

HOME
BROWSE
MORE -

Table of Contents

INTERNATIONAL CONFERENCE ON

MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016
(ICoMEIA2016): Proceedings of the 2nd
International Conference on
Mathematics, Engineering and
Industrial Applications 2016

〈PREV NEXT ${ }^{2}$

Conference date: 10-12 August 2016
Location: Songkhla, Thailand
ISBN: 978-0-7354-1433-4
Editors: Nursalasawati Rusli, Wan Mohd Khairy Adly Wan Zaimi, Khairul Anwar
Mohamad Khazali, Maz Jamilah Masnan, Wan Suhana Wan Daud, Nooraihan Abdullah,
Zainab Yahya, Nor Azrita Mohd Amin, Nurul Huda Abdul Aziz and Yusmye Nur Abu
Yusuf
Volume number: 1775
Published: Oct 24, 2016

HOME
BROWSE
MORE -

Table of Contents

INTERNATIONAL CONFERENCE ON

MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016
(ICoMEIA2016): Proceedings of the 2nd
International Conference on
Mathematics, Engineering and
Industrial Applications 2016

〈PREV NEXT ${ }^{2}$

Conference date: 10-12 August 2016
Location: Songkhla, Thailand
ISBN: 978-0-7354-1433-4
Editors: Nursalasawati Rusli, Wan Mohd Khairy Adly Wan Zaimi, Khairul Anwar
Mohamad Khazali, Maz Jamilah Masnan, Wan Suhana Wan Daud, Nooraihan Abdullah,
Zainab Yahya, Nor Azrita Mohd Amin, Nurul Huda Abdul Aziz and Yusmye Nur Abu
Yusuf
Volume number: 1775
Published: Oct 24, 2016

```
O. No Access. October 2016
Preface: International Conference on Mathematics,
Engineering and Industrial Applications }201
```

AlP Conference Proceedings 1775, 010001 (2016): https://doi.org/10.1063/1.4965119
\qquad

KEYNOTE PAPER

A. No Access . October 2016

The current scenario of industrial mathematics in Malaysia
Zainal Abdul Aziz and Arifah Bahar

AIP Conference Proceedings 1775, 020001 (2016); httpst//doi.org/10.1063/1.4965120
show Abstract

CONTRIBUTED ORAL PAPERS

- No Access . October 2016

On some properties of an epidemiological delay integral equation
Manuel De la Sen
AlP Conference Proceedings 1775, 030001 (2016); https://doi.org/10.1063/1.4965121

SHOW ABSTRACT
:

On the symbolic manipulation for the cardinality of certain degree polynomials

Ismail Abdullah, Kamaruzzaman Seman, Bachok M. Taib and Fitri Maya Puspita AIP Conference Proceedings 1775, 030051 (2016); https://doi.org/10.1063/1.4965171
\qquad

SHOW ABSTRACT

Analysis of parameters' effects in semi-automated knee cartilage segmentation model: Data from the osteoarthritis initiative

Hong-Seng Gan, Ahmad Helmy Abdul Karim, Khairil Amir Sayuti, Tian-Swee Tan and Mohammed Rafiq Abdul Kadir

AIP Conference Proceedings 1775, 030052 (2016); https://doi.org/10.1063/1.4965172
\qquad

SHOW ABSTRACT

A review on the statistical concepts of six sigma

Faisal Ali and Amran Ahmed
AlP Conference Proceedings 1775, 030053 (2016): https://doi.org/10.1063/1.4965173

```
SHOW ABSTRACT

AlP Conference Proceedings 1775, 030097 (2016); https://doi.org/10.1063/1.4965217

SHOW ABSTRACT
- No Access . October 2016

Semi-implicit method for solving one dimensional shallow water equation
Siti Maryam Hafiza Mohd Kanafiah and Nursalasawati Rusli
AlP Conference Proceedings 1775, 030098 (2016); https://doi.org/10.1063/1.4965218

SHOW ABSTRACT
\(12>\)

\section*{Resources}

AUTHOR

LIBRARIAN

ADVERTISER
```

