS if and when the article is accepted for publication. If the manuscript contains details including figures from other copyright works it will be the sole our responsibility to get written permission from the owners of the publishing rights to reproduce such material. Our submitted paper are free of plagiarism, falsified research data, fabrication or omission of significant information. Our articles is neither previously nor simultaneously submitted in any journal nor published elsewhere. Best Regards

۲	🐡 Google Scholar 🛛 🗙 🔤	Code of Ethics Re: Response she × +	✓ - □ ×
$\leftarrow \rightarrow$		s://mail.google.com/mail/u/0/#search/Species+richness+and+abundance+of+spiders+inhabiting+rice+	☆ 🛛 🕹 🖆 ≡
≡	M Gmail	Q s and tidal lowlands in South Sumatra, Indonesia X ∓ ↔ Aktif ▼	0 🥸 🏼 💁
Mail	/ Tulis		177 dari 181 < >
	Kotak Masuk 1.628	Susan Calumpang <mrtc_issaas@yahoo.com> Mi kepada saya, Susan, Carla 🗸</mrtc_issaas@yahoo.com>	in, 21 Jan 2018, 16.37 ☆ 🕤 🚦
Chat	🕁 Berbintang	🛪 Inggris 🗸 🖒 Indonesia 🗸 Terjemahkan pesan	Nonaktifkan untuk: Inggris 🗙
00	() Ditunda	Our initial evaluation shows that your manuscript does not	follow the J ISSAAS
Spaces	▷ Terkirim	format.	
œ	Draf	Please combine Results and Discussion.	
Meet	 Selengkapnya 		
	Label +	It will require English editing for a fee, from 100 to 200 extent of editorial work required.	JSD, depending of the
	[Gmail]Tong Sampah	We hope this is acceptable to you.	
	Notes		
		Kind regards,	
		Susan May F. Calumpang, PhD	
		Technical Editor, Journal ISSAAS	<
		University Researcher (Pesticide Chemistry/Chemical Ecology)

۲	🗢 Google Scholar 🛛 🗙	✓ Code of Ethics Re: Response she ×
$\leftarrow \ \ \rightarrow$		ps://mail.google.com/mail/u/0/#search/Species+richness+and+abundance+of+spiders+inhabiting+rice+ 🏠 🛛 😌 🖞 🚍
≡	M Gmail	Q s and tidal lowlands in South Sumatra, Indonesia 🗙 荘 💿 Aktif 🗸 ⑦ 戀 🏭 💇 🥵
Mail	/ Tulis	← ☎ ① ₪ ⊠ ① ④ ↔ ಟ ⊃ : 177 dari 181 < >
	Kotak Masuk 1.628	sitiherlinda unsri «sitiherlinda@unsri.ac.id» @ 23 Jan 2018, 07:58 🛠 🕤 🚺
Chat	Berbintang	Subject: Results and Discussion following the J ISSAAS format.
200	③ Ditunda	Dear Susan May F. Calumpang, PhD.
Spaces	▷ Terkirim	Please find herewith the attached response sheet of MS 2017 006 for combining Results and Discussion following the J
œ	Draf	ISSAAS format.
Meet	✓ Selengkapnya	We absolutely agree to pay the fee of English editing, from 100 to 200 USD. Thanks.
	Label +	
	[Gmail]Tong Sampah	Best Regards
	Notes	Prof. Dr. Siti Herlinda ISSAAS Member 150/ISSAAS-INA-2016
		Satu lampiran • Dipindai dengan Gmail 🛈 🖉

SPECIES RICHNESS AND ABUNDANCE OF SPIDERS INHABITING

VEGETATIVE AND GENERATIVE STAGE OF RICE AT FRESH SWAMPS AND

TIDAL LOWLANDS IN SOUTH SUMATRA, INDONESIA

ABSTRACT

Different planting methods at fresh swamps and tidal lowlands and rice stages may support different abundance and species richness of arthropods therefore quantifying arthropod assemblages needs to be carried out. This research objective was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamp and tidal lowland ecosystems in South Sumatra. Arboreal spiders were sampled using sweep nets, and soil-dweller spiders were sampled using pitfall traps at the vegetative and generative stages of rice. Families of the arboreal spiders found during the vegetative and generative stages of rice from both ecosystems were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae. The most dominant family and species of the arboreal spiders found were Tetragnathidae and Tetragnatha virescens, respectively. Species richness of the arboreal spider during the vegetative (P = 0.186) and generative (P =0.807) stages at the fresh swamp ecosystems was not significantly different from that at the tidal lowland ecosystems. Families of soil-dweller spiders found during the vegetative and generative stages were Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae. The most dominant family and species of the soil-dweller spiders found were Lycosidae and Pardosa pseudoannulata, respectively. Species richness of the soil-dweller spiders during the rice vegetative (P = 0.529) and generative (P = 0.981) stages at the fresh swamps was not significantly different from that at the tidal lowlands. This study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

Keywords: arboreal, arthropod, rice field, soil-dweller

INTRODUCTION

Wetlands in Indonesia, are characterized by two distinct ecosystems, differentiated based on sea tide influence; i.e. tidal lowlands for those directly influenced by sea tide but fresh swamps for those not affected by sea tide (Mulyani & Sarwani, 2013). At the tidal lowland ecosystems, soil needs specific handling due to thick pyritic layers therefore it should be preserved (Hidayat *et al.*, 2010). The local farmers do not fully manage the soil to

prevent the pyrite layers from destructions (Suriadikarta *et al.*, 2013) and they generally plant rice twice a year (planting index) by using broadcast seeding, drum seeding, or seedling in a digged-hole ("tugal") (Raharjo *et al.*, 2013). Contrary to the farmers at the tidal lowlands, farmers at fresh swamps usually plant rice using transplanting system and they only plant rice once a year (Mulyani & Sarwani, 2013; Lakitan *et al.*, 2018). Different rice planting methods and index at the both ecosystems may also affect the arthropod abundance and species diversity or richness (Zhang *et al.*, 2013; Parry *et al.*, 2015). Weedy paddies at direct planting ecosystems have more abundant arthropods than those at clean ecosystems (Hu *et al.*, 2012). No soil tillage or conservation tillage at paddies also support higher arthropod abundance (Pereira *et al.*, 2010). No application of synthetic insecticides at fresh swamp ecosystems also enhances abundance of predatory arthropods, especially spiders (Herlinda *et al.*, 2004; Herlinda *et al.*, 2008).

In addition to planting method and index, vegetative and generative stages of rice also influence species richness and abundance of the arthropods (Herlinda *et al.* 2008). At the vegetative and generative stages, soil-dweller arthropods are more abundant and more diverse at the tidal lowlands than those at the fresh swamp ecosystems (Khodijah *et al.*, 2012; Herlinda *et al.*, 2014). However, the arboreal artropods are more abundant and richer at the fresh swamp ecosystems than those at the tidal lowland ecosystems (Khodijah *et al.*, 2012; Sunariah *et al.*, 2016). Different planting methods and index at the both ecosystems and different stages of rice may support different abundance and species richness of arthropods, therefore quantifying arthropod assemblages needs to be carried out. The purpose of this study was to analyze species richness and abundance of spiders inhabiting vegetative and generative stages of rice at fresh swamps and tidal lowlands in South Sumatra.

MATERIAL AND METHODS

Study Site

Surveys were carried out at rice production centers of fresh swamps and tidal lowlands in South Sumatra throughout February 2012 and March 2013. Survey locations of the rice production centers for fresh swamp ecosystems were: (1) Gandus, Palembang City; (2) Pelabuhan Dalam Village of Ogan Ilir District; (3) Maryana Village of Banyuasin District; and (4) Sungai Waru Village of Kabupaten Banyuasin District. Survey locations of the rice production centers for tidal lowlands were: (1) Banyu Urip Village of Tanjung Lago Subdistrict, Banyuasin District' (2) Telang Karya Village of Muara Telang Subdistrict, Banyuasin District; (3) Telang Rejo Village of Muara Telang Subdistrict, Banyuasin District; (4) Srikaton Damai Village of Air Saleh Subdistrict, Banyuasin District; (5) Srimulyo Village of Kecamatan Air Saleh Subdistrict, Banyuasin District; (6) Makarti Jaya Village of Makarti Jaya Subdistrict, Banyuasin District; (7) Tirta Mulya Village of Makarti Jaya Subdistrict, Banyuasin District; and (8) Tirta Kencana Village of Makarti Jaya Subdistrict, Banyuasin District. In each location, three sampling plots with a minimum size of 1 ha were surveyed twice during one rice season (4 mounts). The first survey was done when rice crop was 4 weeks old and the second one when rice crop was at milk grain stage (9 weeks old). Rice variety used at the fresh swamps was Ciherang, whereas Inpara variety was used at the tidal lowland ecosystems.

Sampling

Arboreal spiders. The arboreal spiders were sampled using sweep nets, following methods used by Herlinda *et al.* (2014). Net sweeping consisted of 'double swings', totalling 30 swings/ha in all plots.

Soil-dweller spiders. Soil-dweller spiders were sampled using pitfall traps, following methods used by Herlinda *et al.* (2004). Plastic pitfall traps (60 mm in diameter and 90 mm in height) were filled to a volume of 70 mL with 4% formaldehide solution and buried in the ground flush with the soil surface. Traps were installed with density of 18 units/ha, spaced in

a grid 3 x 6, then collected after 48 hours. All specimens collected were cleaned and sorted from other debris and stored in vials containing 70% ethanol. Identification to family- and species-level was carried out at Laboratory of Entomology, at the Plant Pest and Disease Department, College of Agriculture, Universitas Sriwijaya, using taxonomic keys provided in Barrion and Litsinger (1995).

Data Analysis

The spider abundance data between samples from the fresh swamp and tidal lowland ecosystems were not normally distributed. Hence, insect counts in this study were found to fit a negative binomial distribution and were analyzed by Proc Genmod using SAS University Edition (SAS Institute Inc., Cary, NC, U.S.A.). Species richness was analysed using Menhinick's index (D) (Magurran, 1988).

RESULTS AND DISCUSSIONS

Arboreal Spiders at Fresh Swamp and Tidal Lowland Ecosystems

From this survey during rice vegetative stage, a total of seven families of arboreal spiders found were Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae and Salticidae at the fresh swamp and tidal lowland ecosystems (Table 1). Tetragnathidae was the most dominant family of the arboreal spider found during the rice vegetative stage. A total of 92.750 spiders/30 nets at the fresh swamp ecosystems and 62.875 spiders/30 nets at the tidal lowland ecosystems were captured (P = 0.312). The abundance of *Tetragnatha vermiformis* (P = 0.001) and *Oxyopes bikakaeus* (P = 0.007) at the fresh swamp ecosystems were significantly higher than those at the tidal lowland ecosystems. A total of the arboreal spider species found during the rice vegetative stage were 26 species from the fresh swamp ecosystems and 23 species from the tidal lowland ecosystem. Spider species richness at the fresh swamp ecosystems was not significantly different (P = 0.186) from those at the tidal lowland ecosystems.

