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networks to lowresolution face image recognition 

 
Shi-Jinn Horng, Julian Supardi, and Tianrui Li 

 

Abstract 
Due to the difficulty of finding the specific features of faces, in computer 
vision, low-resolution face image recognition is one of the challenging 

problems and the accuracy of recognition is still quite low. We were trying to 

solve this problem using deep learning techniques. Two major parts are used 
for the proposed method; first the restricted Boltzmann machine is used to 

preprocess the face images, then the deep convolution neural network is used 

to do classification. The data set was combined from the Georgia Institute of 
Technology, Aleix Martinez, and Robert Benavente. Based on this combined 

data, we conducted the training and testing processes. The proposed method is 

the first method that combines restricted Boltzmann machine and deep 
convolution neural networks to do low-resolution face image recognition. 

From the experimental results, compared to existing methods, the proposed 

method greatly improves the accuracy of recognition. The proposed method is 

shown in Figure 3. 

 

Index Terms Low Resolution Face Recognition, Restricted 

Boltzmann Machine, Deep Learning, Deep Convolution Neural 

Network, Gaussian filter 

 

1. Introduction 

Face recognition is an important and difficult subject in the 

fields of image processing and computer vision [1]. Even 

though it has been studied for more than 30 years, face 

recognition is still not as good as it could be and is still the 

subject of study [2]. In fact, some methods are very accurate 

and have been used in a lot of different areas of science and 

technology. Even so, face recognition methods still needed to 

be improved because there are many things that can lead to 

false recognition, such as low lighting, a different orientation, 

a twisted expression, etc. 

One problem with picture processing and pattern recognition 

is low-resolution face images. Face recognition is especially 

hard because the difference between pixel values in the face 

area is not very big. This makes it hard to find features on the 

face picture. Most of the time, a low-resolution image comes 

from video footage, an enlarged image, a picture taken with a 

camera that is out of focus or blurry, the result of a scan, or 

something similar. Figure 1 shows a picture of a face with a 

low quality. Some good ways to deal with this problem have 

been written about [4, 5, 6, 7, 8, and 9]. In general, the way the 

current methods work is by rebuilding the low-resolution 

picture into a high-resolution image. This is an easy and simple 

way to fix the problem. But each of these ways has its own 

problems that haven't solved the low-resolution face problem. 

Some of the problems mentioned in [10] and [11] still need to 

be looked into more. 
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Figure 1. A low resolution face image. One is sitting far away 

from a camera. Face area becomes so small and it is hard to 

find the face. Enlarge the size of the face area is not a 

workable solution as it will decrease the resolution of the 

image, and make it more difficult to be recognized. (Reprint 

from https://www.youtube.com/watch?v=L5xKoGj4K4U) 

 

Face recognition is a type of recognizing patterns. Because of 

this, a neural network is a great tool to use 

[12][13][14][15][16][17][18][19]. This is because the neural 

network can learn to gain information so that it can solve 

problems the way humans do. The method that is used the most 

is the Multilayer Perceptron (MLP). But MLP has trouble 

when there are a lot of sources. LeCun Y, et al. [21] made 

Convolutional Neural Networks (CNN) by building on what 

Hubel and Wiesel found.  CNN is a lot like a regular Neural 

Network in most ways. In other words, MLPs with a special 

structure are what Convolutional Neural Networks are. 

Deep Convolutional Neural Networks (DCNN) is a big step 

forward in recognizing patterns. Since it was found, some 

systems built on CNN have won the ILSVRC. These include 

AlexNet 2012 [22], Clarifai 2013 [23], GoogLeNet 2014 [24], 

and ResNet 2015 [25]. In this case, a CNN was used to solve 

the classification problem. After that, experts turned to CNN to 

solve many other problems. As [26] says, however, CNN 

design still needs to be improved to make it more accurate and 

fit the case at hand. When CNN is combined with some other 

ideas, it will be able to do more. 

Restricted Boltzmann machine (RBM) is a stochastic graph 

model that can learn a probability distribution over its set with 

n visible unit inputs and m hidden feature unit [27,28]. In 

general, RBM's way of teaching is unsupervised learning. In 

this case, learning RBM doesn't have to include the goal output 

as something that needs to be done. The learning process ends 

when each of the training data has been used a certain number 

of times. RBMs have been used successfully to solve many 

problems, such as dimension reduction [29], classification [30], 

joint filtering [31], feature learning [32][33], and modeling 

[34]. [35] and [36] are good places to learn more about RBM 

and deep design. RBMs can be used to improve the quality of 

the picture, as [37] shows. 

