
1

Appling both hybrid restricted Boltzmann machine and deep convolution neural

networks to lowresolution face image recognition

Shi-Jinn Horng, Julian Supardi, and Tianrui Li

Abstract
Due to the difficulty of finding the specific features of faces, in computer
vision, low-resolution face image recognition is one of the challenging

problems and the accuracy of recognition is still quite low. We were trying to

solve this problem using deep learning techniques. Two major parts are used
for the proposed method; first the restricted Boltzmann machine is used to

preprocess the face images, then the deep convolution neural network is used

to do classification. The data set was combined from the Georgia Institute of
Technology, Aleix Martinez, and Robert Benavente. Based on this combined

data, we conducted the training and testing processes. The proposed method is

the first method that combines restricted Boltzmann machine and deep
convolution neural networks to do low-resolution face image recognition.

From the experimental results, compared to existing methods, the proposed

method greatly improves the accuracy of recognition. The proposed method is

shown in Figure 3.

Index Terms Low Resolution Face Recognition, Restricted

Boltzmann Machine, Deep Learning, Deep Convolution Neural

Network, Gaussian filter

1. Introduction

Face recognition is an important and difficult subject in the

fields of image processing and computer vision [1]. Even

though it has been studied for more than 30 years, face

recognition is still not as good as it could be and is still the

subject of study [2]. In fact, some methods are very accurate

and have been used in a lot of different areas of science and

technology. Even so, face recognition methods still needed to

be improved because there are many things that can lead to

false recognition, such as low lighting, a different orientation,

a twisted expression, etc.

One problem with picture processing and pattern recognition

is low-resolution face images. Face recognition is especially

hard because the difference between pixel values in the face

area is not very big. This makes it hard to find features on the

face picture. Most of the time, a low-resolution image comes

from video footage, an enlarged image, a picture taken with a

camera that is out of focus or blurry, the result of a scan, or

something similar. Figure 1 shows a picture of a face with a

low quality. Some good ways to deal with this problem have

been written about [4, 5, 6, 7, 8, and 9]. In general, the way the

current methods work is by rebuilding the low-resolution

picture into a high-resolution image. This is an easy and simple

way to fix the problem. But each of these ways has its own

problems that haven't solved the low-resolution face problem.

Some of the problems mentioned in [10] and [11] still need to

be looked into more.
This work was supported in part by the Ministry of Science and Technology under contract numbers

106-2221-E-011 -149 -MY2, 106-3114-E-011 -008 -, and it was also partially supported by One

Hundred Talents Program 2012, Sichuan Province.

J. Supardi is with the Department of Computer Science and Information Engineering, National Taiwan

University of Science and Technology, Taipei, 10607, Taiwan, ROC (email: julian@unsri.ac.id)

Shi-Jinn Horng is with the Department of Computer Science and Information Engineering, National

Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC (contact author, tel.: 886-

2-27376700), and is also with the School of Information Science and Technology, Southwest Jiaotong

University, Chengdu 610031, China, (e-mail:horngsj@yahoo.com.tw)

Tianrui Li is with the School of Information Science and Technology, Southwest Jiaotong University,

Chengdu 610031, China (e-mail: trli@swjtu.edu.cn)

Figure 1. A low resolution face image. One is sitting far away

from a camera. Face area becomes so small and it is hard to

find the face. Enlarge the size of the face area is not a

workable solution as it will decrease the resolution of the

image, and make it more difficult to be recognized. (Reprint

from https://www.youtube.com/watch?v=L5xKoGj4K4U)

Face recognition is a type of recognizing patterns. Because of

this, a neural network is a great tool to use

[12][13][14][15][16][17][18][19]. This is because the neural

network can learn to gain information so that it can solve

problems the way humans do. The method that is used the most

is the Multilayer Perceptron (MLP). But MLP has trouble

when there are a lot of sources. LeCun Y, et al. [21] made

Convolutional Neural Networks (CNN) by building on what

Hubel and Wiesel found. CNN is a lot like a regular Neural

Network in most ways. In other words, MLPs with a special

structure are what Convolutional Neural Networks are.

Deep Convolutional Neural Networks (DCNN) is a big step

forward in recognizing patterns. Since it was found, some

systems built on CNN have won the ILSVRC. These include

AlexNet 2012 [22], Clarifai 2013 [23], GoogLeNet 2014 [24],

and ResNet 2015 [25]. In this case, a CNN was used to solve

the classification problem. After that, experts turned to CNN to

solve many other problems. As [26] says, however, CNN

design still needs to be improved to make it more accurate and

fit the case at hand. When CNN is combined with some other

ideas, it will be able to do more.

Restricted Boltzmann machine (RBM) is a stochastic graph

model that can learn a probability distribution over its set with

n visible unit inputs and m hidden feature unit [27,28]. In

general, RBM's way of teaching is unsupervised learning. In

this case, learning RBM doesn't have to include the goal output

as something that needs to be done. The learning process ends

when each of the training data has been used a certain number

of times. RBMs have been used successfully to solve many

problems, such as dimension reduction [29], classification [30],

joint filtering [31], feature learning [32][33], and modeling

[34]. [35] and [36] are good places to learn more about RBM

and deep design. RBMs can be used to improve the quality of

the picture, as [37] shows.

In this study, we use Restricted Boltzmann Machine (RBM)

and Deep Convolutional Neural Networks (DCNN) to come up

with a way to solve low-resolution face recognition. Both

unsupervised learning and guided learning are brought

mailto:horngsj@yahoo.com.tw

2

together in the suggested method. Here, RBM is used to

prepare the low-resolution face picture before it is recognized

by DCNN. This study is important because it: 1) shows the first

designed architecture of an artificial neural network using

RBM and DCNN to recognize low-resolution face images; 2)

improves the quality of low-resolution face images; and 3)

raises the rate at which faces are recognized.

2. Hybrid Restricted Boltzmann Machine and Deep

Convolution Neural Networks

In this study, we come up with a method that combines RBM

and DCNN to solve low-resolution face recognition issues.