A total of spider families found during rice generative stage were only five families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae and Salticidae) at the fresh swamp ecosystems and seven families (Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae) at the tidal lowland ecosystems (Table 2). However, abundance of Araneidae (P = 0.803), Tetragnathidae (P = 1.000), Linyphiidae (P =(P = 0.096), Thomisidae (P = 1.000), Theridiidae (P = 1.000), and Salticidae (P = 0.633) at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. The most dominant family of the arboreal spiders found on the both ecosystems was Tetragnathidae. A total of spider abundance for all species at the fresh swamp ecosystems (47.750 spiders/30 nets) were not significantly different (P =0.521) from those at the tidal lowland ecosystems (54.250 spiders/30 nets). However, average of spider abundance from the both ecosystems was significantly different (P =0.000). The most dominant arboreal species found on the both ecosystems was *Tetragnatha* virescens. A total of arboreal spider species recorded were 16 species from the fresh swamp ecosystems and 21 species from the tidal lowland ecosystem. However, the arboreal spider species richness at the fresh swamp ecosystems were not also significantly different (P = 0.8067) from those at the tidal lowland ecosystems.

Spider families found on rice canopy at fresh swamp and tidal lowland ecosystems during the rice vegetative and generative stages in this study consisted of Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. These arboreal spiders found comprised both web-building (Araneidae, Tetragnathidae, Linyphiidae, Theridiidae) and non-web building (Oxyopidae, Thomisidae, and Salticidae) species, commonly found at the fresh swamp or tidal lowland ecosystems (Schmidt & Tscharntke, 2005). Abundance of species belonging to Tetragnathidae (*T. vermiformis*) and Oxyopidae (*O. bikakaeus*) at the fresh swamp ecosystems in this study were significantly

higher than those at the tidal lowland ecosystems. Tetragnathidae and Oxyopidae are more dominant spiders at wetland ecosystems (Betz & Tscharntke, 2017) because the fresh swamp ecosystems are commonly submerged longer (more than 6 mounts) than those at the tidal lowland ecosystems (Mulyani & Sarwani, 2013).

Spider family, Tetragnathidae in this study was the most dominant family of the arboreal spider found during the rice vegetative and generative stages. Species of arboreal spiders dominantly found on paddies at the fresh swamp and tidal lowland ecosystems were similar which consisted of T. virescens and T. javana. Barrion et al. (2012) stated that in the species of Tetragnathidae, such as species of T. virescens and T. javana were classified as keystone species. Such species were playing a critical role in maintaining population of rice pest insect, such leafhopper (Betz & Tscharntke, 2017). Species from Tetragnathidae was reported by Shepard et al. (1987) and Betz and Tscharntke (2017) as dominant web spiders found at wetland ecosystems. The number of Tetragnathidae in this study were more abundant at the rice vegetative stage than those at the rice generative stage. Betz and Tscharntke (2017) stated that abundant of Tetragnathidae was influenced by the number of leafhoppers (Homoptera) which are commonly occured at vegetative stage of rice. The both species of spiders are predators of rice pest insects, such as order of Homoptera and Lepidoptera (Tahir et al., 2009). This also accords with findings of Betz and Tscharntke (2017), which showed highest increase of Tetragnathidae with increasing abundance of Lepidoptera and leafhoppers.

Species abundance of arboreal spiders either at the fresh swamp and tidal lowland ecosystems were higher at vegetative stage of rice than those at generative stage of rice because spider abundance is closely related to their prey population (Riechert & Lockley, 1984). Abundant prey population will attract these spiders to assemble on prey rich ecosystems (Widiarta *et al.*, 2006). The main prey for this spiders was rice insect pests, such

as brown planthoppers (Karindah, 2011) that had higher population at vegetative stage of rice than that during generative stage of rice resulting in higher abundance of spiders at the vegetative stage of rice than that of the generative stage of rice. According to Arofah *et al.* (2013) dominant insect pests at vegetative stage of rice were planthoppers, whereas dominant insect pest at generative stage of rice was rice bugs. Thus, rice stages at both ecosystems affects the species abundance of spiders.

Soil-dweller Spiders at Fresh Swamps and Tidal Lowlands

At vegetative stage of rice, soil-dweller spiders found were only two families (Lycosidae and Linyphiidae) from the fresh swamp ecosystems and five families (Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae) from the tidal lowland ecosystems (Table 3). We did not find Araneidae, Thomisidae, and Theridiidae at the fresh swamp ecosystems. The most dominant family of soil-dweller spiders found during the rice vegetative stage was Lycosidae and the most dominant species was *Pardosa pseudoannulata*. A total of soil-dweller spider spider species found were nine species at the fresh swamp ecosystems and 16 species at tidal lowland ecosystems. Nonetheless, species richness of the soil-dweller spider at the fresh swamp ecosystems were not significantly different (P = 0.5290) from those at the tidal lowland ecosystems.

A total of the soil-dweller spider families found during generative stage of rice were three families (Lycosidae, Araneidae, and Linyphiidae) from the fresh swamp ecosystems and four families (Lycosidae, Araneidae, Linyphiidae, and Salticidae) from the tidal lowland ecosystems (Table 4). The most dominant family of the soil-dweller spiders found was Lycosidae. The species numbers of soil-dweller spiders recorded were eight and 12 from the fresh swamp and the tidal lowland ecosystems, respectively. Species richness of the soildweler spiders during the rice generative stage at the fresh swamp ecosystems were not significantly different (P = 0.981) from those at the tidal lowland ecosystems. A total of abundance of soil-dweller spiders at the fresh swamp ecosystems were also not significantly different from those at the tidal lowland ecosystems (P = 0.295).

Spider families found on soil surface of the fresh swamp ecosystems only consisted of Lycosidae and Linyphiidae, whereas Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae were found at the tidal lowland ecosystems. Web spiders, such as Araneidae, Linyphiidae, and Theridiidae could be found on soil surface. This was due to the fact that these spiders were found on immature stage. According to Iida and Fujisaki (2007) and Suana and Haryanto (2013), immature web spiders had capability to produce small like balloon ball so that they could be moved by wind or moving to other places or descend upon or fallen on soil surface.

A total of abundance and species richness of soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems were not significantly different from those at the tidal lowland ecosystems. Nonetheless, the most dominant family of the soil-dweller spiders was Lycosidae and the most dominant species was *P. pseudoannulata*. Barrion *et al.* (2012) list some species in the Lycosid family, such as wolf spider, *P. pseudoannulata* as keystone species. This wolf spider plays the role of a keystone predator within this rice ecosystem by preying leafhoppers (Lou *et al.* 2013). High mobility of the wolf spiders allow them to move and to run or to jump for capturing their preys (Ishijima *et al.*, 2006). Abundance of Lycosidae during the rice generative stage at the fresh swamp ecosystems was higher than that at the tidal lowland ecosystems. One explanation why the abundance of Lycosidae was higher at the fresh swamp ecosystems is because farmers culturally do not apply synthetic insecticides to control pest insects. Herlinda (2010) reported that application of the synthetic insecticides at the fresh swamp ecosystems in South Sumatra was rare. Such ecosystems tend to produce high diversity of invertebrate fauna (Mahrub, 1999; Rizali *et al.*, 2002). Rice ecosystems without synthetic insecticides

application had higher dominance of predatory arthropods, especially spiders (Herlinda *et al.*, 2008; Herlinda *et al.*, 2004; Zi-yang *et al.*, 2011).

CONCLUSION

The most dominant family and species of the arboreal spiders found were Tetragnathidae and *T. virescens*, respectively, while the most dominant family and species of the soil-dweller spiders were Lycosidae and *P. pseudoannulata*, respectively. Species richness of the arboreal and soil-dweller spiders during the rice vegetative and generative stages at the fresh swamp ecosystems was not significantly different from those at the tidal lowland ecosystems. This findings of the study suggest that the specific and eco-friendly planting methods at the fresh swamp and tidal lowland ecosystems supports existence of Tetragnathidae and Lycosidae, keystone predators of rice pest insects.

ACKNOWLEDGEMENT

This research was supported by HIKOM of Directorate General of Development and Research Enhancement, Ministry of Research, Technology and Higher Education, Republic of Indonesia. We would like to express our appreciation to the Institute of Research and Community Service (LPPM), Universitas Sriwijaya, Indonesia for facilitating this research. Special thanks to Ricky Davit Simamora for his assistance with the field work.

REFERENCES

- Arofah, S., I. Trisnawati, and D. Tjahjaningrum. 2013. Pengaruh habitat termodifikasi menggunakan serai terhadap serangga herbivora dan produktivitas padi varietas IR-64 di Desa Purwosari, Pasuruan. Jurnal Sains dan Seni Pomits 2(2): 2337-3520.
- Barrion, A.T. and J.A. Litsinger. 1995. Riceland Spiders of South and Southeast Asia. International Rice Research Institute. Philippines. 716p.

- Barrion, A.T., S.S. Villareal, J.L.A. Catindig, D. Cai, Q.H. Yuan, and K.L. Heong. 2012.The spider fauna in the rice agricultural landscape of Hainan Island, China:Composition, abundance and feeding structure. ASIA Life Sciences 21(2): 625-651.
- Betz, L. and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. Journal of Insect Conservation.21(3): 495-508.
- Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against *Aphis gossypii* Glover (Homoptera: Aphididae). Tropical Life Sciences Research 21(1): 13-21.
- Herlinda, S., A. Rauf, S. Sosromarsono, U. Kartosuwondo, Siswadi, and P. Hidayat. 2004. Artropoda musuh alami penghuni ekosistem persawahan di daerah Cianjur, Jawa Barat. Jurnal Entomologi Indonesia. 1(1): 9-15.
- Herlinda, S., H.N. Manalu, A.F. Aldina, Suwandi, and A. Wijaya, Khodijah, and D. Meidalima. 2014. Kelimpahan dan keanekaragaman spesies laba-laba predator hama padi ratun di sawah pasang surut. Jurnal Hama dan Penyakit Tumbuhan Tropika. 14(1): 1-7.
- Herlinda, S., Waluyo, S.P. Estuningsih, and C. Irsan. 2008. Perbandingan keanekaragaman spesies dan kelimpahan arthropoda predator penghuni tanah di sawah lebak yang diaplikasi dan tanpa aplikasi insektisida. Jurnal Entomologi Indonesia. 5(2): 96-107.
- Hidayat, T., N.K. Pandjaitan, A.H. Dharmawan, M.T. Wahyu, and F.Sitorus. 2010.
 Kontestasi sains dengan pengetahuan lokal petani dalam pengelolaan lahan rawa pasang surut. Jurnal Transdisiplin Sosiologi, Komunikasi, dan Ekologi Manusia. 4(1): 1-16.