In this study, we use Restricted Boltzmann Machine (RBM) 

and Deep Convolutional Neural Networks (DCNN) to come up 

with a way to solve low-resolution face recognition. Both 

unsupervised learning and guided learning are brought 

mailto:horngsj@yahoo.com.tw


2 
 

together in the suggested method.  Here, RBM is used to 

prepare the low-resolution face picture before it is recognized 

by DCNN. This study is important because it: 1) shows the first 

designed architecture of an artificial neural network using 

RBM and DCNN to recognize low-resolution face images; 2) 

improves the quality of low-resolution face images; and 3) 

raises the rate at which faces are recognized. 

 

2. Hybrid Restricted Boltzmann Machine and Deep 

Convolution Neural Networks 

In this study, we come up with a method that combines RBM 

and DCNN to solve low-resolution face recognition issues. 

This method has two steps: the learning step and the testing 

step. Both RBM and DCNN algorithms are used in each step. 

In both steps, low-resolution images are first put through the 

RBM algorithm. In the learning phase, however, the RBM 

algorithm's job is to figure out the weights on the RBM 

network so that a single image can be reconstructed. This 

image will be used as input for DCNN learning. In the testing 

phase, however, the RBM algorithm's job is to turn low-

resolution input into an image that will be used as input for 

DCNN classification. 

 

The proposed method consists of five steps as shown in Figure 

3. 

 

 
 

Figure 2. The scheme of the proposed method. 

In summary the working mechanism of the proposed method 

is listed in the following. It begins with learning of RBM Net. 

This is done by unsupervised learning. There are two types of 

the output of this RBM, namely the weight and the result of 

image reconstruction. After the learning of RBM is complete, 

it then goes to the DCNN learning. In this case the input of 

DCNN is the reconstructed image from the output of RBM. 

This learning is done by supervised learning. The outputs of 

this CNN learning are the weight of CNN Net, feature maps 

layer convolution and the weight of the fully connectivity layer. 

After the learning phase is completed, the next step is the stage 

of testing or the stage of classification of low resolution image 

input. The detailed explanation is shown as follows: 

A. Training Restricted Boltzmann Machine 

Furthermore, step by step, training RBM described in [38-50]. 

Suppose𝐼 is a low resolution face image of size 𝑚 𝑥 𝑛 . Let  

𝐼𝑟 , 𝐼𝑔, and 𝐼𝐵 , each of size 𝑚 𝑥 𝑛 be the three color channels 

(red, green, and blue) of𝐼. Each of them is represented as: 

 

𝐼𝑟(𝑚,𝑛) = |

𝐼𝑟(11) … 𝐼𝑟(1𝑛)

… … …
𝐼𝑟(𝑚1) … 𝐼𝑟(𝑚𝑛)

| 

 

 

𝐼𝑔(𝑚,𝑛) = |

𝐼𝑔(11) … 𝐼𝑔(1𝑛)

… … …
𝐼𝑔(𝑚1) … 𝐼𝑔(𝑚𝑛)

| 

 

 

𝐼𝑏(𝑚,𝑛) = |

𝐼𝑏(11) … 𝐼𝑏(1𝑛)

… … …
𝐼𝑏(𝑚1) … 𝐼𝑏(𝑚𝑛)

| 

 

 

 

Let𝐼′be the image that is reconstructed from image 𝐼 and it is 

shown in Figure 4. Let𝐼𝑟
′ , 𝐼𝑔

′ , and 𝐼𝑏
′  , each of size 𝑚 𝑥 𝑛, be the 

three color channels reconstructed images. Each of them is 

represented as: 

 

𝐼𝑟(𝑚,𝑛)
′ = |

𝐼𝑟(11)
′ … 𝐼𝑟(1𝑛)

′

… … …
𝐼𝑟(𝑚1)

′ … 𝐼𝑟(𝑚𝑛)
′

| 

 

 

𝐼𝑔(𝑚,𝑛)
′ = |

𝐼𝑔(11)
′ … 𝐼𝑔(1𝑛)

′

… … …
𝐼𝑔(𝑚1)

′ … 𝐼𝑔(𝑚𝑛)
′

| 
 

 

𝐼𝑏(𝑚,𝑛)
′ = |

𝐼𝑏(11)
′ … 𝐼𝑏(1𝑛)

′

… … …
𝐼𝑏(𝑚1)

′ … 𝐼𝑏(𝑚𝑛)
′

| 
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Figure 3.The process of reconstructing a low resolution face 

image using RBM.   