7r1/2020 APP Conference Proceedings: Vol 1775, No 1
ABOUT
CONTACT
HELP
PRIVACY POLICY
TERMS OF USE
FOLLOW AIP PUBLISHING

```
    7 『 in
Website © 2020 AIP Publishing LLC.
Article copyright remains as
specified within the article.

Scitation

On the symbolic manipulation for the cardinality of certain degree polynomials
Ismail Abdullah, Kamaruzzaman Seman, Bachok M. Taib, and Fitri Maya Puspita

Citation: AIP Conference Proceedings 1775, 030051 (2016); doi: 10.1063/1.4965171
View online: http://dx.doi.org/10.1063/1.4965171
View Table of Contents: http://aip.scitation.org/toc/apc/1775/1
Published by the American Institute of Physics


\title{
On the Symbolic Manipulation for the Cardinality of Certain Degree Polynomials
}

\author{
Ismail Abdullah \({ }^{1, \mathrm{a})}\), Kamaruzzaman Seman \({ }^{1, \mathrm{~b})}\), Bachok M. Taib \({ }^{1, \mathrm{c})}\) and Fitri Maya Puspita \({ }^{2, \text { d) }}\) \\ \({ }^{1}\) Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM) 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia \\ \({ }^{2}\) Mathematics Department, Faculty of Mathematics and Natural Sciences, University of Sriwijaya \\ Inderlaya, Ogan Ilir, South Sumatra, Indonesia \\ \({ }^{\text {a) }}\) Corresponding author: isbah@usim.edu.my \\ \({ }^{\text {b) }}\) drkzaman@usim.edu.my \\ \({ }^{c}\) )bachok@usim.edu.my \\ \({ }^{\text {d) }}\) fitrimayapuspita@unsri.ac.id
}

\begin{abstract}
The research on cardinality of polynomials was started by Mohd Atan [1] when he considered a set, \(V\left(\underline{f} ; p^{\alpha}\right)=\left\{u \bmod p^{\alpha}: \underline{f}(u) \cong 0 \bmod p^{\alpha}\right\}\), where \(\alpha>0\) and \(\underline{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)\). The term \(\underline{f}(u) \cong \underline{0} \bmod p^{\alpha}\) means that
\end{abstract} we are considering all congruence equations of modulo \(p^{\alpha}\) and we are looking for \(u\) that makes the congruence equation equals zero. This is called the zeros of polynomials. The total numbers of such zeros is termed as \(N\left(\underline{f} ; p^{\alpha}\right)\). The above \(p\) is a prime number and \(Z_{p}\) is the ring of p -adic integers, and \(\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\). He later let \(N\left(\underline{f} ; p^{\alpha}\right)=\) card \(V\left(\underline{f} ; p^{\alpha}\right)\). The notation \(N\left(\underline{f} ; p^{\alpha}\right)\) means the number of zeros for that the polynomials \(\underline{f}\). For a polynomial \(f(x)\) defined over the ring of integers \(Z\), Sandor [2] showed that \(N\left(f ; p^{\alpha}\right) \leq m p^{1 / 2 \text { ord }_{p} D}\), where \(D \neq 0, \alpha>\operatorname{ord}_{p} D\) and \(D\) is the discriminant of \(f\). In this paper we will try to introduce the concept of symbolic manipulation to ease the process of transformation from two-variables polynomials to one-variable polynomials.

\section*{INTRODUCTION}

The research on cardinality of polynomials was started by [1] when he considered a set,
\[
\begin{equation*}
V\left(f ; p^{\alpha}\right)=\left\{u \bmod p^{\alpha}: f(u) \cong 0 \bmod p^{\alpha}\right\} \tag{1}
\end{equation*}
\]
where \(\alpha>0\) and \(\underline{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)\). The term \(f(u) \cong 0 \bmod p^{\alpha}\) means that we are considering all congruence equations of modulo \(p^{\alpha}\) and determine \(u\) that makes the congruence equation equals zero. This is called the zeros of polynomials. The total numbers of such zeros is termed as \(N\left(\underline{f} ; p^{\alpha}\right)\).