- Hu, S., D. Fu, X. Liu, T. Zhao, Z. Han, Lü, J. Lu, H. Wan, and H. Ye. 2012. Diversity of planthoppers associated with the winter rice agroecosystems in Southern Yunnan, China. Journal of Insect Science.12(29): 1-11.
- Iida, H. and K. Fujisaki. 2007. Seasonal changes in resource allocation within an individual offspring of the wolf spider, *Pardosa pseudoannulata* (Araneae: Lycosidae).Physiological Entomology. 32(1): 81-86.
- Ishijima, C. and A. Taguchi, M. Takagi, T. Motobayashi, M. Nakai, and Y. Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Applied Entomology and Zoology. 41(2): 195-200.
- Karindah, S. 2011. Predation of five generalist predators on brown planthopper (*Nilaparvata lugens* Stål). Jurnal Entomologi Indonesia. 8(2): 55-62.
- Khodijah, S. Herlinda, C. Irsan, Y. Pujiastuti, and R. Thalib. 2012. Artropoda predator penghuni ekosistem persawahan lebak dan pasang surut Sumatera Selatan. Jurnal Lahan Suboptimal. 1(1): 57-63.
- Lakitan, B., A. Alberto, L. Lindiana, K. Kartika, S. Herlinda, and A. Kurnianingsih.. 2018.The Benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra. Indonesia. CMUJ Natural Sciences. 17(2): April (In press).
- Lou, Y.G., G.R. Zhang, W.Q. Zhang, Y. Hu, and J. Zhang. 2013. Biological control of rice insect pests in China. Biol Control. 67: 8-20.
- Magurran, A.E. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall. 192 p.
- Mahrub, E. 1999. Kajian keanekaragaman artropoda pada lahan padi sawah tanpa pestisida dan manfaatnya dalam pengendalian hama terpadu. Jurnal Perlindungan Tanaman Indonesia. 5(1): 35-41.

- Mulyani, A. and M. Sarwani. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lokal. 7(1): 47-55.
- Parry, H.R., S. Macfadyen, J.E. Hopkinson, F.J.J.A. Bianchi, M.P. Zalucki, A. Bourne, and N.A. Schellhorn. 2015. Plant composition modulates arthropod pest and predator abundance: Evidence for culling exotics and planting natives. Basic and Applied Ecology. 30: 1-13.
- Pereira, J. L., M.C. Picanc, E.J.G. Pereira, A.A. Silva, A. Jakelaitis, R.R. Pereira, and V.M. Xavier. 2010. Influence of crop management practices on bean foliage arthropods.Bulletin of Entomological Research. 100: 679-688.
- Raharjo, B., I.S. Marpaung, and Y. Hutapea. 2013. Kajian kinerja alat tanam dan varietas unggul baru padi di lahan pasang surut Sumatera Selatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian. 16(3): 191-201.
- Riechert, S.E. and T. Lockley 1984. Spiders as Biological Control Agents. Annual Review of Entomology. 29: 299-320.
- Rizali, A., D. Buchori, and H. Triwidodo. 2002. Insect diversity at the forest margin-rice field interface: indicator for a healthy ecosystem. HAYATI Journal of Biosciences. 9(2): 41-48.
- Schmidt, M.H. and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography. 32(3): 467-473.
- Shepard, B.M, A.T. Barrion, and J.A. Litsinger. 1987. Friends of the Rice Farmer: Helpful Insects, Spiders, and Pathogens. International Rice Research Institute. Philippines. 136p.
- Suana, I.W. and H. Haryanto. 2013. Keanekaragaman laba-laba dan potensinya sebagai musuh alami hama tanaman jambu mete. Jurnal Entomologi Indonesia. 10(1): 24-30.

- Sunariah, F., S. Herlinda, C. Irsan, and Y. Windusari. 2016. Kelimpahan dan kekayaan artropoda predator pada tanaman padi yang diaplikasi bioinsektisida *Bacillus thuringiensis*. Jurnal Hama dan Penyakit Tumbuhan Tropika. 16 1: 42-50.
- Suriadikarta, D.A. and M.T. Sutriadi. 2007. Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa. Jurnal Litbang Pertanian. 26(3): 115-122.
- Tahir HM, Butt A, Sherawat SM (2009) Foraging strategies and diet composition of two orb web spiders in rice ecosystems. J Arachnol. 37: 357–362.
- Widiarta, I.N, D. Kusdiaman, and Suprihanto. 2006. Keragaman arthropoda pada padi sawah dengan pengelolaan tanaman terpadu. Jurnal Hama dan Penyakit Tumbuhan Tropika. 6(2):61-69.
- Zhang, J., X. Zheng, H. Jian, X. Qin, F. Yuan, and R. Zhang. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida Entomologist. 96(1): 1-9.
- Zi-yang, Z., H. Xian-cai, M. Ling, X. Tongzhou, and L. Bao-ping. 2011. Arthropod diversity on plants at field margins of organic farming paddy rice. Chinese Journal of Ecology. 30(7):1347-1353.

No.	Family and Species	0 1	Average Spider Abundance (Individuals per 30 Nets)	
	runny and species	Fresh Swamps	Tidal Lowlands	-
	Araneidae	6.500	2.750	0.152
55.	Araneus inustus	1.500	0.625	0.303
56.	Cylosa insulana	1.750	0.750	0.241
57.	Čylosa mulmeinensis	0.500	0.000	0.225
58.	Gea subarmata	2.750	1.375	0.550
	Tetragnathidae	54.250	32.750	0.175
59.	Tetragnatha javana	8.250	12.000	0.495
60.	Tetragnatha virescens	21.000	8.875	0.107
61.	Tetragnatha mandibulata	8.500	8.500	1.000
62.	Tetragnatha ilavaca	1.000	0.125	0.089
63.	Tetragnatha maxillosa	3.000	1.500	0.500
64.	Tetragnatha desaguni	1.250	0.750	0.676
65.	Tetragnatha vermiformis	8.250	0.750	0.001*
66.	Tetragnatha okumae	1.750	0.000	1.000
67.	Dyschiriognatha hawigtenera	1.250	0.250	0.202
	Linyphiidae	8.750	9.375	0.944
68.	Bathyphantes tagalogensis	4.750	7.125	0.687
69.	Atypena adelinae	3.250	2.250	0.773
70.	Erigone bifurca	0.750	0.000	1.000
	Oxyopidae	18.000	13.875	0.616
71.	Oxyopes javanus	6.250	7.250	0.843
72.	Oxyopes matiensis	5.750	6.250	0.842
73.	Oxyopes bikakaeus	3.250	0.125	0.007*
74.	Oxyopes pingasus	2.750	0.250	0.118
	Thomisidae	0.750	0.750	1.000
75.	Diaea tadtadtinika	0.500	0.500	1.000
76.	Stiphropus sangayus	0.250	0.250	1.000
	Theridiidae	0.250	0.250	1.000
77.	Coleosoma octomaculatum	0.250	0.000	0.364
78.	Theridion sp.	0.000	0.250	0.495
	Salticidae	4.250	3.125	0.753
79.	Myrmarachne bidentata	0.500	0.250	0.677
80.	Simaetha damongpalaya	3.000	0.750	0.422
81.	Hyllus maskaranus	0.750	2.125	0.479
	Total of Abundance (N)	92.750	62.875	0.312
	Average of Abundance	13.250	8.982	0.309
	Species Richness (D)	1.700	1.195	0.186

Table 1. The comparison of arboreal spider abundance found on vegetative stage of rice at fresh swamps and tidal lowlands in South Sumatra

*= significantly different

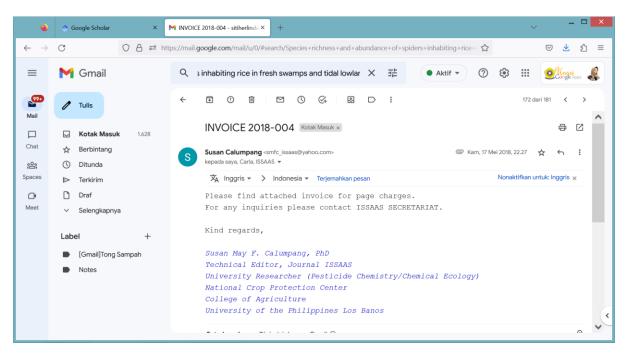
Table 2. The comparison of arboreal spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.	Family. and Species	Average Spider Abundance (Individuals per 30 Nets)	Pvalue (0.05)
-----	---------------------	---	---------------