The training rules of RBM is as follows: 

 

𝑤𝑖𝑗
(𝑘+1)

= 𝑤𝑖𝑗
(𝑘)

+ 𝜂(𝑘)𝜖((𝑣𝑖ℎ𝑗)
𝑑𝑎𝑡𝑎

− (𝑣𝑖ℎ𝑗)𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑛  

(1) 

𝑏𝑖 = 𝑏𝑖 + 𝜂[〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛] (2) 

𝑐𝑗 = 𝑐𝑗 + 𝜂[〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛] (3) 
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B. Training Deep Convolution Neural Networks 

B.1. Architecture CNN 

Convolutional Neural Networks (CNN) is special case of 

neural networks [50]. CNN have one or more convolution 

layers, sub sampling layers, and fully connectivity layer.  

In general, the CNN architecture for low resolution face image 

is shown in Figure 6. Each layer receives input from a set of 

features that reside in a small environment in the previous layer 

called the receptive field. With local receptive fields, it can 

extract basic visual features, which is then merged by a higher 

layer. 

 

 

 

 
 

 

Figure 4. The architecture of DCNN [51]. 

The architecture in Figure 6 can be avowed using abstract 

description as stated in Equation (31) [52]:  

𝐼′(1) → 𝐾(1) → 𝐼′(2) → ⋯ → 𝐾(𝑙−1) → 𝐼′(𝑙) → 𝐾(𝑙)

→ 𝑧 

( 1 ) 

Equation (31) illustrates layer by layer of the CNN in a forward 

pass. For the first layer, the input of CNN is  𝐼′(1)  and the 

kernel filter is 𝐾(1). Here, 𝐼′(1)is a low resolution face image 

consisting of order 3 tensor and  𝐾(1)is a matrix of the feature 

maps. If 𝑏1 is the bias matrix on the first layer, the result of 

convolution  𝐼′(1) with 𝐾(1) is denoted as𝐼′(2), that is, 𝐼′(2) =
 𝑏1 + 𝐼′(1) ∗ 𝐹𝐾(1). Now 𝐼′(2)is the input to the second layer 

with another kernel filter𝐾(2) and using the same mechanism 

as the first layer, we can determine 𝐼′(3), 𝐼′(4), …, in sequence. 

In other words, the first convolution layer will receive the 

tensor value of the input from the original image. The second 

layer will accept the input from the output of the first layer, and 

so on.  

In this research, the layers and parameters of the CNN 

architecture used are given in Table 2in details. 

 

Table 2. CNN Parameters setting for low resolution face 

image recognition  

 

Layer Size 

Input 72x64x3 

Convolution 1 5x5x3x64 

Output 1 68x60x64 

Convolution 2 3x3x3x128 

Output 2 66x58x128 

Pooling (3 x3 kernel) 22x19x128 

Convolution 3 3 x3 x3x128 

Output3 20x17x128 

Convolution 4 3 x3 x3x128 

Output 18x15x128 

Pooling (3 x3 kernel) 6 x 5 x128 

Convolution 5 1x1x3x512 

ReLU 6x5x512 

Fully Connectivity 17920 

 

B.2. Convolution Layer 

In Equation (21) the convolution is performed using a single 

kernel. Meanwhile, as shown in Figure 6, CNN has many 

layers and in each layer the convolution operation uses 

multiple kernels. Thus the convolution on CNN is done 

repeatedly in accordance with the number of layers used. 

The convolution mechanism for the input elements starts from 

the top left corner, then the filter kernel moves right one by one 

until it reaches the top-right corner. After that, the filter kernel 

is then moved one element downward, and repeat the same 

process as before. This process is repeated continuously until 

all input elements are convoluted.  

Let 𝐾(𝑙) and 𝐼(l) be the kernel filter and the input of the 

𝑙𝑡ℎ convolutionlayer, respectively, then the output of the 

convolution is a feature map which can be calculated using 

Equation (32). 