The above \(p\) is a prime number and \(Z_{P}\) is the ring of p -adic integers, and \(\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\). He later let \(N\left(\underline{f} ; p^{\alpha}\right)=\operatorname{card} V\left(\underline{f} ; p^{\alpha}\right)\). The notation \(N\left(\underline{f} ; p^{\alpha}\right)\) means the number of zeros for that the polynomials \(\underline{f}\).

For a polynomial \(f(x)\) defined over the ring of integers Z, Sandor [2] showed that
\[
\begin{equation*}
N\left(f ; p^{\alpha}\right) \leq m p^{1 / 2 \text { ord } d_{p} D} \tag{2}
\end{equation*}
\]

Where \(D \neq 0, \alpha>\operatorname{ord}_{p} D\) and \(D\) is the discriminant of \(f\).
The following is a further explanation of how [1] arrived at his first result in this research. Let \(K\) be the algebraic number field generated by the roots \(\xi_{i}, 1 \leq i \leq m\) of the polynomials \(f(x)\) with \(m\) distinct zeros. Let \(D(f)\) denotes the different of \(f\) the intersection of the fractional ideals of \(K\) generated by the numbers, \(\frac{f^{\left(e_{i}\right)}\left(\xi_{i}\right)}{e_{i}!}, i \geq 1\) where \(e_{i}\) is the multiplicity of the roots \(\xi_{i}\).
The authors [3] showed that
\[
\begin{equation*}
N\left(f ; p^{\alpha}\right) \leq m p^{\alpha-(\alpha-\delta) / e} \tag{3}
\end{equation*}
\]
where \(\delta=\operatorname{ord}_{p} D(f)\), with this suitably defined global different of \(f(x)\) Loxton and Smith [3] thus improved on the result of Sandor's. Both results are stated for polynomials defined over \(Z\). They, however can be adopted to work over \(Z_{p}\).

Chalk and Smith [4] obtained a result of similar form with \(\delta=\max _{i} \operatorname{ord}_{p} f_{i}\) where \(f_{i}\) is the Taylor coefficient \(f^{\left(e_{i}\right)}\left(\xi_{i}\right) / e_{i}\) ! at the distinct roots \(\xi_{i}\). The proof used a version of Hensel's Lemma.
For \(\underline{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)\) an n-tuple of polynomials in \(Z[\underline{x}]\) define the discriminant \(D(\underline{f})\) of \(\underline{f}\) as follows. If the resultant of \(\underline{f}\) and the Jacobian of \(\underline{f}\) vanishes set \(D(\underline{f})=0\) otherwise let \(D(\underline{f})\) be the smallest positive integer in the ideal in \(Z[\underline{x}]\) generated by the Jacobian of \(\underline{f}\) and the components of \(\underline{f}\). The authors [3] showed that
\[
N\left(\underline{f} ; p^{\alpha}\right) \leq\left\{\begin{array}{lc}
p^{n \alpha}, & \text { for } \alpha \leq 2 \delta  \tag{4}\\
(\operatorname{Deg} \underline{f}) p^{n \delta}, & \text { for } \alpha>2 \delta
\end{array}\right.
\]

Where ( \(\operatorname{deg} \underline{f}\) ) means the product of the degrees of all the components of \(\underline{f}\).
In his work [1] for certain polynomials using Newton polyhedral method as described by [5] had arrived at an estimate of \(N\left(f ; p^{\alpha}\right)\). He proposed a valuation on \(Q_{P}\) the field of p-adic numbers as
\[
|x|_{p} \leq \begin{cases}p^{- \text {orr }_{p} x}, & \text { if } x \neq 0  \tag{5}\\ 0, & \text { if } x=0\end{cases}
\]

This valuation extends uniquely from \(Q_{P}\) to \(\bar{Q}_{P}\) the algebraic closure of \(Q_{P}\) and to \(\Omega_{P}\), and \(\Omega_{P}\) is complete and algebraically closed.