This method has two steps: the learning step and the testing

step. Both RBM and DCNN algorithms are used in each step.

In both steps, low-resolution images are first put through the

RBM algorithm. In the learning phase, however, the RBM

algorithm's job is to figure out the weights on the RBM

network so that a single image can be reconstructed. This

image will be used as input for DCNN learning. In the testing

phase, however, the RBM algorithm's job is to turn low-

resolution input into an image that will be used as input for

DCNN classification.

The proposed method consists of five steps as shown in Figure

3.

Figure 2. The scheme of the proposed method.

In summary the working mechanism of the proposed method

is listed in the following. It begins with learning of RBM Net.

This is done by unsupervised learning. There are two types of

the output of this RBM, namely the weight and the result of

image reconstruction. After the learning of RBM is complete,

it then goes to the DCNN learning. In this case the input of

DCNN is the reconstructed image from the output of RBM.

This learning is done by supervised learning. The outputs of

this CNN learning are the weight of CNN Net, feature maps

layer convolution and the weight of the fully connectivity layer.

After the learning phase is completed, the next step is the stage

of testing or the stage of classification of low resolution image

input. The detailed explanation is shown as follows:

A. Training Restricted Boltzmann Machine

Furthermore, step by step, training RBM described in [38-50].

Suppose𝐼 is a low resolution face image of size 𝑚 𝑥 𝑛 . Let

𝐼𝑟 , 𝐼𝑔, and 𝐼𝐵 , each of size 𝑚 𝑥 𝑛 be the three color channels

(red, green, and blue) of𝐼. Each of them is represented as:

𝐼𝑟(𝑚,𝑛) = |

𝐼𝑟(11) … 𝐼𝑟(1𝑛)

… … …
𝐼𝑟(𝑚1) … 𝐼𝑟(𝑚𝑛)

|

𝐼𝑔(𝑚,𝑛) = |

𝐼𝑔(11) … 𝐼𝑔(1𝑛)

… … …
𝐼𝑔(𝑚1) … 𝐼𝑔(𝑚𝑛)

|

𝐼𝑏(𝑚,𝑛) = |

𝐼𝑏(11) … 𝐼𝑏(1𝑛)

… … …
𝐼𝑏(𝑚1) … 𝐼𝑏(𝑚𝑛)

|

Let𝐼′be the image that is reconstructed from image 𝐼 and it is

shown in Figure 4. Let𝐼𝑟
′ , 𝐼𝑔

′ , and 𝐼𝑏
′ , each of size 𝑚 𝑥 𝑛, be the

three color channels reconstructed images. Each of them is

represented as:

𝐼𝑟(𝑚,𝑛)
′ = |

𝐼𝑟(11)
′ … 𝐼𝑟(1𝑛)

′

… … …
𝐼𝑟(𝑚1)

′ … 𝐼𝑟(𝑚𝑛)
′

|

𝐼𝑔(𝑚,𝑛)
′ = |

𝐼𝑔(11)
′ … 𝐼𝑔(1𝑛)

′

… … …
𝐼𝑔(𝑚1)

′ … 𝐼𝑔(𝑚𝑛)
′

|

𝐼𝑏(𝑚,𝑛)
′ = |

𝐼𝑏(11)
′ … 𝐼𝑏(1𝑛)

′

… … …
𝐼𝑏(𝑚1)

′ … 𝐼𝑏(𝑚𝑛)
′

|

j

i

j

i

... ...

... ...

Data Reconstruction

visible

hidden

weight weight weight

Figure 3.The process of reconstructing a low resolution face

image using RBM.

The training rules of RBM is as follows:

𝑤𝑖𝑗
(𝑘+1)

= 𝑤𝑖𝑗
(𝑘)

+ 𝜂(𝑘)𝜖((𝑣𝑖ℎ𝑗)
𝑑𝑎𝑡𝑎

− (𝑣𝑖ℎ𝑗)𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑛

(1)

𝑏𝑖 = 𝑏𝑖 + 𝜂[〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛] (2)

𝑐𝑗 = 𝑐𝑗 + 𝜂[〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛] (3)

3

B. Training Deep Convolution Neural Networks

B.1. Architecture CNN

Convolutional Neural Networks (CNN) is special case of

neural networks [50]. CNN have one or more convolution

layers, sub sampling layers, and fully connectivity layer.

In general, the CNN architecture for low resolution face image

is shown in Figure 6. Each layer receives input from a set of

features that reside in a small environment in the previous layer

called the receptive field. With local receptive fields, it can

extract basic visual features, which is then merged by a higher

layer.

Figure 4. The architecture of DCNN [51].

The architecture in Figure 6 can be avowed using abstract

description as stated in Equation (31) [52]:

𝐼′(1) → 𝐾(1) → 𝐼′(2) → ⋯ → 𝐾(𝑙−1) → 𝐼′(𝑙) → 𝐾(𝑙)

→ 𝑧

(1)

Equation (31) illustrates layer by layer of the CNN in a forward

pass. For the first layer, the input of CNN is 𝐼′(1) and the

kernel filter is 𝐾(1). Here, 𝐼′(1)is a low resolution face image

consisting of order 3 tensor and 𝐾(1)is a matrix of the feature

maps. If 𝑏1 is the bias matrix on the first layer, the result of

convolution 𝐼′(1) with 𝐾(1) is denoted as𝐼′(2), that is, 𝐼′(2) =
 𝑏1 + 𝐼′(1) ∗ 𝐹𝐾(1). Now 𝐼′(2)is the input to the second layer

with another kernel filter𝐾(2) and using the same mechanism

as the first layer, we can determine 𝐼′(3), 𝐼′(4), …, in sequence.

In other words, the first convolution layer will receive the

tensor value of the input from the original image. The second

layer will accept the input from the output of the first layer, and

so on.

In this research, the layers and parameters of the CNN

architecture used are given in Table 2in details.