Araneidae 5.000 4.500 0.803 55. Araneus inustus 0.750 1.125 0.481 56. Cylosa insulana 1.000 0.327 57. Cylosa mulmeinensis 0.750 0.125 0.260 58. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 59. Tetragnathidae 7.250 7.750 0.548 61. Tetragnatha ilavaca 0.000 0.875 1.000 63. Tetragnatha desaguni 0.000 0.875 1.000 63. Tetragnatha desaguni 0.000 0.000 1.000 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha hawigtenera 0.000 0.000 1.000 65. Tetragnatha hawigtenera 0.000 0.000 1.000 66. Tetragnatha desaguni 0.000 0.000 1.000 67. Dyschiriognatha hawigtenera <t< th=""><th></th><th></th><th>Fresh Swamps</th><th>Tidal Lowlands</th><th></th></t<>			Fresh Swamps	Tidal Lowlands	
56. Cylosa insulana 1.000 0.500 0.327 57. Cylosa mulmeinensis 0.750 0.125 0.260 58. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 59. Tetragnathidae 7.250 7.250 1.000 60. Tetragnatha javana 7.250 7.750 0.548 61. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 0.500 1.125 0.320 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 66. Tetragnatha desaguni 0.000 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.723 68. Bathyph		Araneidae			0.803
57. Cylosa mulmeinensis 0.750 0.125 0.260 58. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 59. Tetragnathi a javana 7.250 7.750 0.548 60. Tetragnatha virescens 7.250 7.750 0.548 61. Tetragnatha virescens 7.250 7.750 0.548 62. Tetragnatha ilavaca 0.000 0.875 1.000 63. Tetragnatha desaguni 0.000 0.000 1.000 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 66. Tetragnatha kawigtenera 0.000 0.000 1.000 67. Dyschiriognatha havigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.723 70. Erigone bifurca 0.000 0.000 1.000	55.		0.750	1.125	
57. Cylosa mulmeinensis 0.750 0.125 0.260 58. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 59. Tetragnatha javana 7.250 7.750 0.548 61. Tetragnatha virescens 7.250 7.750 0.548 62. Tetragnatha virescens 7.250 7.750 0.548 63. Tetragnatha desaguni 0.000 0.000 1.000 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 66. Tetragnatha desaguni 0.000 0.000 1.000 67. Dyschiriognatha havigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.723 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 1.000 0.5625 0.096	56.	Cylosa insulana	1.000	0.500	0.327
58. Gea subarmata 2.500 2.750 0.912 Tetragnathidae 26.000 26.000 1.000 59. Tetragnathi javana 7.250 7.250 1.000 60. Tetragnatha virescens 7.250 7.750 0.548 61. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 3.500 4.375 0.548 63. Tetragnatha mandibulata 3.500 1.125 0.320 63. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 66. Tetragnatha desaguni 0.000 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.625 0.096	57.	•	0.750	0.125	0.260
59. Tetragnatha javana 7.250 7.250 1.000 60. Tetragnatha virescens 7.250 7.750 0.548 61. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 3.500 4.375 0.548 63. Tetragnatha maxillosa 0.000 0.875 1.000 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.558 73. Oxyopes pingasus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.250 1.000	58.	•	2.500	2.750	0.912
59. Tetragnatha javana 7.250 7.250 1.000 60. Tetragnatha virescens 7.250 7.750 0.548 61. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha maxillosa 0.000 0.875 1.000 63. Tetragnatha desaguni 0.000 0.000 1.000 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha kawigtenera 0.000 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 73. Oxyopes pingasus 0.000 0.250 1.000		Tetragnathidae	26.000	26.000	1.000
60. Tetragnatha virescens 7.250 7.750 0.548 61. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha mandibulata 3.500 4.375 0.548 62. Tetragnatha maxillosa 0.000 0.875 1.000 63. Tetragnatha maxillosa 0.500 1.125 0.320 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 1.000 0.000 1.000 Oxyopidae 3.750 7.625 0.058 7.25 0.58 71. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000	59.		7.250	7.250	1.000
62. Tetragnatha ilavaca 0.000 0.875 1.000 63. Tetragnatha maxillosa 0.500 1.125 0.320 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 71. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 0.625 1.000 74. Oxyopes pingasus 0.000 0.250 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000	60.	Tetragnatha virescens	7.250	7.750	0.548
63. Tetragnatha maxillosa 0.500 1.125 0.320 64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopes javanus 3.750 7.625 0.058 71. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 0.250 1.000 74. Oxyopes pingasus 0.000 0.250 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Co	61.	Tetragnatha mandibulata	3.500	4.375	0.548
64. Tetragnatha desaguni 0.000 0.000 1.000 65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.558 73. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 0.250 1.000 74. Oxyopes pingasus 0.000 0.250 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 7	62.	Tetragnatha ilavaca	0.000	0.875	1.000
65. Tetragnatha vermiformis 6.750 4.625 0.188 66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.255 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 77. Coleos	63.	Tetragnatha maxillosa	0.500	1.125	0.320
66. Tetragnatha okumae 0.750 0.000 1.000 67. Dyschiriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.558 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.375 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 79. Myrmarachne bidentata<	64.	Tetragnatha desaguni	0.000	0.000	1.000
67. Dyschriognatha hawigtenera 0.000 0.000 1.000 Linyphiidae 6.250 4.750 0.720 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 1.000 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 0.634 79. Myrmarachne bide	65.	Tetragnatha vermiformis	6.750	4.625	0.188
Linyphiidae 6.250 4.750 0.720 68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.558 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes pingasus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 0.634 79. Myrmarachne bidentata <td>66.</td> <td>Tetragnatha okumae</td> <td>0.750</td> <td>0.000</td> <td>1.000</td>	66.	Tetragnatha okumae	0.750	0.000	1.000
68. Bathyphantes tagalogensis 3.250 0.875 0.115 69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.200 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 78. Myrmarachne bidentata 0.000 0.250 0.634 79. M	67.	Dyschiriognatha hawigtenera	0.000	0.000	1.000
69. Atypena adelinae 3.000 3.875 0.723 70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.000 1.000 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 704. <t< td=""><td></td><td>Linyphiidae</td><td>6.250</td><td>4.750</td><td>0.720</td></t<>		Linyphiidae	6.250	4.750	0.720
70. Erigone bifurca 0.000 0.000 1.000 Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.375 1.000 76. Stiphropus sangayus 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 <tr td=""></tr>	68.	Bathyphantes tagalogensis	3.250	0.875	0.115
Oxyopidae 8.500 15.625 0.096 71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 74. Oxyopes pingasus 0.000 0.375 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N)	69.	Atypena adelinae	3.000	3.875	0.723
71. Oxyopes javanus 3.750 7.625 0.058 72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	70.	Erigone bifurca	0.000	0.000	1.000
72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.634 79. Myrmarachne bidentata 0.750 0.600 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Oxyopidae	8.500	15.625	0.096
72. Oxyopes matiensis 4.750 6.125 0.558 73. Oxyopes bikakaeus 0.000 1.250 1.000 74. Oxyopes pingasus 0.000 0.625 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.634 79. Myrmarachne bidentata 0.750 0.600 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	71.	Oxyopes javanus	3.750	7.625	0.058
74. Oxyopes pingasus 0.000 0.625 1.000 Thomisidae 0.000 0.375 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 78. Theridion ap. 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	72.		4.750	6.125	0.558
Thomisidae 0.000 0.375 1.000 75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridiidae 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 78. Theridion sp. 0.000 0.250 1.000 79. Myrmarachne bidentata 0.000 0.250 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	73.	Oxyopes bikakaeus	0.000	1.250	1.000
75. Diaea tadtadtinika 0.000 0.250 1.000 76. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.000 1.000 78. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	74.	Oxyopes pingasus	0.000	0.625	1.000
76. Stiphropus sangayus 0.000 0.125 1.000 Theridiidae 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.000 1.000 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Thomisidae	0.000	0.375	1.000
Theridiidae 0.000 0.250 1.000 77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.000 1.000 78. Theridion sp. 0.000 0.000 1.000 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	75.	Diaea tadtadtinika	0.000	0.250	1.000
77. Coleosoma octomaculatum 0.000 0.250 1.000 78. Theridion sp. 0.000 0.000 1.000 Salticidae 2.000 2.750 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	76.	Stiphropus sangayus	0.000	0.125	1.000
78. Theridion sp. 0.000 1.000 Salticidae 2.000 2.750 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Theridiidae	0.000	0.250	1.000
Salticidae 2.000 2.750 0.634 79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	77.	Coleosoma octomaculatum	0.000	0.250	1.000
79. Myrmarachne bidentata 0.000 0.250 0.495 80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	78.	Theridion sp.	0.000	0.000	1.000
80. Simaetha damongpalaya 1.250 2.500 0.560 81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*		Salticidae	2.000	2.750	
81. Hyllus maskaranus 0.750 0.000 1.000 Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	79.	Myrmarachne bidentata	0.000	0.250	0.495
Total of Abundance (N) 47.750 54.250 0.521 Average of Abundance 6.821 1.417 0.000*	80.		1.250	2.500	0.560
Average of Abundance 6.821 1.417 0.000*	81.	Hyllus maskaranus			
		Total of Abundance (N)	47.750	54.250	0.521
Species Richness (D) 1.467 1.573 0.807		Average of Abundance	6.821	1.417	0.000*
		Species Richness (D)	1.467	1.573	0.807

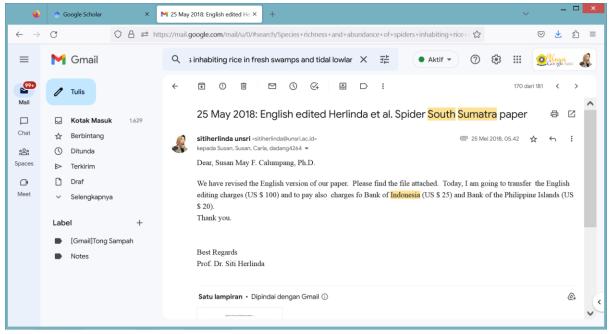
*= significantly different Table 3. The comparison of soil-dweller spider abundance found on vegetative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.	Family. and Species		Average Spider Abundance (Individuals per 18 Traps)	
		Fresh Swamps	Fresh Swamps Tidal Lowlands	
	Lycosidae	24.250	22.125	0.664
37.	Pardosa pseudoannulata	17.000	14.625	0.618
38.	Pardosa sumatrana	3.750	2.625	0.177
39.	Pardosa birmanica	0.750	0.625	0.836
40.	Pardosa mackenziei	0.500	1.875	0.135


41.	Pardosa patapensis	0.250	0.000	0.364
42.	Hogna rizali	0.000	1.750	1.000
43.	Arctosa tanakai	2.000	0.625	0.244
	Araneidae	0.000	1.625	1.000
44.	Araneus inustus	0.000	0.500	1.000
45.	Cylosa insulana	0.000	0.875	1.000
46.	Gea subarmata	0.000	0.250	1.000
	Linyphiidae	5.000	1.250	1.000
47.	Bathyphantes tagalogensis	2.500	0.250	0.009
48.	Atypena adelinae	2.000	0.500	0.112
49.	Erigone bifurca	0.500	0.500	1.000
	Thomisidae	0.000	0.875	1.000
50.	Diaea tadtadtinika	0.000	0.750	1.000
51.	Stiphropus sangayus	0.000	0.125	1.000
	Theridiidae	0.000	0.375	1.000
52.	Coleosoma octomaculatum	0.000	0.125	1.000
53.	Theridion sp.	0.000	0.250	1.000
	Salticidae	0.000	0.000	1.000
54.	Hyllus maskaranus	0.000	0.000	1.000
	Total of Abundance (N)	29.250	26.250	0.451
	Average of Abundance	4.875	4.375	0.466
	Species Richness (D)	0.983	1.272	0.529
-				

*= significantly different Table 4. The comparison of soil-dweller spider abundance found on generative stage of rice at fresh swamp and tidal lowland in South Sumatra

No.			er Abundance	Pvalue (0.05
	Family. and Species	,	per 18 Traps)	■ value (0.05
		Fresh Swamps	Tidal Lowlands	
	Lycosidae	27.250	20.000	0.041*
35.	Pardosa pseudoannulata	15.750	12.250	0.326
36.	Pardosa sumatrana	5.500	5.125	0.699
37.	Pardosa birmanica	0.500	0.500	1.000
38.	Pardosa mackenziei	0.000	0.000	1.000
39.	Pardosa patapensis	0.000	0.625	1.000
40.	Hogna rizali	1.500	0.250	0.141
	Arctosa tanakai	4.000	1.250	0.012*
41.	Araneidae	0.000	0.250	0.495
42.	Araneus inustus	0.000	0.125	0.742
43.	Cylosa insulana	0.000	0.000	1.000
	Gea subarmata	0.000	0.125	0.742
44.	Linyphiidae	4.500	4.875	0.936
45.	Bathyphantes tagalogensis	3.000	2.250	0.753
46.	Atypena adelinae	1.250	2.250	0.532
	Erigone bifurca	0.250	0.375	0.715
47.	Thomisidae	0.000	0.000	1.000
48.	Diaea tadtadtinika	0.000	0.000	1.000
	Stiphropus sangayus	0.000	0.000	1.000
49.	Theridiidae	0.000	0.000	1.000
50.	Coleosoma			
	octomaculatum	0.000	0.000	1.000