 

𝑌𝑟,𝑠
(𝑙)

= 𝐵(𝑙) + ∑ ∑ ∑ 𝐾𝑢,𝑣
𝑙 ∗

𝐷

𝑑=0

𝐻2

𝑣=−𝐻2

𝐻1

𝑢=−𝐻1

𝐼𝑟+𝑣,𝑠+𝑣
(𝑙)  

( 2) 

Suppose the input of the first layer is  𝐼𝑀𝑥𝑁
(1)

 (i.e. a 3-level 

tensor𝑅𝑀𝑥𝑁𝑥𝐷) which is convoluted with a𝐾(𝑙)kernel filter of 

size 𝐻1 𝑥 𝐻2 𝑥 𝐷 separately. Since the input is convoluted with 

a single kernel, it produces an output feature map which is a 

matrix of size (𝑀 − 𝐻1  + 1)𝑥 (𝑁 − 𝐻2 + 1).  Suppose it is 

convoluted with 𝑁𝐾 kernel filters, it will then produce  𝑁𝐾 

feature maps, independently. 

Equation (32) can be implemented using Algorithm 2 listed in 

Table 3. 

 

Table 3. Algorithm for Convolution Layer 

Algorithm 2: Convolution Layer 
Input:  

I: the output matrix from the previous layer  

(if l=1, then I is the value of RGB image) 

M: the number of rows of I 

N: the number of columns of I 

H1: the number of rows of a kernel  

H2: the number of columns of a kernel 

CNO: Channel number 

NK1: the number of kernels in each layer 

Output:  

Matrix I’ 

 

for o: 0 to NK1)         

   for r:1 to (M-H1+1)   

     for s:1 to (N-H2+1)) 

         for i:0 to CNO){  

            for lh1:0 to H1    //size of Kernel H1 x H2 

               for lh2:0 to H2{                                

                  Yr,s[o][r][s]=  O1[o][r][s]+ K1[o][i][lh1][lh2]  

* I[i][r+lh1][s+lh2] 

               end 

            end 

        end 

    I’[o][r][s]= b[o] + Yrs[o][r][s] 

      end 

Input Tensor 
RGB LR Image 

Fully 
Connect 
ivity 

Convolutions 
2nd   filter Sub sampling 

5 x 5 filter 

Convolutions 
1st   filter 

Backward process 

Forward process 

file:///C:/JulianFolder/2017/Publication%20Spring%202017/theoritcal%20of%20CNN/lecun-iscas-10%20Convolutional%20Networks%20and%20Applications%20in%20Vision.pdf
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    end     

end 

 

 

Normally, the low level layer will extract low level features 

like edges, lines, and angles. It then extracts the higher level 

features at a higher level. Figure 7 illustrates the 3D tensor 

convolution process used in CNN in the first layer. 

 

I’ filter  
 

Figure 5. Illustration at convolution in 𝒍 = 𝟏 at DCNN. 

B.3. Non-Linearity Layer 

A neuron of CNNs usually uses non-linear activation function 

to transform the input to its output. The output of a neuron can 

have different responses depending on the activation functions 

used. Some of the most commonly used activation functions 

are softmax, hyperbolic tangent, sigmoid and rectified linear 

units (ReLU). Mathematically these functions are represented 

by Equations (34) (35) and (36) respectively. Graphically, they 

are shown in Figure 8. The activation function of ReLU is the 

most widely used function  [51], this is because ReLU function 

is a linear function while the input is greater than or equal to 0 

and 1 can improve the nonlinear properties of the decision 

function [52]. The relation between the input and the output of 

a neuron at layer 𝑙 can be expressed as: 

 

𝑌𝑖
(𝑙)

= 𝜙(𝑌𝑖
(𝑙−1)

) ( 3 ) 

 

where  𝜙 is an activation function and it can be softmax, tanh 

or max, respectively. Graphically, the functions are shown by 

Figure 8. 

𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑖)) =
𝑒𝑧(𝑖)

∑ 𝑒𝑧𝑘
(𝑖)

𝑘
𝑗=0

 
( 4) 

 

𝜙(𝑧(𝑖)) = tanh ((𝑧(𝑖)) ( 5 ) 

𝜙(𝑧(𝑖)) = 𝑚𝑎𝑥 {0, 𝑧(𝑖)} ( 6 ) 

 

 
(a) 

 
(b) 

x

y

f(x) = max (0,x)

 
 

Figure 6. (a) Sofmax function, (b) tanh function, (c) ReLU 

function 𝐲 = 𝐦𝐚𝐱{𝟎, 𝐱}. 

B.4.  Feature Pooling and Sub sampling Layer 

Pooling layer / sub sampling layer is a layer that serves to 

reduce the feature resolution. The purpose of Pooling is that it 

makes the feature more resistant to noise and distortion. There 

are two ways to do pooling: max pooling and average pooling. 