Table 2. CNN Parameters setting for low resolution face

image recognition

Layer Size

Input 72x64x3

Convolution 1 5x5x3x64

Output 1 68x60x64

Convolution 2 3x3x3x128

Output 2 66x58x128

Pooling (3 x3 kernel) 22x19x128

Convolution 3 3 x3 x3x128

Output3 20x17x128

Convolution 4 3 x3 x3x128

Output 18x15x128

Pooling (3 x3 kernel) 6 x 5 x128

Convolution 5 1x1x3x512

ReLU 6x5x512

Fully Connectivity 17920

B.2. Convolution Layer

In Equation (21) the convolution is performed using a single

kernel. Meanwhile, as shown in Figure 6, CNN has many

layers and in each layer the convolution operation uses

multiple kernels. Thus the convolution on CNN is done

repeatedly in accordance with the number of layers used.

The convolution mechanism for the input elements starts from

the top left corner, then the filter kernel moves right one by one

until it reaches the top-right corner. After that, the filter kernel

is then moved one element downward, and repeat the same

process as before. This process is repeated continuously until

all input elements are convoluted.

Let 𝐾(𝑙) and 𝐼(l) be the kernel filter and the input of the

𝑙𝑡ℎ convolutionlayer, respectively, then the output of the

convolution is a feature map which can be calculated using

Equation (32).

𝑌𝑟,𝑠
(𝑙)

= 𝐵(𝑙) + ∑ ∑ ∑ 𝐾𝑢,𝑣
𝑙 ∗

𝐷

𝑑=0

𝐻2

𝑣=−𝐻2

𝐻1

𝑢=−𝐻1

𝐼𝑟+𝑣,𝑠+𝑣
(𝑙)

(2)

Suppose the input of the first layer is 𝐼𝑀𝑥𝑁
(1)

 (i.e. a 3-level

tensor𝑅𝑀𝑥𝑁𝑥𝐷) which is convoluted with a𝐾(𝑙)kernel filter of

size 𝐻1 𝑥 𝐻2 𝑥 𝐷 separately. Since the input is convoluted with

a single kernel, it produces an output feature map which is a

matrix of size (𝑀 − 𝐻1 + 1)𝑥 (𝑁 − 𝐻2 + 1). Suppose it is

convoluted with 𝑁𝐾 kernel filters, it will then produce 𝑁𝐾

feature maps, independently.

Equation (32) can be implemented using Algorithm 2 listed in

Table 3.

Table 3. Algorithm for Convolution Layer

Algorithm 2: Convolution Layer
Input:

I: the output matrix from the previous layer

(if l=1, then I is the value of RGB image)

M: the number of rows of I

N: the number of columns of I

H1: the number of rows of a kernel

H2: the number of columns of a kernel

CNO: Channel number

NK1: the number of kernels in each layer

Output:

Matrix I’

for o: 0 to NK1)

 for r:1 to (M-H1+1)

 for s:1 to (N-H2+1))

 for i:0 to CNO){

 for lh1:0 to H1 //size of Kernel H1 x H2

 for lh2:0 to H2{

 Yr,s[o][r][s]= O1[o][r][s]+ K1[o][i][lh1][lh2]

* I[i][r+lh1][s+lh2]

 end

 end

 end

 I’[o][r][s]= b[o] + Yrs[o][r][s]

 end

Input Tensor
RGB LR Image

Fully
Connect
ivity

Convolutions
2nd filter Sub sampling

5 x 5 filter

Convolutions
1st filter

Backward process

Forward process

file:///C:/JulianFolder/2017/Publication%20Spring%202017/theoritcal%20of%20CNN/lecun-iscas-10%20Convolutional%20Networks%20and%20Applications%20in%20Vision.pdf

4

 end

end

Normally, the low level layer will extract low level features

like edges, lines, and angles. It then extracts the higher level

features at a higher level. Figure 7 illustrates the 3D tensor

convolution process used in CNN in the first layer.

I’ filter

Figure 5. Illustration at convolution in 𝒍 = 𝟏 at DCNN.

B.3. Non-Linearity Layer

A neuron of CNNs usually uses non-linear activation function

to transform the input to its output. The output of a neuron can

have different responses depending on the activation functions

used. Some of the most commonly used activation functions

are softmax, hyperbolic tangent, sigmoid and rectified linear

units (ReLU). Mathematically these functions are represented

by Equations (34) (35) and (36) respectively. Graphically, they

are shown in Figure 8. The activation function of ReLU is the

most widely used function [51], this is because ReLU function

is a linear function while the input is greater than or equal to 0

and 1 can improve the nonlinear properties of the decision

function [52]. The relation between the input and the output of

a neuron at layer 𝑙 can be expressed as:

𝑌𝑖
(𝑙)

= 𝜙(𝑌𝑖
(𝑙−1)

) (3)

where 𝜙 is an activation function and it can be softmax, tanh

or max, respectively. Graphically, the functions are shown by

Figure 8.

𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑖)) =
𝑒𝑧(𝑖)

∑ 𝑒𝑧𝑘
(𝑖)

𝑘
𝑗=0

(4)

𝜙(𝑧(𝑖)) = tanh ((𝑧(𝑖)) (5)

𝜙(𝑧(𝑖)) = 𝑚𝑎𝑥 {0, 𝑧(𝑖)} (6)

(a)

(b)

x

y

f(x) = max (0,x)

Figure 6. (a) Sofmax function, (b) tanh function, (c) ReLU

function 𝐲 = 𝐦𝐚𝐱{𝟎, 𝐱}.

B.4. Feature Pooling and Sub sampling Layer

Pooling layer / sub sampling layer is a layer that serves to

reduce the feature resolution. The purpose of Pooling is that it

makes the feature more resistant to noise and distortion. There

are two ways to do pooling: max pooling and average pooling.

The first step in both cases is the same, i.e. the input feature is

partitioned into a non-overlapping two-dimensional matrix

segment. If the input is N x M size and the matrix segment

is𝑠1 x 𝑠2, then there will be
𝑁

𝑠1
 x

𝑀

𝑠2
 region each of size 𝑠1 x 𝑠2.