ESTIMATE FOR \(N\left(\underline{f} ; p^{\alpha}\right)\) WITH \(\underline{f}(x)\) IN \(Z[\underline{x}]\)
Let us consider a polynomial \(f(x)\) with integer coefficient such as
\[
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=a_{0} \prod\left(x-\xi_{j}\right)^{e_{j}}
\]
where \(\xi_{j}\) are distinct algebraic numbers with respective multiplicities \(e_{j}\). Let \(\delta(f)=\operatorname{ord}_{p} D(f)\) as before and \(e(f)=\max _{j} \operatorname{ord}_{p}\left\{\frac{f^{\left(e_{j}\right)}\left(\xi_{j}\right)}{e_{j}!}\right\}\). Then the following theorem gives an estimate for \(N\left(f ; p^{\alpha}\right)\). The proof is a modification of that by [3] illustrating the use of the Newton polygon of \(f\) whose special property is stated in [6] which [1] rewrite as follows

Lemma 1. Let \(p\) be a prime and \(f(x)\) be a polynomial with coefficients in the complete field \(\Omega_{p}\). If a segment of the Newton polygon of \(f\) has slope \(\lambda\), and horizontal length extending from ( \(i, \operatorname{ord} d_{p} a_{i}\) ) to \(\left(i+N, \lambda N+o r d_{p} a_{i}\right)\) is \(N\) then \(f\) has precisely \(N\) roots \(\alpha_{i}\) in \(\Omega_{P}\) with ord \(\alpha_{p}=-\lambda\) (counting multiplicities).

Theorem 1. Let \(p\) be a prime and \(f(x)\) be a polynomial with coefficients which does not vanish identically modulo \(p\). Set \(e=e(f), \delta=\delta(f)\) and let \(m\) be the number of distinct zeros of \(f\). Then
\[
N\left(f ; p^{\alpha}\right) \leq m p^{\alpha-(\alpha-\delta) / e}
\]

Proof. As above we write,
\[
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=a_{0} \prod_{j=1}^{m}\left(x-\xi_{j}\right)^{e_{j}}
\]
where \(\xi_{j}\) are distinct with multiplicities \(e_{j}\). We may suppose that \(\Omega_{p}\) contains the number field \(K\) generated by the roots \(\xi_{j}\). Let \(V_{j}\left(f ; p^{\alpha}\right)\) denotes the set of points in \(V\left(f ; p^{\alpha}\right)\) which are p-adically closest to \(\xi_{j}\), that is
\[
V_{j}\left(f ; p^{\alpha}\right)=\left\{x \in V\left(f ; p^{\alpha}\right)=\operatorname{ord}_{p}\left(x-\xi_{i}\right)=\max _{1 \leq i \leq m} \operatorname{ord}_{p}\left(x-\xi_{i}\right)\right\}
\]

Then,
\[
\operatorname{card} V\left(f ; p^{\alpha}\right) \leq \sum_{j=1}^{m} V_{j}\left(f ; p^{\alpha}\right)
\]

To estimate the terms on the right, we introduce the set
\[
D_{j}(\theta)=\left\{x \in \Omega_{p}: \operatorname{ord}_{p}\left(x-\xi_{i}\right)=\max _{1 \leq i \leq m} \operatorname{ord}_{p}\left(x-\xi_{i}\right) \& \operatorname{ord}_{p} f(x) \geq \theta\right\}
\]
and define \(\gamma_{j}(\theta)=\inf _{x \in D_{j}(\theta)} \operatorname{ord}_{p}\left(x-\xi_{j}\right) \quad\). Since \(\quad V_{j}\left(f ; p^{\alpha}\right) \subseteq D_{j}(\alpha) \quad\), we have card \(V_{j}\left(f ; p^{\alpha}\right) \leq \operatorname{card}\left\{x \bmod p^{\alpha}: \operatorname{ord}_{p}\left(x-\xi_{i}\right) \geq \gamma_{j}(\alpha)\right\} \leq p^{\alpha-\gamma_{j}(\alpha)}\). We now need a lower bound for \(\gamma_{j}(\alpha)\). For this, choose \(\eta \in D_{j}(\theta)\) and consider the Newton polygon of the polynomial \(f(x+\eta)\). Let \(\mu_{j}=\operatorname{ord}_{p}\left(\eta-\xi_{j}\right)\) and let \(\varepsilon_{j}\) be the total multiplicity of all the roots \(\xi_{j}\) with \(\operatorname{ord}_{p}\left(\eta-\xi_{j}\right)=\mu_{j}\) and set \(\lambda_{j}=\operatorname{ord}_{p} f^{\left(\varepsilon_{j}\right)}\left(\xi_{j}\right) / \varepsilon_{j}\) ! We have
\[