The first step in both cases is the same, i.e. the input feature is 

partitioned into a non-overlapping two-dimensional matrix 

segment. If the input is  N x M  size and the matrix segment 

is𝑠1 x 𝑠2, then there will be 
𝑁

𝑠1
 x 

𝑀

𝑠2
 region each of size 𝑠1 x 𝑠2. 

The Max pooling is obtained by taking the max value of each 

region, while for average pooling, it takes the average value of 

each region. An illustration of max pooling is shown in Figure 

9. 

 

 
 

Figure 7. Illustration of Max Pooling process. 

B.5. Fully Connectivity layer 

A fully connected layer is often used as the last stage of the 

CNN for classification [52][53]. Figure 10 shows the fully 

connected layer. 

 

file:///C:/JulianFolder/2017/Publication%20Spring%202017/theoritcal%20of%20CNN/Introduction%20CNN%20Jianxin%20Wu.pdf
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Figure 8. A fully connected layer. 

Let𝑌𝑗
(𝑙−1)

be a ReLU value of  the previous convolution layer 

with a kernel filter of size1x1. For the fully connected layer, 

let𝑌𝑗
(𝑙−1)

 be theoutput of the 𝑙 − 1𝑡ℎ layer,𝑤𝑗𝑘
(𝑙)

be the weights 

between𝑗 and 𝑘neurons  𝑧𝑘
(𝑙)

 be the summation of all outputs 

connected to the 𝑘𝑡ℎ neuron of the 𝑙𝑡ℎ layer.  Equations (37) 

and (38) show the relationship between these parameters. 

 

𝑧𝑘
(𝑙)

=  ∑ 𝑌𝑗
𝑙−1𝑤𝑗𝑘

𝑙

𝑃

𝑗=1

 

(7 ) 

𝑌𝑘
(𝑙)

= 𝜙(𝑧𝑘
(𝑙)

) ( 8 ) 

Where 𝜙is a softmax function, P is the size of the feature map 

with a kernel filter of size 1 x 1, 0 ≤ 𝑘 < 𝑄  and Q is the 

number of classes. 

 

B.6. Feed forward Pass 

The abstraction process in Equation (31) is the feed forward 

pass of CNN. In the training phase, this process is repeated 

until reaches the target.  

Suppose there are c  classes and N  training patterns, the 

squared-error loss function for the r training pattern is defined 

by Equation (39): 

 

𝐸𝑟 =
1

2
∑(𝑇𝑘

𝑟 − 𝑌𝑘
𝑟)2

𝑐

𝑘=1

 
( 9 ) 

Here 𝑇𝑘
𝑟  is the k − th  dimension of the  r − th  pattern’s 

corresponding target (label), and 𝑌𝑘
𝑟   is the output of thek −

th neuron in response to the r − th pattern as counted using 

Equation (38). The total error is then ∑ 𝐸𝑟𝑁
𝑟=1 . 

B.7. Backpropagation Pass  

Look again at Equation (31), now we assume that the error that 

occurs when propagates backward throughout the network is 

the sensitive response of each unit as a result of interference of 

the bias. Let 𝑢𝑙 = 𝑊𝑙𝑌𝑙−1 + 𝑏𝑙be the input of a neuron at layer 

l, where W, Y and b are the weights, output and bias, 

respectively. For any layer, this gives meaning that:  
𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝑏
= 𝛿 

( 10 ) 

In this case,
𝜕𝑢

𝜕𝑏
= 1 . While the bias sensitivity and the 

derivative of the error with respect to the total input unit is 

equivalent. Furthermore, the derivative of this 

backpropagation from the next layer to the previous layer uses 

the following recurrence relations: 

 

𝛿𝑙 = (𝑊𝑙+1)𝑇𝛿𝑙+1o 𝜙′(𝑢𝑙) ( 11 ) 

where “o” denotes the element-wise multiplication. For the 

error function in Equation (39), especially in the fully 

connectivity layer L, the sensitivities for the output layer 

neurons will take a slightly different form 

 

𝛿𝐿 = 𝜙′(𝑢𝐿) 𝑜 (𝑦𝑛 − 𝑡𝑛) ( 12 ) 