The Max pooling is obtained by taking the max value of each

region, while for average pooling, it takes the average value of

each region. An illustration of max pooling is shown in Figure

9.

Figure 7. Illustration of Max Pooling process.

B.5. Fully Connectivity layer

A fully connected layer is often used as the last stage of the

CNN for classification [52][53]. Figure 10 shows the fully

connected layer.

file:///C:/JulianFolder/2017/Publication%20Spring%202017/theoritcal%20of%20CNN/Introduction%20CNN%20Jianxin%20Wu.pdf

5

class

weight

Input Layer

fully

Connectivity

output Layer

fully

Connectivity

C
o

n
v
o

lu
ti
o

n
 w

it
h

 k
e

rn
e

l
1
x
1

Figure 8. A fully connected layer.

Let𝑌𝑗
(𝑙−1)

be a ReLU value of the previous convolution layer

with a kernel filter of size1x1. For the fully connected layer,

let𝑌𝑗
(𝑙−1)

 be theoutput of the 𝑙 − 1𝑡ℎ layer,𝑤𝑗𝑘
(𝑙)

be the weights

between𝑗 and 𝑘neurons 𝑧𝑘
(𝑙)

 be the summation of all outputs

connected to the 𝑘𝑡ℎ neuron of the 𝑙𝑡ℎ layer. Equations (37)

and (38) show the relationship between these parameters.

𝑧𝑘
(𝑙)

= ∑ 𝑌𝑗
𝑙−1𝑤𝑗𝑘

𝑙

𝑃

𝑗=1

(7)

𝑌𝑘
(𝑙)

= 𝜙(𝑧𝑘
(𝑙)

) (8)

Where 𝜙is a softmax function, P is the size of the feature map

with a kernel filter of size 1 x 1, 0 ≤ 𝑘 < 𝑄 and Q is the

number of classes.

B.6. Feed forward Pass

The abstraction process in Equation (31) is the feed forward

pass of CNN. In the training phase, this process is repeated

until reaches the target.

Suppose there are c classes and N training patterns, the

squared-error loss function for the r training pattern is defined

by Equation (39):

𝐸𝑟 =
1

2
∑(𝑇𝑘

𝑟 − 𝑌𝑘
𝑟)2

𝑐

𝑘=1

(9)

Here 𝑇𝑘
𝑟 is the k − th dimension of the r − th pattern’s

corresponding target (label), and 𝑌𝑘
𝑟 is the output of thek −

th neuron in response to the r − th pattern as counted using

Equation (38). The total error is then ∑ 𝐸𝑟𝑁
𝑟=1 .

B.7. Backpropagation Pass

Look again at Equation (31), now we assume that the error that

occurs when propagates backward throughout the network is

the sensitive response of each unit as a result of interference of

the bias. Let 𝑢𝑙 = 𝑊𝑙𝑌𝑙−1 + 𝑏𝑙be the input of a neuron at layer

l, where W, Y and b are the weights, output and bias,

respectively. For any layer, this gives meaning that:
𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝑏
= 𝛿

(10)

In this case,
𝜕𝑢

𝜕𝑏
= 1 . While the bias sensitivity and the

derivative of the error with respect to the total input unit is

equivalent. Furthermore, the derivative of this

backpropagation from the next layer to the previous layer uses

the following recurrence relations:

𝛿𝑙 = (𝑊𝑙+1)𝑇𝛿𝑙+1o 𝜙′(𝑢𝑙) (11)

where “o” denotes the element-wise multiplication. For the

error function in Equation (39), especially in the fully

connectivity layer L, the sensitivities for the output layer

neurons will take a slightly different form

𝛿𝐿 = 𝜙′(𝑢𝐿) 𝑜 (𝑦𝑛 − 𝑡𝑛) (12)

Finally, the delta rule for updating a weight assigned to a given

neuron is just a copy of the inputs to that neuron, scaled by the

neuron’s delta. In vector form, this is computed as an outer

product between the vector of inputs 𝑌𝑙−1 (which are the

outputs from the previous layer) and the vector of

sensitivities𝛿𝑙:
𝜕𝐸

𝜕𝑊𝑙
= 𝑌𝑙−1𝛿𝑙

(13)

𝛥𝑊𝑙 = −𝜂
𝜕𝐸

𝜕𝑊𝑙

(14)

W𝑙(new) = 𝑊𝑙(𝑜𝑙𝑑) + 𝛥𝑊𝑙 (15)

In practice there is often a learning rate parameter 𝜂𝑖𝑗 specific

to each weight (𝑊)𝑖𝑗 . Bias can be updated similarly.

B.8. Gradient Descent

Gradient descent is a first order iterative optimization

algorithm. In this research we follow[53] to count and arrange

gradient descent. An illustration of gradient descent is shown

in Figure 11.

g

- g

wi

Figure 9.An illustration of gradient descent.

a. Computing Gradients in Convolution Layer

Let us see again the feed forward CNN layer by layer in

Equation (31). Equation (32) then can be rewritten in Equation

(46). Now we follow the description shown in [53] in the

following. At a convolution layer, the previous layer’s feature

maps are convolved with learnable kernels and then go through

the activation function 𝑓 to form the output feature map. An

output feature map may probably convolute with multiple

input maps.

𝐼′𝑗
𝑙 = 𝑓 (∑ 𝐼′𝑖

𝑙−1
𝑖∈𝑀𝑗

∗ 𝐾𝑖𝑗
𝑙 + 𝑏𝑗

𝑙), (16)

where 𝑀𝑗 denotes a selection of input maps. In convolution

operation, bias b is added to each output map; however, for

some output map, the input maps are convolved using distinct

kernels.