\frac{f^{\left(\varepsilon_{j}\right)}(\eta)}{\varepsilon_{j}!}=a_{0} \prod\left(\eta-\xi_{i}\right)^{e_{i}}+\ldots
\]
where \(\operatorname{ord}_{p}\left(\eta-\xi_{i}\right)<\mu_{j}, \forall i\), and the dots indicate terms with larger p -adic orders than the main term. Thus \(\operatorname{ord}_{p} \frac{f^{\left(\varepsilon_{j}\right)}(\eta)}{\varepsilon_{j}!}=\lambda_{j}\). In the same way, \(\operatorname{ord}_{p} f(\eta)=\lambda_{j}+\varepsilon_{j} \mu_{j} \geq \theta\) and for any \(k \geq 0, \operatorname{ord}_{p} \frac{f^{(k)}(\eta)}{k!} \geq \lambda_{j}-\left(i-\varepsilon_{j}\right) \mu_{j}\). This shows that the first edge of the Newton polygon of \(f(x+\eta)\) goes from the point \(\left(0, \operatorname{ord}_{p} f(\eta)\right)\) to the point
\(\left(\varepsilon_{j}, \operatorname{ord}_{p} \frac{f^{\left(\varepsilon_{j}\right)}(\eta)}{\varepsilon_{j}!}\right)\) as required by Lemma 2. We can find \(\eta\) so that \(\operatorname{ord}_{p} f(\eta)=\theta, \mu_{j}=\gamma_{j}(\theta)\) and for this choice of \(\eta\) we have \(\gamma_{j}(\theta)=\left(\theta-\lambda_{j}\right) / \varepsilon_{j}\). Therefore, \(\gamma_{j}(\theta)\) is continuous, increasing and concave away from the origin. Further if \(\theta\) is sufficiently large, \(\xi_{j}\) is the unique closest root to \(\eta\) and so \(\varepsilon_{j}=e_{j}\) and, \(\lambda_{j}=\operatorname{ord}_{p} \frac{f^{\left(e_{j}\right)}\left(\xi_{j}\right)}{e_{j}!}=\delta_{j}\) (say). By considering the graph of \(\gamma_{j}(\theta)\) we see that \(\gamma_{j}(\theta) \geq\left(\theta-\delta_{j}\right) e_{j} \geq(\theta-\delta) / e\) for \(\theta \geq \delta\). Finally, card \(V\left(f ; p^{\alpha}\right) \leq \max _{1 \leq j \leq m} \operatorname{card} V_{j}\left(f ; p^{\alpha}\right) \leq m p^{\alpha-(\alpha-\delta) / e}\), for all \(\alpha \geq \delta\). This proves the theorem since the required estimate is trivial when \(\alpha \geq \delta\).

Let us consider further the set \(V\left(f ; p^{\alpha}\right)=\left\{x \bmod p^{\alpha}: f(x) \equiv 0 \bmod p^{\alpha}\right\}\) where \(\underline{f}=\left(f_{1}, \ldots, f_{n}\right)\) is an n-tuple of polynomials in the coordinate \(\underline{x}=\left(x_{1}, \ldots, x_{n}\right)\) with coefficients in \(Z_{p}\). We will consider first polynomials \(f_{i}, i=1,2, \ldots, n\) that are linear in \(\left(x_{1}, \ldots, x_{n}\right)\) as in the following theorem:
Theorem 2. Let \(p\) be a prime and \(\underline{f}=\left(f_{1}, \ldots, f_{n}\right)\) be an n-tuple of non-constant linear polynomials in \(Z_{p}[\underline{x}]\) where \(\underline{x}=\left(x_{1}, \ldots, x_{n}\right)\). Suppose \(r\) is the rank of matrix \(A\) representing \(\underline{f}\). Let \(\delta\) be the minimum of the p-adic orders of \(r \times r\) non-singular submatrices of \(A\) if \(\alpha>0\) then
\[
N\left(f ; p^{\alpha}\right) \leq \begin{cases}p^{n \alpha}, & \text { if } \alpha \leq \delta \\ p^{(n-r) \alpha+r \delta}, & \text { if } \alpha>\delta\end{cases}
\]

Proof. The result is trivial if \(\alpha \leq \delta\). Suppose \(\alpha>\delta\). Consider the set, \(V\left(\underline{f} ; p^{\alpha}\right)=\left\{\underline{u} \bmod p^{\alpha}: \underline{f}(\underline{u}) \cong 0 \bmod p^{\alpha}\right\}\).
The equation,
\[
\begin{equation*}
\underline{f}(\underline{x}) \cong \underline{0} \bmod p^{\alpha} \tag{6}
\end{equation*}
\]
is equivalent to
\[
\begin{equation*}
A \underline{x} \cong \underline{0} \bmod p^{\alpha} \tag{7}
\end{equation*}