	Theridion sp.	0.000	0.000 1	.000
51.	Salticidae	0.000	0.125 0	742
	Hyllus maskaranus	0.000	0.125 0	742
	Total of Abundance (N)	31.750	25.250 0	.295
	Average of Abundance	5.292	4.208 0	.329
	Species Richness (D)	1.058	1.052 0	.981
	······································			

18

6. Bukti tagihan untuk penerbitan artikel

The International Society for Southeast Asia Agricultural Sciences

eral Secretariat: Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setaga

. Tokyo 156-8502

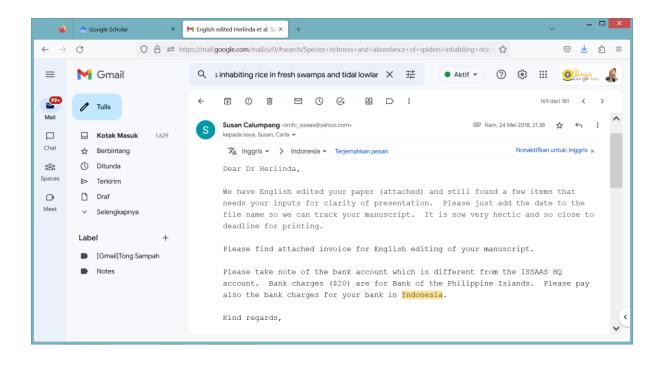
AUTHOR(S):INVOICE NUMBER2018-004Siti Herlinda, Sandi Yudha, Rosdah Thalib,INVOICE DATE24-May-18Khodijah, Suwandi, Benyamin Lakitan, andMarieska Verawaty24-May-18

Vol	NO	ARTICLE TITL	E	NO. OF PAG			AI	MOUNT
24		Species richness and abunda inhabiting rice in fresh swamp lowlands in south Sumatra, In English editing fee Bank Charge of Bank of the P (For INTERNATIONAL Payments)	s and tidal donesia		US\$ US\$	100.00 20.00	US\$ US\$	100.00 20.00
TOTAL		For INTERNAT	IONA	L Pa	yments	US\$	120.00	

Payment Guidelines

* For international payments, it should be noted that the bank charge of Bank of the Philippine Islands is already included in your total bill. So SWIFT field 71A: "Details of Charges" should be in <u>SHARED payment instruction</u>. SHA (shared) means you only pay your bank's outgoing transfer charge. Our account will receive your payment minus the bank charges of Bank of the Philippine Islands. Kindly request your bank to transfer funds directly to Bank of the Philippine Islands to avoid extra charges.

Banking Details


Swift Code	BOPIPHMM
Bank	Bank of the Philippine
Branch	Los Banos
Branch Code No	0091
Account Number	0914024323
Account Name	Susan May Calumpang

Payment Related Queries

* Kindly contact Susan May F. Calumpang, Technical Editor, smfc_issaas@yahoo.com

Prepared by:

Dr. Susan May F. Calumpang Editorial Office, Journal of ISSAAS

SPECIES RICHNESS AND ABUNDANCE OF SPIDERS INHABITING RICE IN FRESH SWAMPS AND TIDAL LOWLANDS IN SOUTH SUMATRA, INDONESIA

Siti Herlinda^{1, 2}*, Sandi Yudha³, Rosdah Thalib¹, Khodijah⁴, Suwandi^{1,2}, Benyamin Lakitan^{1,2}, Marieska Verawaty⁵

¹College of Agriculture, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia 30662 ²Research Center for Sub-optimal Lands (PUR-PLSO), Universitas Sriwijaya, Palembang, South Sumatra, Indonesia 30139

³Alumnus of College of Agriculture, Universitas Sriwijaya, Indralaya,

South Sumatra, Indonesia 30662

⁴College of Agriculture, Universitas Palembang, Palembang, Indonesia 30139 ⁵College of Mathematic and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia

*Corresponding author: sitiherlinda@unsri.ac.id

(Received: January 9, 2017; Accepted: May 2018)

ABSTRACT

Species richness and abundance of arthropods can be affected by the growth stage of a plant and by specific planting methods in agroecosystems. Thus, there is a need to quantify arthropod assemblages, in order to analyze the species richness and abundance of spiders inhabiting rice. This study aimed to analyze the species richness and abundance of spiders inhabiting rice during both their vegetative and generative stages in fresh swamps and tidal lowlands of South Sumatra, Indonesia. The survey was carried out from February up to August 2012. Arboreal spiders were sampled using sweep nets, while soil-dwelling spiders were collected through pitfall traps. Families belonging to arboreal spiders present were: Araneidae, Tetragnathidae, Linyphildae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. Soil-dwelling spiders present belonged to the family Lycosidae. Spider abundance was significantly greater in fresh swamps than in the tidal lowlands for both spiders (*Tetragnatha vermiformis* and *Oxyopes bikakaeus*) during the vegetative stage. On the other hand, the soil-dwelling spider Arctosa tanakai under family Lycosidae had a significantly greater abundance in fresh swamps than in tidal lowland ecosystems during the generative stage. Meanwhile, during the generative stage the average abundance of arboreal spiders was significantly greater in the fresh swamps than in the tidal lowlands, while there was no significant difference in species richness. For soil-dwelling spiders, there was no signifcant difference in abundance and species richness during the vegetative stage of rice. From the two groups of spiders for both ecosystems, the soil-dwelling family Lycosidae would make a better predator of rice pests.

Key words: arboreal, arthropod, rice field, soil-dweller

INTRODUCTION

Indonesian wetlands have two distinct ecosystems namely, tidal lowlands and fresh water ecosystems. Tidal lowlands are directly influenced by sea tides while fresh swamps are unaffected (Mulyani and Sarwani 2013). In tidal lowland ecosystems, the soil needs to be held in a specific technique due to its thick pyritic layers, thus the need for it to be preserved (Hidayat et al. 2010). Farmers from tidal lowlands cannot properly handle the soil soil to prevent pyritic layer degradation (Suriadikarta and Sutriadi 2007). Thus, they generally plant rice twice a year (planting index) through broadcast seeding, drum seeding, or planting seedlings in a dug hole ("tugal"), (Raharjo et al. 2013). Farmers from fresh swamps usually grow rice through transplanting which is conducted only once a year (Mulyani and Sarwani 2013, Lakitan et al. 2018). Arthropod abundance and species richness can be affected by different techniques in rice planting, as well as by indices in both ecosystems (Zhang et al. 2013, Parry et al. 2015). Weedy paddies in directly planted ecosystems have a higher abundance of arthropods than in ecosystems with no weeds (Hu et al. 2012). The absence of either soil or conservation tillage in rice fields also support a higher abundance of arthropods (Pereira et al. 2010). The absence of synthetic insecticides in fresh swamp ecosystems also increase the abundance of predatory arthropods (Herlinda et al. 2008, Heong et al. 2007, Furlan et al. 2018).

The growth stage of a plant also influences species richness and arthropod abundance (Zhong-xian et al. 2006). During the vegetative and generative growth stages in rice, there is a higher abundance and species

diversity of soil-dwelling arthropods in tidal lowlands than in fresh swamp ecosystems (Khodijah et al. 2012, Herlinda et al. 2014). However, arboreal arthropods are more abundant and diverse in fresh swamp ecosystems than in tidal lowlands (Khodijah et al. 2012, Sunariah et al. 2016). Spiders play an important role in controlling the populations of planthoppers and leafhoppers (Ooi and Shepard 1994). Wolf spiders (*Pardosa pseudoannulata*) and dwarf spiders (*Atypena formosana*) are important predators of brown planthoppers (BPH) and *Nephotettix virescens* (Sigsgaard and Villareal 1999, Sigsgaard et al. 2001). Both spiders can also prey on leaffolders, stem borers, whorl maggot flies, and caseworms (Shepard et al. 1987, Rubia et al. 1990). Thus, species richness and abundance of spiders inhabiting rice can provide information on the regulation of the population of insect pests. Therefore, there is a need to quantify arthropod assemblages in order to determine species richness and abundance of spiders in rice, specifically during both their vegetative and generative stages, in fresh swamps and tidal lowland ecosystems in South Sumatra, Indonesia.

Study site

MATERIALS AND METHODS

Arthropod sampling was conducted in rice production areas of both fresh swamps and tidal lowlands in South Sumatra, Indonesia. The survey was conducted from February up to August 2012, and the identification of arthropod samples was done from September 2012 up to March 2013. Four survey sites from fresh swamp ecosystems were: (1) Gandus, Palembang City; (2) Pelabuhan Dalam Village in Ogan Ilir District; (3) Maryana Village in Banyuasin District; and (4) Sungai Waru Village in Kabupaten Banyuasin District. Eight survey sites from tidal lowlands were all from Banyuasin District, namely: (1) Banyu Urip Village in Tanjung Lago Subdistrict; (2) Telang Karya Village in Muara Telang Subdistrict; (3) Telang Rejo Village in Muara Telang Subdistrict; (4) Srikaton Damai Village in Makarti Jaya Subdistrict; (7) Tirta Mulya Village in Makarti Jaya Subdistrict; and (8) Tirta Kencana Village in Makarti Jaya Subdistrict. In each site, three sampling plots, with a minimum size of 1 ha per plot, were surveyed twice during a single rice season (4 months). The first survey was conducted when the rice was 4 weeks old upon transplant, while the second survey was during the milk grain stage (9 weeks old upon transplant). Ciherang was the rice variety type grown in fresh swamps, whereas Inpara was grown in tidal lowland ecosystems.

Sampling

Spiders sampled included both web-building and non-web-building spiders. Web-building spiders use their webs to catch prey while non-web-building spiders are more of hunters (Leroy and Leroy 2003). Web-building spiders have become habitat specialists, while the non-web-building spiders tend to be less specific in habitat preference (Gillespie 1999). Arboreal spiders inhabit plant canopies and consist mostly of web-building spiders, while soil-dwelling spiders consist mostly of non-web-building spiders (Leroy and Leroy 2003).