Furthermore, to compute the gradient in convolution layer, we

assume that each convolution layer l is followed by a down

sampling layer l+1. The backpropagation algorithm mentions

that in order to compute the sensitivity for a unit at layer l, fist

the next layer’s sensitivities corresponding to units that are

connected to the node of interest in the current layer 𝑙 , are

file:///E:/Backup%20Sd%20May%202017/3%20May%202017/theoritcal%20of%20CNN/training%20DCNN/cnn_tutorial%20gradient%20algorithm.pdf

6

multiplied by the associated weights one by one defined at

layer 𝑙 + 1 under these connections and then these values are

then summed up. This result is then multiplied by the

derivative of the activation function evaluated at the current

layer’s pre-activation inputs, u𝑙 . As you can see, a

convolutional layer is followed by a downsampling layer and

a block of pixels in the convolutional layer’s output map

correspond to one pixel in the next layer’s associated

sensitivity map 𝛿. Thus each unit in a map at layer 𝑙 connects

to only one unit in the corresponding map at layer 𝑙 + 1. An

easy way to compute the sensitivities at layer 𝑙 is to upsample

the downsampling layer’s sensitivity map to the same size as

the previous convolutional layer’s map and then just multiply

the upsampled sensitivity map from layer 𝑙 + 1 with the

activation derivative map at layer 𝑙 element-wise. Let β (a

constant) be the weights defined at a downsampling layer map.

𝛿𝑙 can then be obtained by just scaling the previous step’s

result by β. This process can repeat for each map j in the

convolutional layer, pairing it with the corresponding map in

the subsampling layer:

𝛿𝑗
𝑙 = 𝛽𝑗

𝑙+1(𝑓′(𝑢𝑗
𝑙)o 𝑢𝑝(𝛿𝑗

𝑙+1), (17)

where up(.) denotes an upsampling operation.One possible

way to implement this function efficiently is to use the

Kronecker product:

up(𝑥) ≡ 𝑥 ⊗ 1𝑛𝑥𝑛 (18)

The bias gradient can be immediately computed by summing

over all the entries in 𝛿𝑗
𝑙from the sensitivities for a given map:

𝜕𝐸

𝜕𝑏𝑗

= ∑(𝛿𝑗
𝑙)

𝑢𝑣
𝑢,𝑣

(19)

At last, using backpropagation the gradients for the kernel

weights are calculated, except that the same weights are shared

across many connections. Similarly to the bias term, the

gradients for a given weight can be summed up over all the

connections that mention this weight:
𝜕𝐸

𝜕𝑘𝑖𝑗
𝑙 = ∑ (𝛿𝑗

𝑙)
𝑢𝑣

(𝑝𝑖
𝑙−1)

𝑢𝑣𝑢,𝑣 , (20)

where (𝑝𝑖
𝑙−1)

𝑢𝑣
 is the patch in 𝐼′𝑖

𝑙−1 that was multiplied

elementwise by 𝐾𝑖𝑗
𝑙 during convolution for computing the

element at (𝑢, 𝑣) in the output feature map𝐼′𝑗
𝑙 as mentioned in

Equation (46).

b. Computing Gradients in Subsampling Layer

In [53], a subsampling layer (pooling layer) produces

downsampled versions of the input maps with the smaller size.

More formally,

𝐼𝑗
′𝑙 = 𝑓(𝛽𝑗

𝑙 𝑑𝑜𝑤𝑛(𝐼𝑗
′𝑙−1) + 𝑏𝑗

𝑙), (21)

where down(·)denotes a sub-sampling function as mentioned

in Sec. 3.B.4.

As you can see only learnable parameters β and b should be

updated. Usually, the subsampling layers are surrounded above

and below by convolution layers. Suppose a fully connected

layer follows the subsampling layer, the sensitivity maps for

the subsampling layer can be computed with Equation (42).

Furthermore, to compute the gradient of a kernel in kernel

convolution, one has to figure out which patch in the current

layer’s sensitivity map corresponds to a given pixel in the next

layer’s sensitivity map in order to apply a delta recursion

looking like Equation (41).

The gradient for b is again just the sum over the elements of

the sensitivity map
𝜕𝐸

𝜕𝑏𝑗

= ∑(𝛿𝑗
𝑙)

𝑢𝑣
𝑢,𝑣

(22)

During the feedforward pass, the multiplicative bias β will

certainly involve the original down-sampled map computed at

the current layer. Let

𝑑𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑗

𝑙−1)

The gradient for β is then computed by
𝜕𝐸

𝜕𝛽𝑗

= ∑(δj
l o𝑑𝑗

𝑙)
𝑢𝑣

𝑢,𝑣

(23)`

Now a brief description step by step for the proposed method

is shown in Figure 12.

Update all the hidden units

in parallel using eq. 47

 Update the all the visible

units in parallel to get a

reconstruction, using eq. 48

Update weight using eq. 49

& eq. 50

N <Nmax

Save weight & the value of

visible unit

Read Image

N=0

N+1

Initialize: Set weight between

Visible Layer and hidden, Set

Nmax.

Initialize CNN (Set initial

Kernel Convolution

(feature) ,

Convolution Using

Kernel-1 (5x5x3x64

kernel size)

Convolution Using

Kernel-2 (3x3x3x128

kernel size)

Pooling (3x3

kernel size)

Set Input of CNN with

value of visible unit RBM,

Set Emax

Convolution Using

Kernel-3 (3x3x3x128

kernel size)

Pooling (3x3

kernel size)

Convolution Using

Kernel-4 (1x1x3x512

kernel size)

ReLU

Fully Connectivity

Count Error (E)

E < Emax

yes

no

Count Gradient

Update weight /

feature

no

Save feature

learning/ weight

yes

Figure 10. The hybrid restricted Boltzmann machine and deep

convolution neural network.

3. Results and Discussion

To evaluate the performance of the proposed method, we use

the data as done in [1], i.e. the combination of data contained

in [54] and [55] and the Lfw database [56][57]. We chose

random data from the data set of the Georgia Institute of

Technology [58], Aleix Martinez and Robert Benavente [59],

and a database of facial recognition technologies [60]. The

numbers of persons of each data set are 40, 70, and 500 people,

respectively. Each person has 5 different expressions and

7

positions. So the number of facial images used is 610 x 5 =

3050 images. Our face data is cut to 120 x 165 pixels and then

the data is converted into low resolution images using a

Gaussian filter.