\]
where \(A\) matrix representing f. Now \(A\) is equivalent to a matrix \(A^{\prime}\) of the form, \(A^{\prime}=\left[\begin{array}{ll}B & C \\ 0 & 0\end{array}\right]\), where \(B\) is an \(r \times r\) non-singular matrix and \(C\) is an \(r \times(n-r)\) matrix both with rational entries. Therefore (7) is equivalent
\[
\begin{equation*}
A^{\prime} \underline{x} \cong \underline{0} \bmod p^{\alpha} \tag{8}
\end{equation*}
\]

Write \(\underline{x}=\left(\underline{x}^{\prime}, \underline{x}^{\prime \prime}\right)^{t}\), where \(\underline{x}^{\prime}\) comprises the first \(r\) components of \(\underline{x}\) and \(\underline{x}^{\prime \prime}\) the remainder, and \((a, b)^{t}\) denotes the transpose of \((a, b)\). Then (8) becomes,
\[
\begin{equation*}
B \underline{x}^{\prime} \equiv-C \underline{x}^{\prime \prime} \bmod p^{\alpha} \tag{9}
\end{equation*}
\]

On multiplying both sides of the congruence (9) by the adjoint of \(B\), we obtain
\[
\begin{equation*}
(\operatorname{det} B) \underline{x}^{\prime} \equiv-(\operatorname{adj} B) C \underline{x} " \bmod p^{\alpha} \tag{10}
\end{equation*}
\]

For a given \(\underline{x}^{\prime \prime}\) in (10) the number of solutions for \(\underline{x}^{\prime} \bmod p^{\alpha}\) is either 0 or \(p^{r \delta}\) since (10) determines \(\underline{x}^{\prime} \bmod p^{\alpha-\delta}\) . Thus there are \(p^{(n-r) \alpha}\) choices for \(\underline{x} " \bmod p^{\alpha}\). It follows that the number of solutions \(\underline{x} \bmod p^{\alpha}\) to (7) and hence (6) is \(p^{(n-r) \alpha+r \delta}\) as claimed. In theorem 2, if \(n=2, \alpha>\delta\) and rank \(A=2\) then \(N\left(f_{1}, f_{2}, p^{\alpha}\right) \leq p^{2 \delta}\), where \(\delta\) is the p-adic order of the Jacobian of \(f_{1}\) and \(f_{2}\). We will give an alternative proof of this claim using the Newton polyhedral method. First we have the following lemma.

Lemma 2. Let \(p\) be a prime and \(f, g\) linear functions in the coordinate \(\underline{x}=(x, y)\) define over \(Z_{p}\). Let \(J=f_{x} g_{y}-f_{y} g_{x}\) be their Jacobian. Suppose \(x_{0}\) in \(\Omega_{p}^{2}\) satisfies \(\operatorname{ord}_{p} f\left(\underline{x}_{0}\right) \geq \alpha\) and \(\operatorname{ord}_{p} g\left(x_{0}\right) \geq \alpha\). If \(\alpha>\operatorname{ord}_{p} J\) then \(f\) and \(g\) have common zeros \(\underline{\xi}\) in \(\Omega_{p}^{2}\) with \(\operatorname{ord}_{p}\left(\underline{\xi}-\underline{x}_{0}\right) \geq \alpha-\operatorname{ord}_{p} J\).

Proof.
Let \(X=(\underline{X}, Y)=\underline{x}-\underline{x}_{0}\) and write
\(f\left(\underline{X}+\underline{x}_{0}\right)=f_{0}+f_{x} X+f_{y} Y\)
\(g\left(\underline{X}+\underline{x}_{0}\right)=g_{0}+g_{x} X+g_{y} Y\)
where \(f_{0}=\left(f\left(\underline{x}_{0}\right), g\left(\underline{x}_{o}\right)\right)\).
Consider the indicator diagrams [7] of \(f\left(\underline{X}+\underline{x}_{0}\right)\) and \(g\left(\underline{X}+\underline{x}_{0}\right)\). If no edges in these diagrams coincide, then by Mohd Atan [5] there exists a zero common to \(f\) and \(g\) satisfying \(\operatorname{ord}_{p} X \geq \alpha-\operatorname{ord}_{p} J\). If some edges coincide but with say \(\operatorname{ord}_{p}\left(f_{0} / f_{x}\right) \leq \operatorname{ord}_{p}\left(g_{0} / g_{x}\right)\) we replace \(g\) by \(g-\left(g_{y} / f_{y}\right) f\) to eliminate \(Y\). This transformation does not change \(J\) and the hypothesis of the lemma are satisfied with the same \(\alpha\) as before. If no edges of the indicator diagram coincides we can apply the same result [7] above to get the desired conclusion. Otherwise we replace \(f\) by \(f-\left(f_{x} / g_{x}\right) g\) to eliminate \(X\). Again this does not change \(J\) and the result is therefore clear. Possible stages in the proof are shown in the following diagrams.