Finally, the delta rule for updating a weight assigned to a given 

neuron is just a copy of the inputs to that neuron, scaled by the 

neuron’s delta. In vector form, this is computed as an outer 

product between the vector of inputs 𝑌𝑙−1  (which are the 

outputs from the previous layer) and the vector of 

sensitivities𝛿𝑙: 
𝜕𝐸

𝜕𝑊𝑙
=  𝑌𝑙−1𝛿𝑙 

( 13 ) 

𝛥𝑊𝑙 = −𝜂
𝜕𝐸

𝜕𝑊𝑙
 

( 14 ) 

W𝑙(new) = 𝑊𝑙(𝑜𝑙𝑑) + 𝛥𝑊𝑙  ( 15 ) 

In practice there is often a learning rate parameter 𝜂𝑖𝑗 specific 

to each weight (𝑊)𝑖𝑗 . Bias can be updated similarly. 

B.8. Gradient Descent 

Gradient descent is a first order iterative optimization 

algorithm. In this research we follow[53] to count and arrange 

gradient descent. An illustration of gradient descent is shown 

in Figure 11. 

g

- g

wi

 
Figure 9.An illustration of gradient descent. 

a. Computing Gradients in Convolution Layer 

Let us see again the feed forward CNN layer by layer in 

Equation (31).  Equation (32) then can be rewritten in Equation 

(46). Now we follow the description shown in [53] in the 

following. At a convolution layer, the previous layer’s feature 

maps are convolved with learnable kernels and then go through 

the activation function 𝑓 to form the output feature map. An 

output feature map may probably convolute with multiple 

input maps.  

𝐼′𝑗
𝑙 = 𝑓 (∑ 𝐼′𝑖

𝑙−1
𝑖∈𝑀𝑗

∗ 𝐾𝑖𝑗
𝑙 + 𝑏𝑗

𝑙), ( 16 ) 

where 𝑀𝑗 denotes a selection of input maps. In convolution 

operation, bias b is added to each output map; however, for 

some output map, the input maps are convolved using distinct 

kernels. 

Furthermore, to compute the gradient in convolution layer, we 

assume that each convolution layer l is followed by a down 

sampling layer l+1. The backpropagation algorithm mentions 

that in order to compute the sensitivity for a unit at layer l, fist 

the next layer’s sensitivities corresponding to units that are 

connected to the node of interest in the current layer 𝑙 , are 

file:///E:/Backup%20Sd%20May%202017/3%20May%202017/theoritcal%20of%20CNN/training%20DCNN/cnn_tutorial%20gradient%20algorithm.pdf
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multiplied by the associated weights  one by one defined at 

layer 𝑙 + 1 under these connections and then these values are 

then summed up. This result is then multiplied by the 

derivative of the activation function evaluated at the current 

layer’s pre-activation inputs, u𝑙 . As you can see, a 

convolutional layer is followed by a downsampling layer and 

a block of pixels in the convolutional layer’s output map 

correspond to one pixel in the next layer’s associated 

sensitivity map 𝛿. Thus each unit in a map at layer 𝑙 connects 

to only one unit in the corresponding map at layer 𝑙 + 1.  An 

easy way to compute the sensitivities at layer 𝑙 is to  upsample 

the downsampling layer’s sensitivity map to the same size as 

the previous convolutional layer’s map and then just multiply 

the upsampled sensitivity map from layer 𝑙 + 1 with the 

activation derivative map at layer 𝑙 element-wise. Let β (a 

constant) be the weights defined at a downsampling layer map. 

𝛿𝑙  can then be obtained by just scaling the previous step’s 

result by β. This process can repeat for each map j in the 

convolutional layer, pairing it with the corresponding map in 

the subsampling layer: 

 

𝛿𝑗
𝑙 = 𝛽𝑗

𝑙+1(𝑓′(𝑢𝑗
𝑙)o 𝑢𝑝(𝛿𝑗

𝑙+1), ( 17 ) 

where up(. )  denotes an upsampling operation.One possible 

way to implement this function efficiently is to use the 

Kronecker product: 

up(𝑥) ≡ 𝑥 ⊗ 1𝑛𝑥𝑛 ( 18 ) 

The bias gradient can be immediately computed by summing 

over all the entries in 𝛿𝑗
𝑙from the sensitivities for a given map: 

𝜕𝐸

𝜕𝑏𝑗

= ∑(𝛿𝑗
𝑙)

𝑢𝑣
𝑢,𝑣

 
( 19 ) 