Arboreal spiders

Arboreal spiders were collected using sweep nets, based on the methods from Herlinda et al. (2014). Sweeping involved 'double swings', with a total of 30 swings/ha for each plot. The total number of plots were 12 in fresh swamps and 24 from tidal lowland ecosystems.

Soil-dweller spiders

Soil-dwelling spiders were collected using pitfall traps, based on the methods developed by Herlinda et al. (2004). Plastic pitfall traps (60 mm in diameter and 90 mm in height) were filled to a volume of 70 mL 4% formaldehyde solution, buried in the ground, and flushed with soil. Traps were set up to a density of 18 trap units/ha, spaced in a grid of 3 x 6, and then collected after 48 hours. All specimens collected were cleaned, sorted from other debris, and stored in glass vials (volume 30 ml) containing 70% ethanol. Identification of the specimens up to family- and species-levels was carried out at the Laboratory of Entomology, Plant Pest and Disease Department, College of Agriculture, Universitas Sriwijaya, using taxonomic keys provided by Barrion and Litsinger (1995).

Data Analysis

Spider abundance data of specimens from fresh swamps and tidal lowland ecosystems were not normally distributed. Insect counts in this study were found to fit a negative binomial distribution and were analyzed by Proc Genmod using SAS University Edition (SAS Institute Inc., Cary, NC, U.S.A.). Species richness was analysed using Menhinick's index (D) (Magurran 1988).

RESULTS AND DISCUSSION

Planting Methods and Index for Fresh Swamps and Tidal Lowlands

In fresh swamp ecosystems, farmers applied a transplanting system involving sequential steps. The first step was soil preparation involving full tilage, then seedling preparation by seeding on a floating seedbed, and lastly, by transplanting the seedlings on a rice field. Once finished, the rice should be protected from pests, but local farmers seldom do so because this is not their main concern. Most farmers from fresh swamps only grow rice annually from May-September (one planting index). Farmers in tidal lowlands, on the other hand, apply a direct planting system and grow rice two to three times a year (two to three planting indexes). The sequential steps for planting rice in tidal lowlands were first, soil preparation using minimum tillage, next was by spreading seeds directly by hand, or by a tool or machine. To protect rice from pests, local farmers sprayed synthetic pesticides if there are any pest or weed problems. Thus, the planting methods and index of rice are specific and different for each ecosystem.

Arboreal spiders from fresh swamp and tidal lowland ecosystems

During the vegetative growth stage of rice, seven families of arboreal spiders were present in both fresh swamp and tidal lowland ecosystems. Tetragnathidae was the most dominant family observed, while the other families of arboreal spider present were: Araneidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae (Table 1). A total of 92.750 spiders/30 nets were observed from fresh swamp ecosystems, while a total of 62.875 spiders/30 nets were captured from tidal lowland ecosystems. However, there was no significant difference (P = 0.312) between both ecosystems. The abundance of *Tetragnatha vermiformis* (P = 0.001) and *Oxyopes bikakaeus* (P = 0.007) from fresh swamp ecosystems were both significantly higher than their abundance in tidal lowland ecosystems. But, in the case of the other arboreal spiders, there was no significant difference. A total of 26 arboreal spider species was observed from fresh swamp ecosystems, while 23 species were present in tidal lowland ecosystems. However, there was no significant difference in species richness between fresh swamps (P = 0.186) and tidal lowland ecosystems. Thus, web-building spiders were more abundant in fresh swamps since these ecosystems are not exposed to synthetic insecticides.

Table 1. A comparison of arboreal spider abundance between fresh swamps and tidal lowland ecosystems during the vegetative growth stage of rice in South Sumatra, Indonesia.

No.	Family and Species	Average Spider Abundance (Individuals/30 Nets)		Pvalue (0.05)
		Fresh Swamps	Tidal Lowlands	
	Araneidae	6.5	2.75	0.15
1.	Araneus inustus	1.5	0.63	0.3
2.	Cylosa insulana	1.75	0.75	0.24
3.	Cylosa mulmeinensis	0.5	0	0.23
4.	Gea subarmata	2.75	1.38	0.55
	Tetragnathidae	54.25	32.75	0.18
5.	Tetragnatha javana	8.25	12	0.5
6.	Tetragnatha virescens	21	8.88	0.11
7.	Tetragnatha mandibulata	8.5	8.5	1
8.	Tetragnatha ilavaca	1	0.13	0.09
9.	Tetragnatha maxillosa	3	1.5	0.5
10.	Tetragnatha desaguni	1.25	0.75	0.68
11.	Tetragnatha vermiformis	8.25	0.75	0.001*
12.	Tetragnatha okumae	1.75	0	1
13.	Dyschiriognatha	1.25	0.25	0.2
	hawigtenera	1.25	0.25	
	Linyphiidae	8.75	9.38	0.94
14.	Bathyphantes tagalogensis	4.75	7.13	0.69
15.	Atypena adelinae	3.250	2.250	0.773
16.	Erigone bifurca	0.75	0	1
	Oxyopidae	18	13.88	0.62
17.	Oxyopes javanus	6.25	7.25	0.84
18.	Oxyopes matiensis	5.75	6.25	0.84
19.	Oxyopes bikakaeus	3.25	0.13	0.007*
20.	Oxyopespingasus	2.75	0.25	0.12
	Thomisidae	0.750	0.75	1
21.	Diaea tadtadtinika	0.5	0.5	1
22.	Stiphropus sangayus	0.25	0.25	1
	Theridiidae	0.25	0.25	1
23.	Coleosoma octomaculatum	0.25	0	0.36

24.	Theridion sp.	0	0.25	0.5
	Salticidae	4.25	3.13	0.75
25.	Myrmarachne bidentata	0.5	0.25	0.68
26.	Simaetha damongpalaya	3	0.75	0.42
27.	Hyllus maskaranus	0.75	2.13	0.48
	Total Abundance (N)	92.75	62.88	0.31
	Average Abundance	13.25	8.98	0.31
	Species Richness (D)	1.7	1.2	0.19

During the rice generative stage, five families of arboreal spiders were observed from fresh swamp ecosystems, namely: Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, and Salticidae. In tidal lowland ecosystems, seven spider families were present, namely: Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae), (Table 2). However, there was no significant difference in abundance between fresh swamp and tidal lowland ecosystems among members of families Araneidae (P = 0.803), Tetragnathidae (P = 1.000), Linyphiidae (P = 0.720), Oxyopidae (P = 0.096), Theridiidae (P = 1.000), and Salticidae (P = 0.633). Furthermore, there was no significant difference in total abundance of spiders between fresh swamp ecosystems (47.750 spiders/30 nets) and tidal lowlands (54.250 spiders/30 nets) (P = 0.521). However, there was a significant difference in average abundance of spiders between fresh swamps (6.82 spiders/30 nets) and tidal lowland ecosystems (1.42 spiders/30 nets), (P = 0.000).

 Table 2. A comparison of arboreal spider abundance between fresh swamps and tidal lowland ecosystems during the generative growth stage of rice in South Sumatra, Indonesia.

No.	Family and Species	Average Spid (Individua	P _{value} (0.05)	
		Fresh Swamps	Tidal Lowlands	(0102)
	Araneidae	5	4.5	0.803
1.	Araneus inustus	0.75	1.13	0.48
2.	Cylosa insulana	1	0.5	0.33
3.	Cylosa mulmeinensis	0.75	0.13	0.26
4.	Gea subarmata	2.5	2.75	0.91
	Tetragnathidae	26	26	1
5.	Tetragnatha javana	7.25	7.25	1
6.	Tetragnatha virescens	7.25	7.75	0.55
7.	Tetragnatha mandibulata	3.5	4.38	0.55
8.	Tetragnatha ilavaca	0	0.88	1
9.	Tetragnatha maxillosa	0.5	1.13	0.32
10.	Tetragnatha desaguni	0	0	1
11.	Tetragnatha vermiformis	6.75	4.63	0.19
12.	Tetragnatha okumae	0.75	0	1
13.	Dyschiriognatha hawigtenera	0	0	1
	Linyphiidae	6.25	4.75	0.72
14.	Bathyphantes tagalogensis	3.25	0.88	0.12
15.	Atypena adelinae	3	3.88	0.72
16.	Erigone bifurca	0	0	1
	Oxyopidae	8.5	15.63	0.1
17.	Oxyopes javanus	3.75	7.63	0.06
18.	Oxyopes matiensis	4.75	6.13	0.56
19.	Oxyopes bikakaeus	0	1.25	1
20.	Oxyopespingasus	0	0.63	1
	Thomisidae	0	0.375	1
21.	Diaea tadtadtinika	0	0.25	1
22.	Stiphropus sangayus	0	0.13	1
	Theridiidae	0	0.25	1
23.	Coleosoma octomaculatum	0	0.25	1
24.	Theridion sp.	0	0.00	1
	Salticidae	2	2.75	0.63
25.	Myrmarachne bidentata	0	0.25	0.5
26.	Simaetha damongpalaya	1.25	2.5	0.56
27.	Hyllus maskaranus	0.75	0	1

Total Abundance (N)	47.75	54.25	0.52
Average Abundance	6.82	1.42	0*
Species Richness (D)	1.47	1.57	0.81

Among the arboreal spiders, families that were observed during both rice growth stages and ecosystems were: Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. These families consisted of both web-building (Araneidae, Tetragnathidae, Linyphiidae, and Theridiidae) and non-web-building (Oxyopidae, Thomisidae, and Salticidae) species, commonly found in either fresh swamps or tidal lowland ecosystems (Schmidt and Tscharntke 2005). The abundance of *T. vermiformis* (Tetragnathidae) and *O. bikakaeus* (Oxyopidae) was significantly greater in fresh swamps than in tidal lowland ecosystems. Members from families Tetragnathidae and Oxyopidae were more dominant in wetland ecosystems (Betz and Tscharntke 2017), since fresh swamps are commonly submerged for a longer period of more than 6 months (November to April) than tidal lowland ecosystems (3 months, November to January), (Mulyani and Sarwani 2013). Furthermore, members from families Tetragnathidae and Oxyopidae and Oxyopidae were more abundant in fresh swamp ecosystems since farmers did not use synthetic insecticides in controling rice pests. The presence of more abundant tetragnathid web- or other types web-building spiders can be used as an indicator for farmers not to spray synthetic pesticides (Betz and Tscharntke 2017).