Note:
The above equations can be obtained at once by solving the simultaneous equations \(f\left(\underline{X}+\underline{x}_{0}\right)=g\left(\underline{X}+\underline{x}_{0}\right)=0\) for \(\underline{X}\). It is to avoid solving the equations and to illustrate the use of Newton polyhedrons that we consider the above result.

The following theorem gives an alternative proof using Newton polyhedral method to Theorem 2 when \(n=2, \alpha>\delta\) and the rank of matrix representing \(f_{1}, f_{2}\) is equal to 2 .

Theorem 2. Let \(f\) and \(g\) be two linear polynomials in \(Z_{p}[x, y]\). Let \(J_{f, g}\) be the Jacobian of \(f\) and \(g\) and \(\delta=\operatorname{ord}_{p} J_{f, g}\) . Let \(\alpha>0\). Then
\[
N\left(f ; g ; p^{\alpha}\right) \leq \begin{cases}p^{2 \alpha} & \text { if } \alpha \leq \delta \\ p^{2 \delta} & \text { if } \alpha>\delta\end{cases}
\]

Proof. The result is trivial for \(\alpha \leq \delta\). We assume next \(\alpha>\delta\). As before let, \(V\left(f ; g ; p^{\alpha}\right)=\left\{(x, y) \bmod p^{\alpha}: f(x, y), g(x, y) \equiv 0 \bmod p^{\alpha}\right\}\).

Consider the set,
\(H(\lambda)=\left\{(x, y)\right.\) in \(\Omega_{p}^{2}:\) ord \(_{p} f(x, y)\), ord \(\left._{p} g(x, y) \geq \lambda\right\}\)
For any real \(\lambda\). Define, \(\gamma(\lambda)=\inf _{\underline{x} \in H(\lambda)} \operatorname{ord}_{p}(\underline{x}-\underline{\xi})\), where \(\underline{x}=(x, y)\) and \(\underline{\xi}\) is the common zeros of \(f\) and \(g\).
\(V\left(f ; g ; p^{\alpha}\right) \subseteq H(\alpha)\)

For each \(\alpha \geq 1\), it follows that
\[
\begin{equation*}
\operatorname{card} V\left(f ; g ; p^{\alpha}\right) \leq \operatorname{card}\left\{\underline{x} \bmod p^{\alpha}: \operatorname{ord}_{p}(x-\xi) \geq \alpha\right\} \leq p^{2 \alpha-2 \theta(\alpha)} \tag{11}
\end{equation*}
\]
where \(\alpha \geq \gamma(\alpha)\).
The lower bound for the function \(\gamma: R \rightarrow R\) can be found by examining the indicator diagrams associated with the Newton polyhedrons of \(f\left(X+\underline{x}_{0}\right)\) and \(g\left(X+\underline{x}_{0}\right)\) for \(\underline{x}_{0}\) in \(H(\lambda)\). By our hypothesis and Lemma 2, \(\gamma(\alpha)>\alpha-\delta\). It follows by (3) that, card \(V\left(f ; g ; p^{\alpha}\right) \leq p^{2 \delta}\). Since \(\operatorname{ord}_{p} J_{f, g}<\infty, f\) and \(g\) have a unique common zero. Hence \(N\left(f ; g ; p^{\alpha}\right) \leq p^{2 \delta}\) as required. As seen from [1], he used Newton polyhedron technique. In that technique he introduced a device called Indicator Diagram to locate the common zeros of two polynomials. Each polynomial will produce one indicator diagram. The two indicator diagrams belonging to two polynomials will be drawn on the same space to see whether there is coincidence on the sides or not. If there exists coincidence, then a transformation process to one variable polynomial will be used to come up with a clear intersection.

\section*{SYMBOLIC MANIPULATION}