At last, using backpropagation the gradients for the kernel 

weights are calculated, except that the same weights are shared 

across many connections. Similarly to the bias term, the 

gradients for a given weight can be summed up over all the 

connections that mention this weight: 
𝜕𝐸

𝜕𝑘𝑖𝑗
𝑙 = ∑ (𝛿𝑗

𝑙)
𝑢𝑣

(𝑝𝑖
𝑙−1)

𝑢𝑣𝑢,𝑣 , ( 20 ) 

where (𝑝𝑖
𝑙−1)

𝑢𝑣
 is the patch in 𝐼′𝑖

𝑙−1  that was multiplied 

elementwise by 𝐾𝑖𝑗
𝑙  during convolution for computing the 

element at (𝑢, 𝑣) in the output feature map𝐼′𝑗
𝑙  as mentioned in 

Equation (46). 

 

b. Computing Gradients in Subsampling Layer 

In [53], a subsampling layer (pooling layer) produces 

downsampled versions of the input maps with the smaller size. 

More formally, 

 

𝐼𝑗
′𝑙 = 𝑓(𝛽𝑗

𝑙  𝑑𝑜𝑤𝑛(𝐼𝑗
′𝑙−1) + 𝑏𝑗

𝑙), ( 21 ) 

where down(·)denotes a sub-sampling function as mentioned 

in Sec. 3.B.4. 

As you can see only learnable parameters β and b should be 

updated. Usually, the subsampling layers are surrounded above 

and below by convolution layers.  Suppose a fully connected 

layer follows the subsampling layer, the sensitivity maps for 

the subsampling layer can be computed with Equation (42). 

Furthermore, to compute the gradient of a kernel in kernel 

convolution, one has to figure out which patch in the current 

layer’s sensitivity map corresponds to a given pixel in the next 

layer’s sensitivity map in order to apply a delta recursion 

looking like Equation (41). 

The gradient for b is again just the sum over the elements of 

the sensitivity map 
𝜕𝐸

𝜕𝑏𝑗

= ∑(𝛿𝑗
𝑙)

𝑢𝑣
𝑢,𝑣

 
( 22) 

During the feedforward pass, the multiplicative bias β  will 

certainly involve the original down-sampled map computed at 

the current layer. Let  

 

𝑑𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑗

𝑙−1)  

The gradient for β is then computed by  
𝜕𝐸

𝜕𝛽𝑗

= ∑(δj
l o𝑑𝑗

𝑙)
𝑢𝑣

𝑢,𝑣

 
( 23 )` 

 

Now a brief description step by step for the proposed method 

is shown in Figure 12. 

 

Update all the hidden units 

in parallel using eq. 47

 Update the all the visible 

units in parallel to get a 

reconstruction, using eq. 48

Update weight using eq. 49 

& eq. 50

N <Nmax

Save weight & the value of 

visible unit

Read  Image

N=0

N+1

Initialize:  Set weight between 

Visible Layer and hidden, Set 

Nmax.

Initialize CNN (Set initial 

Kernel Convolution 

(feature) , 

Convolution Using 

Kernel-1 ( 5x5x3x64 

kernel size)

Convolution Using 

Kernel-2 ( 3x3x3x128 

kernel size)

Pooling ( 3x3 

kernel size)

Set Input of CNN with 

value of visible unit RBM, 

Set Emax

Convolution Using 

Kernel-3 ( 3x3x3x128 

kernel size)

Pooling ( 3x3 

kernel size)

Convolution Using 

Kernel-4 ( 1x1x3x512 

kernel size)

ReLU

Fully Connectivity 

Count Error (E)

E < Emax

yes

no

Count Gradient 

Update weight / 

feature 

no

Save feature 

learning/ weight

yes

 
Figure 10. The hybrid restricted Boltzmann machine and deep 

convolution neural network. 

3. Results and Discussion 

To evaluate the performance of the proposed method, we use 

the data as done in [1], i.e. the combination of data contained 

in [54] and [55] and the Lfw database [56][57]. We chose 

random data from the data set of the Georgia Institute of 

Technology [58], Aleix Martinez and Robert Benavente [59], 

and a database of facial recognition technologies [60]. The 

numbers of persons of each data set are 40, 70, and 500 people, 

respectively. Each person has 5 different expressions and 
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positions. So the number of facial images used is 610 x 5 = 

3050 images. Our face data is cut to 120 x 165 pixels and then 

the data is converted into low resolution images using a 

Gaussian filter. 