Sixteen species of arboreal spiders were observed in fresh swamp ecosystems, while 21 species were present in tidal lowlands. However, there was no significant difference in species richness of arboreal spiders between fresh swamp ecosystems (P = 0.8067) and tidal lowlands. Both the arboreal spiders *T. virescens* and *T. javana*, classified as keystone species (Barrion et al. 2012), were both abundant in fresh swamps and tidal lowland ecosystems. They play a critical role in maintaining the population of rice insect pests, such as leafhopper, by preying on these pests (Betz and Tscharntke 2017). Species from the family Tetragnathidae were the dominant web-building spiders present in wetland ecosystems in the Philippines (Shepard et al. 1987) and in India (Betz and Tscharntke 2017), with a greater abundance of spiders observed during the rice vegetative stage than during the generative stage. The abundance of spider from family Tetragnathidae was influenced by the number of leafhoppers (Homoptera), which commonly occur during the vegetative growth stage of rice (Betz and Tscharntke 2017). Both *T. virescens* and *T. javana* are predators of rice insect pests, such as insects belonging to the orders Homoptera and Lepidoptera (Tahir et al. 2009). In Indian rice fields, the highest increase of members from family Tetragnathidae was in accordance with an increasing abundance of members from Lepidoptera (leafhoppers), (Betz and Tscharntke 2017).

By comparing the total abundance (N) between tables 1 and 2, total abundance was higher during the vegetative growth stage than the generative growth stage for both fresh swamps and tidal lowland ecosystems. Abundance is also closely related with the population of their prey, attracting spiders to the area (Riechert and Lockley 1984, Widiarta et al. 2006). Insects pests, such as brown planthoppers, are the main prey of arboreal spiders (Karindah 2011). Brown planthoppers have a higher population during the vegetative growth stage of rice than during the generative stage, which results in a corresponding increase in spider abundance during the vegetative growth stage of rice, whereas rice bugs were the dominant insect pests present during the generative stage (Arofah et al. 2013). Thus, spider abundance is also affected by the growth stage of rice from both ecosystems.

However, in terms of average abundance, there was no significant difference between both ecosystems during the vegetative stage because synthetic insecticides were not yet applied. However, in tidal lowlands, spraying with synthetic insecticides generally occur when the rice reaches flowering or from panicle initiation to booting, which explains the significantly lower average spider abundance in this ecosystem during the generative stage.

Soil-dwelling spiders in fresh swamps and tidal lowland ecosystems

During the vegetative growth stage in rice of fresh swamp ecosystems, only two soil-dwelling spider families (Lycosidae and Linyphiidae) were observed. Meanwhile, during the vegetative phase in tidal lowlands, one soil-dwelling family (Lycosidae) and four arboreal spider families (Theridiidae, Araneidae, Linyphiidae, Thomisidae) were captured by pitfall traps (Table 3). No spiders belonging to the arboreal spider families Araneidae, Thomisidae, and Theridiidae were found in fresh swamp ecosystems. The most dominant family of soil-dwelling spiders observed during the rice vegetative growth stage in both ecosystems was Lycosidae, with *Pardosa pseudoannulata* being the most dominant species. Nine soil-dwelling spider species were found in fresh swamp ecosystems, while sixteen species were observed from tidal lowlands. Nonetheless, there was no significant difference in species richness (P = 0.5290) among soil-dwelling spiders between fresh swamp and

tidal lowland ecosystems. Soil-dwelling spiders from both ecosystems had no significant difference in abundance and species richness. This was due to the minimum soil tillage in tidal lowlands and fields, while in fresh swamps rice was not grown for six months (the rice fallow period).

Table 3. Abundance of spiders	observed in the so	il in fresh swamps and	l tidal lowland e	cosystems during the
vegetative growth stage in rice in South Sumatra, Indonesia. (Edited).				

	Average Spider Abundance			P _{value (0.05)}	
No.	Family and Species	(Individuals	(Individuals/18 Traps)		
		Fresh Swamps	Tidal Lowlands		
	Lycosidae	24.25	22.13	0.67	
1.	Pardosa pseudoannulata	17	14.63	0.62	
2.	Pardosa sumatrana	3.75	2.63	0.18	
3.	Pardosa birmanica	0.75	0.63	0.84	
4.	Pardosa mackenziei	0.5	1.88	0.14	
5.	Pardosa patapensis	0.25	0	0.36	
6.	Hogna rizali	0	1.75	1	
7.	Arctosa tanakai	2	0.63	0.24	
	Araneidae	0	1.63	1	
8.	Araneus inustus	0	0.5	1	
9.	Cylosa insulana	0	0.88	1	
10.	Gea subarmata	0	0.25	1	
	Linyphiidae	5	1.25	1	
11.	Bathyphantes tagalogensis	2.5	0.25	0.01	
12.	Atypena adelinae	2	0.5	0.11	
13.	Erigone bifurca	0.5	0.5	1	
	Thomisidae	0	0.88	1	
14.	Diaea tadtadtinika	0	0.75	1	
15.	Stiphropus sangayus	0	0.13	1	
	Theridiidae	0	0.38	1	
16.	Coleosoma octomaculatum	0	0.13	1	
17.	Theridion sp.	0	0.25	1	
	Salticidae	0	0	1	
18.	Hyllus maskaranus	0	0	1	
	Total Abundance (N)	29.25	26.25	0.45	
	Average Abundance	4.88	4.38	0.47	
	Species Richness (D)	0.98	1.27	0.53	

*= significantly different

However, during the generative growth stage of rice, three families (Lycosidae, Araneidae, and Linyphiidae) were observed in the soil surface of fresh swamp ecosystems, while four families (Lycosidae, Araneidae, Linyphiidae, and Salticidae) were present in the soil surface of tidal lowlands (Table 4). Lycosidae was the most dominant family of soil-dwelling spiders present, with eight species of soil-dwellers from fresh swamp ecosystems and twelve from tidal lowlands. However, there was no significant difference in species richness (P = 0.981) of soil-dwelling spiders between both ecosystems during the generative growth stage.

In fresh swamp ecosystems, members of Lycosidae and Linyphiidae were observed on the soil surface while spiders belonging to families Lycosidae, Araneidae, Linyphiidae, Thomisidae, Theridiidae, and Salticidae were observed in tidal lowlands. In particular, arboreal web spiders belonging to families Araneidae, Linyphiidae, and Theridiidae, were also observed on the soil surface during their immature stage as a result of ballooning where they could move with the wind and descend, or fall on the soil surface (Iida and Fujisaki 2007, Suana and Haryanto 2013).

Table 4. Abundance of spiders observed in the soil in fresh swamps and tidal lowland ecosystems during the generative growth stage of rice in South Sumatra, Indonesia. (Edited)

No.	Family and Species	Average Spider Abundance (Individuals/18 traps)		$\mathbf{P}_{\text{value (0.05)}}$
		Fresh Swamps	Tidal Lowlands	
	Lycosidae	27.25	20	0.04*
1.	Pardosa pseudoannulata	15.75	12.25	0.33
2.	Pardosa sumatrana	5.5	5.13	0.7

3.	Pardosa birmanica	0.5	0.5	1
4.	Pardosa mackenziei	0	0	1
5.	Pardosa patapensis	0	0.63	1
6.	Hogna rizali	1.5	0.25	0.14
7.	Arctosa tanakai	4	1.25	0.01*
	Araneidae	0	0.25	0.5
8.	Araneus inustus	0	0.13	0.74
9.	Cylosa insulana	0	0	1
	Gea subarmata	0	0.13	0.74
	Linyphiidae	4.5	4.88	0.94
10.	Bathyphantes	3	2.25	0.75
	tagalogensis	5	2.25	
11.	Atypena adelinae	1.25	2.25	0.53
12.	Erigone bifurca	0.25	0.38	0.72
	Thomisidae	0	0	1
13.	Diaea tadtadtinika	0	0	1
14.	Stiphropus sangayus	0	0	1
	Theridiidae	0	0	1
15.	Coleosoma	0	0	1
	octomaculatum	0	0	
16.	Theridion sp.	0	0	1
	Salticidae	0	0.13	0.74
17.	Hyllus maskaranus	0	0.13	0.74
	Total Abundance (N)	31.75	25.25	0.3
	Average Abundance	5.29	4.21	0.33
	Species Richness (D)	1.06	1.05	0.98

There was no significant difference in total abundance and species richness of soil-dwelling families between both ecosystems. Nonetheless, the family Lycosidae had a significantly higher abundance (P=0.04) in fresh swamps than in tidal lowlands during the generative growth stage, especially for *Arctosa tanakai* (Table 4). This could be due to the absence of synthetic insecticides, with only a rare occurrence of synthetic insecticides in fresh swamp ecosystems in South Sumatra (Herlinda 2010). Such ecosystems tend to produce a high diversity of invertebrate fauna (Mahrub 1999, Rizali et al. 2002). Rice ecosystems, without synthetic insecticides use, have a higher abundance of predatory arthropods, especially spiders in Indonesia (Herlinda et al. 2008, Herlinda et al. 2004) and China (Zi-yang et al. 2011). Furthermore, Lycosidae was also the most dominant family of soil-dwelling spiders, with *P. pseudoannulata* or wolf spider, being the most dominant species. Wolf spiders are considered as a keystone species that are critical in preying on leafhoppers (Barrion et al. 2012, Lou et al. 2013). Their high mobility allows them to move, run, or jump to capture their prey (Ishijima et al. 2006).

For soil-dwelling spiders, there was no significant difference in abundance and species richness during the vegetative growth stage. However, during the generative stage, family Lycosidae specifically *Arctosa tanakai* had a significantly higher abundance in fresh swamps than in tidal lowland ecosystems. The reason for such an increase in abundance during the generative stage was that it was during this stage when farmers from tidal lowlands would start spraying synthetic insecticide. Farmers from fresh swamps do not use synthetic insecticides at all, hence the increase in abundance of soil-dwelling spiders during the generative stage in fresh swamp ecosystems.

Spider abundance was significantly greater in fresh swamps than in tidal lowlands for both the arboreal spiders *Tetragnatha vermiformis* and *Oxyopes bikakaeus*, but only during the vegetative stage), (Table 1). For the soil-dwelling spiders under family Lycosidae, specifically *Arctosa tanakai*, abundance was significantly greater in fresh swamps than in tidal lowlands during the generative stage (Table 4). Between the two groups of spiders selected from the arboreal and soil-dwelling spiders, the family Lycosidae is more effective in controlling populations of main insect pests, such as brown planthopper, because they could attack their prey directly. Members of the family Lycosidae are more aggressive in hunting their prey (the insect pest) than *Tetragnatha vermiformis* and *Oxyopes bikakaeus* (Shepard et al. 1987).

Rice is grown twice to three times a year in South Sumatra. Because of the occurrence of BPH problems in rice fields, most farmers (more than 50%) from tidal lowlands spray under a calendar pattern to

control pests, such as spraying every two weeks or every month. The dose of insecticide was determined through trial and error, traditional habits, or from information from other farmers. They seldom knew the active ingredient of the insecticide used, some knew just the commercial names. The farmers practiced minimum tillage and because of that, outbursts of weeds always occured. To control such weed occurrence, farmers generally use more than 80% synthetic herbicides which could decrease spider populations (Heong et al. 2007, Barrion et al. 2012).