For the sake of the same data size as in [1], scaling operation

is needed. That is, for face verification, the face image is scaled

to 72 x 64 pixels, while for the identification process, the face

image is scaled to 18 x 16 pixels.

For each person we randomly take face images to train the

RBM-CNN network. Subsequent to convergent training, we do

two-stage testing. The first step is to use training data and this

test is to verify the knowledge gained as a result of the learning

process. Normally, the accuracy of this test should be 100%.

Furthermore, the second stage of testing uses untrained data

and this test is performed in order to see the performance of the

system.

The sample data set and the corresponding low resolution data

set are shown in Figures 14(a) and 14(b), respectively.

A. Experiments for face verification

Face verification is a matching activity of two face images,

wether they are of the same person or not. In this study the

number of verified persons is 610. The way used to perform

verification is by using a system trained with one image from

a person until reaching convergence. After that, the remaining

four face images with different expressions and positions in the

data set are taken one by one to be matched. This is repeated

610 times for all persons to be verified.

Furthermore, to measure the effectiveness of the proposed

method, we use the benchmark as used by [1]. This benchmark

has been used in PCA, 𝑆2𝑅2 , DSR, CKE, respectively. The

overall comparisons of the existing results and those from the

proposed method are shown in Figure 13.

Figure 11. Identification Accuracy (IDA) levels for different

methods.

As shown in Figure 13, the IDA level obtained from our

method is 62.01%, which is better than any existing methods.

From the test results, we find that many verification errors on

expression no. 4 from AR database in Figure 14.This is

because this expression is different from the facial expression

in general, i.e. the mouth is open and the eyes are closed.

However, when the training phase of the system has been

trained with this expression, then the system can recognize it

well. And also if one’s expression is not too different from

ordinary expression, then the system can also recognize it well.

B. Experiments for face identification

Face identification is a process to recognize a person's identity

based on matching a face image to a set of facial images in the

database. To do this, in this study the system was trained by

using three faces taken at random for each person. Training is

done repeatedly until convergence.

Furthermore, we use the benchmark provided by [1] to verify

the proposed method. For this purpose, we divide the test

mechanism into two ways. For the first way, a mixed data set

is generated from the training dataset and the blind dataset,

where each person has three face images from the training

dataset and two face images from the blind dataset. For the

second way, the test dataset has the trained dataset and blind

dataset (never included in the training phase) separately. The

results for the test under the mixed dataset yielded an IDA level

91.06%. Meanwhile, the results under the test with the trained

data set and blind dataset generated an IDA level 100% and an

IDA level 78.33%, respectively. Under the blind dataset

testing, the results obtained from our method are compared to

those of existing methods and they are shown in Table 4.

Table 1. Comparison of results using IDA level

Method IDA Level

Eigenfaces [62 in 1] 39.44%

LBP [65 in 1] 42.58%

Gabor [66 in 1] 43.71%

SR[61]+Eigenfaces [62 in 1] 41.19%

SR[61]-LBP [65 in 1] 44.19%

SR[61]-Gabor [66 in 1] 45.20%

S2R2 [61 In the 1] 55.70%

DSR [63 in 1] 71.66%

CKE [64 in 1] 71.24%

SHV[1] 72.15%

Our Method 78.33%

From Table 4, it shows that the IDA level of our method is

better than that of any existing methods.

No Expr1 Expr2 Expr3 Expr4 Expr5

1

2

3

4

5

6

7

32.36%

46.05%
53.22%52.35%54.11%

62.01%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

IDA Level

8

8

9

(a)

No Expr1 Expr2 Expr3 Expr4 Expr5

1

2

3

4

5

6

7

8

9

(b)

Figure 12. Sample data set each with 5 expressions. (a) The

original dataset. (b)The corresponding low resolution dataset

based on Gaussian Filtering. Data is combination from GT

database (no. 1-3), AR database (No. 4-6), and LFW database

(No. 7-9).

4. Conclusion

As you can see, currently there are many commercial face

recognition systems. Owing to specific cases such as low

illumination, different orientation, twisted expression, etc., the

false recognition rate of face recognition system can still be

high. Hence, it still needs to be improved by newer approaches.

In this research, we propose a new approach by combing RBM

and DCNN together to do the face recognition. The major

contributions are listed in the following.

a. The proposed RBM-DCNN network architecture can

improve the IDA level of low resolution face image

recognition.

b. The considerable difference in facial expression between

training data and testing data reduces the accuracy of the

recognition. In other words, facial expressions that are too

much different between the test data and the training data

affect IDA levels.

References
[1] Jian, M., &Lam, K. M. (2015). Simultaneous hallucination and recognition

of low-resolution faces based on singular value decomposition. IEEE
Transactions on Circuits and Systems for Video Technology, 25(11),

1761–1772.

[2] Li, J., Zhao, B., &Zhang, H. (2009). Face recognition based on PCA and
LDA combination feature extraction. 2009 First International

Conference on Information Science and Engineering, (20042013), 1240–

1243.
[3] Zou, W. W. W., &Yuen, P. C. (2012). Very low resolution face recognition

problem. IEEE Transactions on Image Processing, 21(1), 327–340.

[4] Yang, R., Wang, Y., Yang, D., Xu, T., &Zhou, J. (2011). Face hallucination
via using the graph-optimal locality preserving projections. 2011 10th

IEEE/ACIS International Conference on Computer and Information

Science, 189–193.
[5] Yang, C. Y., Liu, S., &Yang, M. H. (2013). Structured face hallucination.

Proc. of the IEEE Computer Society Conf. on Computer Vision and

Pattern Recognition, 1099–1106.
[6] An, L., &Bhanu, B. (2014). Face image super-resolution using 2D CCA.

Signal Processing, 103, 184–194.