The author would like to call this as Newton Polyhedron Technique and subsequently this method will be used by other researchers later. The following steps will elaborate the sequences of manipulations that can be applied to solve the problem of reducing two-variables polynomial to one-variable polynomial and thus N. Koblitz's method can be applied to find the estimates.

\section*{Step 1 : The two polynomials}

Consider two non-linear polynomials as follows:
\(f(x, y)=3 a x^{2}+b y^{2}+c \quad\) and \(g(x, y)=2 b x y+d\)

\section*{Step 2 : the transformation process}

Let \(\underline{X}=(X, Y)=\underline{x}-\underline{x}_{0}\) and set;
\(f(X, Y)=3 a X^{2}+b Y^{2}+6 a x_{0} X+2 b y_{0} Y+f_{0}\) and \(g(X, Y)=2 b X Y+2 b y_{0} X+2 b x_{0} Y+g_{0}\)
where, \(f_{0}=3 a x_{0}^{2}+b y_{0}{ }^{2}+c\) and \(g_{0}=2 b x_{0} y_{0}+d\).

\section*{Step 3 : The symbolic Manipulations}

With the change of variables, \(U=\sqrt{3 a} X+\sqrt{b} Y\) and \(V=\sqrt{3 a} X-\sqrt{b} Y\), we will find that
\(F(U, V)=\sqrt{b} f(X, Y)+\sqrt{3 a} g(X, Y)=\sqrt{b} U^{2}+\sqrt{3 a} u_{0} U+F_{0}\) and
\(G(U, V)=\sqrt{b} f(X, Y)+\sqrt{3 a} g(X, Y)=\sqrt{b} V^{2}+\sqrt{3 a} v_{0} V+G_{0}\)
where,
\(u_{0}=\sqrt{3 a} x_{0}+\sqrt{b} y_{0}\) and \(v_{0}=\sqrt{3 a} x_{0}-\sqrt{b} y_{0}\)
\(F_{0}=\sqrt{b} f_{0}+\sqrt{3 a} g_{0}\) and \(G_{0}=\sqrt{b} f_{0}-\sqrt{3 a} g_{0}\)
Step 4 : Deriving the conclusion

By hypothesis,
\[
\operatorname{ord}_{p} F_{0}, \operatorname{ord}_{p} G_{0} \geq \alpha+\min \left\{\operatorname{ord}_{p} \sqrt{b}, \operatorname{ord}_{p} \sqrt{3 a}\right\}
\]

We therefore see from the Newton polygon of \(F\), that \(F\) has zero satisfying
\[
\operatorname{ord}_{p} U \geq \frac{1}{2} \operatorname{ord}_{p} \frac{F_{0}}{\sqrt{b}} \geq \frac{1}{2}\left[\alpha+\min \left\{0, \operatorname{ord}_{p} \sqrt{\frac{3 a}{b}}\right\}\right]
\]

A similar result holds for \(G\). These estimates lead to a zero (X,Y) of \(f\) and \(g\) satisfying the required inequality.

\section*{Step 5 : Stating the estimates}

Mohd Atan [1] arrived at the estimates as shown below. He started with two polynomials of an incomplete cubic form, i.e. \(f(x, y)=3 a x^{2}+b y^{2}+c\) and \(g(x, y)=2 b x y+d\). He has done the steps 1 until 4 and obtaining \(\delta=\max \left\{\operatorname{ord}_{p} 3 a, \frac{3}{2}\right.\) ord \(\left._{p} b\right\}\) and the estimate as
\[
N\left(f ; g ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
4 p^{\alpha+\delta} & \text { if } \alpha>\delta
\end{array}\right.
\]

\section*{CONCLUSION}

Symbolic manipulation seems to be crucial for this research to move further as it will later involve higher degree of polynomials. The use of Computer Algebra System MAXIMA will be looked into carefully to help us in transforming two-variables polynomials to one-variable polynomials. In one-variable polynomial the monumental work of Koblitz can be applied to determine the cardinality of polynomials.

\section*{ACKNOWLEDGEMENT}

This research is partially supported by FRGS research grant USIM/FRGS/FST/32/50214.

\section*{REFERENCES}
1. Mohd Atan, K. A. A. Pertanika 11(1), 125 - 131, 1988.
2. Sandor, J., Borislav, C., Handbook of Number Theory II, 2004.
3. Loxton, J. H. and R. A. Smith. J. London Math. Soc. 26(2): 15 - 20, 1982.
4. Chalk, J.H.H. and R.A.Smith. Math. Rep. Acad. Sci. Canada, 4(1), 1982.
5. Mohd Atan, K. A. Pertanika 9(1): 51-56, 1986.
6. Koblitz, N. p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics No. 58, Springer-Verlag, New York, 1977.
7. Mohd Atan, K. A. Pertanika 9(3): 375-380, 1986.```