For the sake of the same data size as in [1], scaling operation 

is needed. That is, for face verification, the face image is scaled 

to 72 x 64 pixels, while for the identification process, the face 

image is scaled to 18 x 16 pixels. 

For each person we randomly take face images to train the 

RBM-CNN network. Subsequent to convergent training, we do 

two-stage testing. The first step is to use training data and this 

test is to verify the knowledge gained as a result of the learning 

process. Normally, the accuracy of this test should be 100%. 

Furthermore, the second stage of testing uses untrained data 

and this test is performed in order to see the performance of the 

system. 

The sample data set and the corresponding low resolution data 

set are shown in Figures 14(a) and 14(b), respectively. 

A. Experiments for face verification 

Face verification is a matching activity of two face images, 

wether they are of the same person or not. In this study the 

number of verified persons is 610. The way used to perform 

verification is by using a system trained with one image from 

a person until reaching convergence. After that, the remaining 

four face images with different expressions and positions in the 

data set are taken one by one to be matched. This is repeated 

610 times for all persons to be verified. 

Furthermore, to measure the effectiveness of the proposed 

method, we use the benchmark as used by [1]. This benchmark 

has been used in PCA, 𝑆2𝑅2 , DSR, CKE, respectively. The 

overall comparisons of the existing results and those from the 

proposed method are shown in Figure 13. 

 

 
Figure 11. Identification Accuracy (IDA) levels for different 

methods. 

As shown in Figure 13, the IDA level obtained from our 

method is 62.01%, which is better than any existing methods. 

From the test results, we find that many verification errors on 

expression no. 4 from AR database in Figure 14.This is 

because this expression is different from the facial expression 

in general, i.e. the mouth is open and the eyes are closed. 

However, when the training phase of the system has been 

trained with this expression, then the system can recognize it 

well. And also if one’s expression is not too different from 

ordinary expression, then the system can also recognize it well. 

B. Experiments for face identification 

Face identification is a process to recognize a person's identity 

based on matching a face image to a set of facial images in the 

database. To do this, in this study the system was trained by 

using three faces taken at random for each person. Training is 

done repeatedly until convergence. 

Furthermore, we use the benchmark provided by [1] to verify 

the proposed method. For this purpose, we divide the test 

mechanism into two ways. For the first way, a mixed data set 

is generated from the training dataset and the blind dataset, 

where each person has three face images from the training 

dataset and two face images from the blind dataset. For the 

second way, the test dataset has the trained dataset and blind 

dataset (never included in the training phase) separately. The 

results for the test under the mixed dataset yielded an IDA level 

91.06%. Meanwhile, the results under the test with the trained 

data set and blind dataset generated an IDA level 100% and an 

IDA level 78.33%, respectively. Under the blind dataset 

testing, the results obtained from our method are compared to 

those of existing methods and they are shown in Table 4.  

 
Table 1. Comparison of results using IDA level 

Method IDA Level 

Eigenfaces [62 in 1] 39.44% 

LBP [65 in 1] 42.58% 

Gabor [66 in 1] 43.71% 

SR[61]+Eigenfaces [62 in 1] 41.19% 

SR[61]-LBP [65 in 1] 44.19% 

SR[61]-Gabor [66 in 1] 45.20% 

S2R2 [61 In the 1] 55.70% 

DSR [63 in 1] 71.66% 

CKE [64 in 1] 71.24% 

SHV[1] 72.15% 

Our Method 78.33% 

 

From Table 4, it shows that the IDA level of our method is 

better than that of any existing methods.  
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Figure 12. Sample data set each with 5 expressions. (a) The 

original dataset. (b)The corresponding low resolution dataset 

based on Gaussian Filtering. Data is combination from GT 

database (no. 1-3), AR database  (No. 4-6), and LFW database 

(No. 7-9). 

4. Conclusion 

As you can see, currently there are many commercial face 

recognition systems.  Owing to specific cases such as low 

illumination, different orientation, twisted expression, etc., the 

false recognition rate of face recognition system can still be 

high.  Hence, it still needs to be improved by newer approaches.  

In this research, we propose a new approach by combing RBM 

and DCNN together to do the face recognition. The major 

contributions are listed in the following.   

a. The proposed RBM-DCNN network architecture can 

improve the IDA level of low resolution face image 

recognition. 

b. The considerable difference in facial expression between 

training data and testing data reduces the accuracy of the 

recognition. In other words, facial expressions that are too 

much different between the test data and the training data 

affect IDA levels. 
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