CONCLUSION

The families of arboreal spiders observed in South Sumatra, Indoesia were: Araneidae, Tetragnathidae, Linyphiidae, Oxyopidae, Thomisidae, Theridiidae, and Salticidae. For soil-dwelling spiders, only the family Lycosidae was present. During the vegetative growth stage in rice, spider abundance was significantly greater in fresh swamps than in the tidal lowlands for the arboreal spiders *Tetragnatha vermiformis* and *Oxyopes bikakaeus*. However, during the generative stage, the abundance of soil-dwelling spiders under family Lycosidae, specifically *Arctosa tanakai*, was significantly greater in fresh swamps than in tidal lowlands. From the two groups of both arboreal and soil-dwelling spiders that exhibit significantly greater abundance, the family Lycosidae would make a better predator of rice pests.

ACKNOWLEDGEMENT

This research was supported by HIKOM of the Directorate General of Development and Research Enhancement, Ministry of Research, Technology and Higher Education, Republic of Indonesia. We would like to express our appreciation to the Institute of Research and Community Service (LPPM), Universitas Sriwijaya, Indonesia for facilitating this research. Special thanks to Ricky Davit Simamora for his assistance in the field work.

REFERENCES CITED

- Arofah, S., Trisnawati, I. and D. Tjahjaningrum. 2013. Pengaruh habitat termodifikasi menggunakan serai terhadap serangga herbivora dan produktivitas padi varietas IR-64 di Desa Purwosari, Pasuruan. Jurnal Sains dan Seni Pomits. 2(2): 2337-3520.
- Barrion, A.T. and J.A. Litsinger. 1995. Riceland Spiders of South and Southeast Asia.International Rice Research Institute. Philippines. 716p.
- Barrion, A.T., Villareal, S.S., Catindig, J.L.A., Cai, D., Yuan, Q.H. and K.L. Heong. 2012. The spider fauna in the rice agricultural landscape of Hainan Island, China: Composition, abundance and feeding structure. Asia Life Sciences. 21(2): 625-651.
- Betz, L. and T. Tscharntke. 2017. Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local and landscape management. Journal of Insect Conservation. 21(3): 495-508.
- Furlan, L., Pozzebon, A., Duso, C., Simon-Delso, N., Sánchez-Bayo, F., Marchand, P.A., Codato, F., van Lexmond, M.B. and J.M. Bonmatin. 2018. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides. Environmental Science and Pollution Research. (In press).
- Gillespie, R.G. 1999. Comparison of rates of speciation in web-building and non-web-building groups within a hawaiian spider radiation. The Journal of Arachnology. 27:79–85
- Heong, K.L., Manza, A., Catindig, J., Villareal, S. and T. Jacobsen. 2007. Changes in pesticide use and arthropod biodiversity in the IRRI research farm. Outlooks on Pest Management. 18(5):229-233.
- Herlinda, S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against *Aphis gossypii* Glover (Homoptera: Aphididae). Tropical Life Sciences Research. 21(1): 13-21.
- Herlinda, S., Manalu, H.N., Aldina, A.F., Suwandi, Wijaya, A., Khodijah and D. Meidalima. 2014. Kelimpahan dan keanekaragaman spesies laba-laba predator hama padi ratun di sawah pasang surut. Jurnal Hama dan Penyakit Tumbuhan Tropika.14(1): 1-7.

- Herlinda, S., Rauf, A., Sosromarsono, S., Kartosuwondo, U., Siswadi and P. Hidayat. 2004. Artropoda musuh alami penghuni ekosistem persawahan di daerah Cianjur, Jawa Barat. Jurnal Entomologi Indonesia. 1(1): 9-15.
- Herlinda, S., Waluyo, Estuningsih, S.P. and C. Irsan. 2008. Perbandingan keanekaragaman spesies dan kelimpahan arthropoda predator penghuni tanah di sawah lebak yang diaplikasi dan tanpa aplikasi insektisida. Jurnal Entomologi Indonesia. 5(2): 96-107.
- Hidayat, T., Pandjaitan, N.K., Dharmawan, A.H., Wahyu, M.T. and F. Sitorus. 2010. Kontestasi sains dengan pengetahuan lokal petani dalam pengelolaan lahan rawa pasang surut. Jurnal Transdisiplin Sosiologi, Komunikasi, dan Ekologi Manusia. 4(1): 1-16.
- Hu, S., Fu, D., Liu, X., Zhao, T., Han, Z., Lu, J., Wan, H. and H. Ye. 2012. Diversity of planthoppers associated with the winter rice agroecosystems in Southern Yunnan, China. Journal of Insect Science. 12(29): 1-11.
- Iida, H. and K. Fujisaki. 2007. Seasonal changes in resource allocation within an individual offspring of the wolf spider, *Pardosa pseudoannulata* (Araneae: Lycosidae). Physiological Entomology. 32(1): 81-86.
- Ishijima, C., Taguchi, A., Takagi, M., Motobayashi, T., Nakai, M. and Y. Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Applied Entomology and Zoology. 41(2): 195-200.
- Karindah, S. 2011. Predation of five generalist predators on brown planthopper (*Nilaparvata lugens* Stål). Jurnal Entomologi Indonesia. 8(2): 55-62.
- Khodijah, Herlinda, S., Irsan, C., Pujiastuti, Y. and R. Thalib. 2012. Artropoda predator penghuni ekosistem persawahan lebak dan pasang surut Sumatera Selatan. Jurnal Lahan Suboptimal. 1(1): 57-63.
- Lakitan, B., Alberto, A., Lindiana, L., Kartika, K., Herlinda, S. and A. Kurnianingsih. 2018. The benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatra. Indonesia. CMU J. Nat. Sci. 17(2): 111-126.
- Leroy, A and J. Leroy. 2003. Spiders of Southern Africa. New Holland Publishing, Cape Town. 97 pp.
- Lou, Y.G., Zhang, G.R., Zhang, W.Q., Hu, Y. and J. Zhang. 2013. Biological control of rice insect pests in China. Biol Control. 67: 8-20.
- Magurran, A.E. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall. 192 p.
- Mahrub, E. 1999. Kajian keanekaragaman artropoda pada lahan padi sawah tanpa pestisida dan manfaatnya dalam pengendalian hama terpadu. Jurnal Perlindungan Tanaman Indonesia. 5(1): 35-41.
- Mulyani, A. and M. Sarwani. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lokal. 7(1): 47-55.
- Ooi, P.A.C. and B.M. Shepard. (1994) Predators and parasitoids of rice insect pests. pp. 585–612 in Heinrichs, E.A. (Ed.). Biology and Management of Rice Insects. New Delhi, Wiley Eastern Ltd.
- Parry, H.R., Macfadyen, S., Hopkinson, J.E., Bianchi, F.J.J.A., Zalucki, M.P., Bourne, A. and N.A. Schellhorn. 2015. Plant composition modulates arthropod pest and predator abundance : Evidence for culling exotics and planting natives. Basic and Applied Ecology. 30: 1-13.
- Pereira, J. L., Picanc, M.C., Pereira, E.J.G., Silva, A.A., Jakelaitis, A., Pereira, R.R. and V.M. Xavier. 2010. Influence of crop management practices on bean foliage arthropods. Bulletin of Entomological Research. 100: 679-688.
- Raharjo, B., Marpaung, I.S. and Y. Hutapea. 2013. Kajian kinerja alat tanam dan varietas unggul baru padi di lahan pasang surut Sumatera Selatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian. 16(3): 191-201.
- Riechert, S.E. and T. Lockley 1984. Spiders as Biological Control Agents. Annual Review of Entomology. 29: 299-320.

- Rizali, A., Buchori, D. and H. Triwidodo. 2002. Insect diversity at the forest margin-rice field interface: indicator for a healthy ecosystem. Hayati. 9(2):41-48.
- Rubia, E., Almazan, L. and Heong, K. 1990. Predation of yellow stem borer (YSB) by wolf spider. International Rice Research Newsletter. 15: 22.
- Schmidt, M.H. and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography. 32(3): 467-473.
- Shepard, B.M, Barrion, A.T. and J.A. Litsinger. 1987. Friends of the Rice Farmer: Helpful Insects, Spiders, and Pathogens. International Rice Research Institute. Philippines. 136 p.
- Sigsgaard, L. and S. Villareal. 1999. Predation rates of *Atypena formosana* (Araneae: Linyphiidae) on brown planthopper, and green leafhopper. International Rice Research Notes. 24 (3): 18.
- Sigsgaard, L., Toft, S. and S. Villareal. 2001. Diet-dependent fecundity of the spiders *Atypena formosana* and *Pardosa pseudoannulata*, predators in irrigated rice. Agricultural and Forest Entomology. 3: 285-295.
- Suana, I.W. and H. Haryanto. 2013. Keanekaragaman laba-laba dan potensinya sebagai musuh alami hama tanaman jambu mete. Jurnal Entomologi Indonesia. 10(1): 24-30.
- Sunariah, F., Herlinda, S., Irsan, C. and Y. Windusari. 2016. Kelimpahan dan kekayaan artropoda predator pada tanaman padi yang diaplikasi bioinsektisida *Bacillus thuringiensis*. Jurnal Hama dan Penyakit Tumbuhan Tropika.16 1: 42-50.
- Suriadikarta, D.A. and M.T. Sutriadi. 2007. Jenis-jenis lahan berpotensi untuk pengembangan pertanian di lahan rawa. Jurnal Litbang Pertanian. 26(3): 115-122.
- Tahir, H.M., Butt, A. and S.M. Sherawat. 2009. Foraging strategies and diet composition of two orb web spiders in rice ecosystems. J. Arachnol. 37: 357-362.
- Widiarta, I.N, Kusdiaman, D. and Suprihanto. 2006. Keragaman arthropoda pada padi sawah dengan pengelolaan tanaman terpadu. Jurnal Hama dan Penyakit Tumbuhan Tropika. 6(2): 61-69.
- Zhong-xian, L., Villareal, S., Xiao-ping, Y., Heong, K.L. and H. Cui. 2006. Biodiversity and dynamics of planthoppers and their natural enemies in rice fields. Rice Science. 13(3):218-226.
- Zhang, J., Zheng, X., Jian, H., Qin, X., Yuan, F. and R. Zhang. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida H. Cui. 2006. Biodiversity and dynamics of planthoppers and their natural enemies in rice fields. Rice Science. 13(3):218-226.
- Zi-yang, Z., Xian-cai, H., Ling, M., Tongzhou, X. and L. Bao-ping. 2011. Arthropod diversity on plants at field margins of organic farming paddy rice. Chinese Journal of Ecology. 30(7): 1347-1353.