[7] Biswas, S., Aggarwal, G., Flynn, P. J., &Bowyer, K. W. (2013). Pose-
robust recognition of low-resolution face images, 35(12), 3037–3049.

[8] Park, J. S., &Lee, S. W. (2008). An example-based face hallucination

method for single-frame, low-resolution facial images. IEEE
Transactions on Image Processing, 17(10), 1806–1816.

[9] Ren, C. X., Dai, D. Q., &Yan, H. (2012). Coupled kernel embedding for

low-resolution face image recognition. IEEE Transactions on Image

Processing, 21(8), 3770–3783.

[10] Zhao, W., Chellappa, R., Phillips, P. J., &Rosenfeld, a. (2003). Face
recognition: A literature survey. Acm Computing Surveys, 35(4), 399–458.

[11] Wang, Z., Miao, Z., Jonathan Wu, Q. M., Wan, Y., &Tang, Z. (2014).

Low-resolution face recognition: A review. Visual Computer, 30(4),
359–386.

[12] Supardi, J., & Utami, A. S. (2014). Development of artificial neural

network architecture for face recognition in real time. International
Journal of Machine Learning and Computing, 4(1), 110–113.

[13] Aitkenhead, M. J., &McDonald, A. J. S. (2003). A neural network face

recognition system. Engineering Applications of Artificial Intelligence,
16(3), 167–176.

[14] Tisan, A., &Chin, J. (2016). An end-user platform for FPGA-based design

and rapid prototyping of feedforward artificial neural networks with on-
chip backpropagation Learning. IEEE Transactions on Industrial

Informatics, 12(3), 1124–1133.

[15] Riggan, B. S., Reale, C., &Nasrabadi, N. M. (2015). Coupled auto-
associative neural networks for heterogeneous face recognition. IEEE

Access, 3, 1620–1632.

[16] Boughrara, H., BenAmar, C., Chtourou, M., &Chen, L. (2014). Face

recognition based on perceived facial images and multilayer perceptron

neural network using constructive training algorithm. IET Computer

Vision, 8(6), 729–739.
[17] Zhang, M., &Fulcher, J. (1996). Face recognition using artificial neural

network group-based adaptive tolerance (GAT) trees. IEEE Transactions

on Neural Networks, 7(3), 555–567.
[18] Ranganath, s., Arun, K. (1997). Face recognition using transform features

and neural networks. Pattern Recognition, vol. 30, no. 10, 1615-1622

[19] Lin, J., Ming, J., &Crookes, D. (2009). Robust face recognition using
posterior union model based neural networks. Iet Computer Vision, 3(3),

130–142.

[20] Inoue, T., Miyakawa, H., Ito, K., Mikoshiba, K., &Kato, H. (1992). A
hyperpolarizing response induced by glutamate in mouse cerebellar

Purkinje cells. Neuroscience Research, 15(4), 265–271.

[21]LeCunn, Yann., Bottou, L., Bengio, Y., Haffner,P.(1998). Gradient-based
learning applied to document recognition. Proceedingsofthe IEEE, vol.

86, issue, 11, Nov. 1998, 2278-2324.

[22] Krizhevsky, A., Sutskever, I., &Hinton, G. E. (2012). ImageNet
classification with deep convolutional neural networks. Advances in

Neural Information Processing Systems, 1–9.

[23] Zeiler, M. D., &Fergus, R. (2014). Visualizing and understanding
convolutional networks. Computer Vision–ECCV 2014, 8689, 818–833.

[24] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., …Rabinovich, A. (2015). Going deeper with convolutions. Proc. of
the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 7-12-NaN-2015, 1–9.

[25] He,K., Zhang,X., Ren, S., Sun,J. (2015). Deep residual learning for image
recognition. CVPR 2015.

[26] Shankar, S., Robertson, D., Ioannou, Y., Criminisi, A., &Cipolla, R.

(2016). Refining architectures of deep convolutional neural networks.
arXiv:1604.06832 [cs.CV]

[27] Fischer, A., &Igel, C. (2014). Training restricted Boltzmann machines:
An introduction. Pattern Recognition, 47(1), 25–39.

[28] Fischer, A., &Igel, C. (2012). An introduction to restricted Boltzmann

machines. Lecture Notes in Computer Science: Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, 7441,

https://arxiv.org/abs/1604.06832

9

14–36.
[29] Hinton, G. E., Salakhutdinov, R. R.. (2006) . Reducing the dimensionality

of data with neural networks. SCIENCE, Vol. 313, Issue 5786, 2006, 504-

507.
[30] Larochelle, H., &Bengio, Y. (2008). Classification using discriminative

restricted Boltzmann machines. Icml, 536–543.

[31] Salakhutdinov, R., Mnih, A., &Hinton, G. (2007). Restricted Boltzmann
machines for collaborative filtering. Proceedings of the 24th

International Conference on Machine Learning - ICML ’07, 791–798.

[32] Zheng, X., Wu, Z., Meng, H., Li, W., &Cai, L. (2013). Feature learning
with Gaussian restricted Boltzmann machine for robust speech

recognition. arXiv:1309.6176 [cs.CL]

[33]Tran, S. N., Wolff, D., Weyde, T., &Garcez, A. (2014). Feature
preprocessing with RBMs for music similarity learning. AES 53th, 1–8.

[34] Ranzato, M. A., &Hinton, G. E. (2010). Factored 3-way restricted

Boltzmann machines for modeling natural images. Artificial Intelligence,
9, 621–628.

[35] Salakhutdinov, R., &Hinton, G. (2009). Deep Boltzmann machines.

Aistats, 1(3), 448–455.
[36] Bengio. Y.,(2009). Learning deep architectures for AI.Foundations and

Trends®in Machine Learning. Vol. 2, No. 1 (2009) 1–127

[37] Sahasrabudhe, M., &Namboodiri, A. M. (2014). Fingerprint enhancement
using unsupervised hierarchical feature learning. Proc. of the 2014 Indian

Conference on Computer Vision Graphics and Image Processing -

ICVGIP ’14, 1–8.

[38] Hinton, G. (2014). Boltzmann machines. Encyclopedia of Machine

Learning and Data Mining, (1), 1–7.
[39] Fischer, A., &Igel, C. (2014). Training restricted Boltzmann machines.

Pattern Recogn., 47(1), 25–39.

[40] Cho, K. H. (2011). Improved learning algorithms for restricted Boltzmann
machines. Master’s thesis, Aalto University School of Science.

[42] Hinton, G. E. (2002). Training products of experts by minimizing

contrastive divergence. Neural Computation, 14(8), 1771–1800.
[43]Welling, M. Product of experts. Scholarpedia 2(10), 3879 (2007)

[44] LeRoux, N., &Bengio, Y. (2008). Representational power of restricted

Boltzmann machines and deep belief networks. Neural Computation,
20(6), 1631–1649.

[45] Montufar, G., &Ay, N. (2010). Refinements of universal approximation

results for deep belief networks and restricted Boltzmann machines,
(2010), 1–12.

[46] Restricted Boltzmann Machines (RBM) — DeepLearning 0.1

documentation
[47] Yildirim, I. (2012). Bayesian inference: Gibbs sampling, 14627, 1–6.

[48] Hinton, G. (2010). A practical guide to training restricted Boltzmann

machines. Computer, 9(3), 1.

[49] Stutz, D. (2014). Understanding convolutional neural networks. Nips

2016, (3), 1–23.

[50] Samer, C. H., Rishi, K., &Rowen. (2015). Image recognition using
convolutional neural networks. Cadence Whitepaper, 1–12.

[51] LeCun, Y., Kavukcuoglu, K., &Farabet, C. (2010). Convolutional

networks and applications in vision. ISCAS 2010 - 2010 IEEE
International Symposium on Circuits and Systems: Nano-Bio Circuit

Fabrics and Systems, 253–256.

[52] Wu, J. (.2017). Introduction to convolutional neural networks.(access:
June, 16, 2017)

[53] Bouvrie, J. (2006). Notes on convolutional neural networks. In Practice,

47–60.
[54] Hu, Y., Lam, K. M., Qiu, G., &Shen, T. (2011). From local pixel structure

to global image super-resolution: A new face hallucination framework.

IEEE Transactions on Image Processing, 20(2), 433–445.
[55] Jian, M., Lam, K.-M., &Dong, J. (2013). A novel face-hallucination

scheme based on singular value decomposition. Pattern Recognition,

46(11), 3091–3102.
[56] Huang, G. B., Jain, V., &Learned-Miller, E. (2007). Unsupervised joint

alignment of complex images. Proceedings of the IEEE International

Conference on Computer Vision.
[57] Huang, G. B., Mattar, M. A., Lee, H., &Learned-Miller, E. (2012).

Learning to align from scratch. Proc. Neural Information Processing

Systems, 1–9.
[58] Georgia Inst. Technol. GT Face Database Atlanta. [Online]. Available:

http://www.anefian.com/research/face_reco.htm

[59] A. R. Martinez and R. Benavente. The AR face database. CVC, Barcelona,
Spain, Tech. Rep. 24, 1998. [Online]. Available: http://www2.ece.ohio-

state.edu/~aleix/ARdatabase.html

[60] Phillips, P. J., Wechsler, H., Huang, J., &Rauss, P. J. (1998). The FERET
database and evaluation procedure for face-recognition algorithms.

Image and Vision Computing, 16(5), 295–306.
[61] Hennings-Yeomans, P. H., Baker, S., &Kumar, B. V. K. V. (2008).

Simultaneous super-resolution and feature extraction for recognition of

low-resolution faces. 26th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR.

[62] Turk, M., Pentland, A.,(1991). Eigenfaces for recognition.J. Cognit.
Neurosci., vol. 3, no. 1,71–86

[63] Zou, W. W. W., &Yuen, P. C. (2012). Very low resolution face

recognition problem. IEEE Transactions on Image Processing, 21(1),
327–340.

[64] Ren, C. X., Dai, D. Q., &Yan, H. (2012). Coupled kernel embedding for

low-resolution face image recognition. IEEE Transactions on Image
Processing, 21(8), 3770–3783.

[65] Ahonen, T., Hadid, A., & Pietikäinen, M. (2004). Face recognition with

local binary patterns, ECCV 2004, 469–481.
[66] Liu, C., &Wechsler, H. (2002). Gabor feature based classification using

the enhanced fisher linear discriminant model for face recognition. IEEE

Transactions on Image Processing, 11(4), 467–476.

Julian Supardi He is a lecture in Universitas
Sriwijaya, Palembang, South Sumatera, Indonesia.

He is currently a Ph.D. candidate and looking

forward to his degree in computer science and
information engineering in National Taiwan

University of Science and Technology. His research

interests include image processing and deep learning.

Shi-Jinn Horngreceived the B.S. degree in electronic engineering from

National Taiwan Instituteof Technology, Taiwan,
the M.S.degree in information engineering from

NationalCentral University, Taiwan, andthe Ph.D.

degree in computer science from NationalTsing Hua
University,Taiwan, in 1980,1984, and 1989,

respectively.Currently, he is a Chair Professor in the

Department ofComputer Science and Information
Engineering, National Taiwan Universityof Science

and Technology. His research interestsinclude Deep

Learning, Biometric Recognitions.

Tianrui Li received his B.S. degree, M.S. degree

and Ph.D. degree from the Southwest Jiaotong

University, China in 1992, 1995 and 2002
respectively. He is presently a Professor and the

Director of the Key Lab of Cloud Computing and

Intelligent Technique of Sichuan Province,

Southwest Jiaotong University, China. Since 2000,

he has co-edited 5 books, 10 special issues of

international journals, 14 proceedings, received 1 Chinese invention patent and
published over 200 research papers. He was recognized as the Top 1%

Scientists in the field of Computer Science based on Thomson Reuter's

Essential Science Indicators (ESI) in Sept. 2016.

http://www.anefian.com/research/face_reco.htm
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

