PROCEEDINGS

SICBAS 2018

THE $1^{\text {st }}$ SRIWIJAYA INTERNATIONAL CONFERENCE ON BASIC AND APPLIED SCIENCES

"Sciences for Sustainable Development"

Horison Ultima Hotel Palembang, South Sumatra - Indonesia November 6-7 ${ }^{\text {th }}, 2018$

ORGANIZING COMMITTEE

Advisory Board

Prof. Anis Saggaf (Sriwijaya University, Indonesia)
Prof. Zainuddin Nawawi (Sriwijaya University, Indonesia)
Prof. Khairurrijal (ITB, Indonesia)
Associate Prof. Minetaka Sugiyama (Osaka University, Japan)
Prof. Ibrahim Mohamed (University of Malaya, Malaysia)
Prof. Mitra Djamal (ITB, Indonesia)

Scientific Board

Prof. Iskhaq Iskandar (Sriwijaya University, Indonesia)
Prof. Kamaruzzaman Seman (USIM, Malaysia)
Prof. Irawati (ITB, Indonesia)
Eko Siswanto, Ph.D. (JAMSTEC, Japan)
Dr. Haris Gunawan (Peatland Restoration Agency, Indonesia)
Dr. Hagi Yulia Sugeha (LIPI, Indonesia)
Dr. Rashid Mehmood (Otawa Hospital Research Institute, Canada)
Prof. Aldes Lesbani (Sriwijaya University, Indonesia)
Local Committee (Sriwijaya University, Indonesia)
Chairman: Dr. Fiber Monado
Vice Chairman: Dr. Frinsyah Virgo
Secretary: Dr. Bambang Suprihatin
Treasurer: Dr. rer. nat. Indra Yustian
Members:

- Dr. Rozirwan
- Dony Setiawan, M.Si
- Dr. Poeji Loekitowati
- Dr. Eliza
- Dr. Arum Setiawan
- Dr. Siti Sailah, M.Si
- Hermansyah, Ph.D
- Anna Ida Sunaryo P, S.Pi., M,Si
- Dr.rer.nat. Mardiyanto, M.Si
- Dr. Fitri Maya Puspita, M.Sc
- Dr.rer.nat. Risfidian Mohadi
- Dr. Idha Royani
- Dr. T. Zia Ulqodry
- Dr. Akhmad Aminuddin Bama, M.Si
- Zainal Fanani, S.Si., M.Si
- Sutopo, S.Si., M.Si
- Alfensi Faruk, M.Sc
- Akmal Johan, M.Si
- Andy Agussalim, M.Sc
- M. Fuad, M.Kom
- Sisca Oktarina, M.Sc
- Miyanto, S.AP
Sriwijaya International Conference on Basic and Applied Science IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 011001 doi:10.1088/1742-6596/1282/1/011001

Editorial Team

Editor in Chief	Dr.rer.nat Risfidian Mohadi, M.Si
Deputy of chief editor $\quad:$ Dr. Idha Royani	
Reviewer Board Members	
1. Prof. Dr. Iskhaq Iskandar	Universitas Sriwijaya
2. Prof. Dr. Aldes Lesbani	Universitas Sriwijaya
3. Dr. Adhitya Ronnie Effendie	Universitas Gajah Mada
4. Dr. Arum Setiawan	Universitas Sriwijaya
5. Dr. Azhar Kholiq Affandi	Universitas Sriwijaya
6. Dr. Bambang Suprihatin	Universitas Sriwijaya
7. Dr. Eliza	Universitas Sriwjaya
8. Dr. Fauziyah	Universitas Sriwijaya
9. Dr. Fiber Monado	Universitas Sriwijaya
10. Dr. Fitri Maya Puspita	Universitas Sriwijaya
11. Dr. Frinsyah Virgo	Universitas Sriwjaya
12. Dr. Harry Wijayanti	Universitas Sriwijaya
13. Dr. Heri Satria	Universitas Lampung
14. Dr. Hermansyah	Universitas Sriwijaya
15. Dr. Idha Royani	Universitas Sriwijaya
16. Dr. Masturi	Universitas Negeri Semarang
17. Dr. Menik Ariani	Universitas Sriwijaya
18. Dr. Poeji Lukitowati	Universitas Sriwijaya
19. Dr. Rahadi Wirawan	Universitas Mataram
20. Dr. rer.nat Mardiyanto	Universitas Sriwijaya
21.Dr. rer.nat. Maya Shovitri	Institut Teknologi Sepuluh November
22. Dr. Siti Sailah	Universitas Sriwijaya
23. Dr. Yulianto Suteja	Universitas Udayana
24. Dr. Zia Ulqodri	Universitas Sriwijaya
25. Dr.rer.nat Risfidian Mohadi	Universitas Sriwijaya
26. Dr. A. Aminuddin Bama	Universitas Sriwijaya
27. Anna Ida Sunaryo, M.Si	Universitas Sriwijaya

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
\square NOTICE: Ensuring subscriber access to content on IOPscience throughout the coronavirus outbreak - see our remote access guidelines.

Table of contents

Volume 1282

2019

4 Previous issue Next issue *

Sriwijaya International Conference on Basic and Applied Science 6-7 November 2018, Pale mbang, Indonesia
Accepted papers received: 26 June 2019
Published online: 14 August 2019

Open all abstracts

Preface

OPEN ACCESS		011001
Preface		
+ Open abstract	® View article	PDF

Papers

Mathe matics and Applied Mathe matics
OPEN ACCESS
012001
On selected issues of Boolean function application in symmetric key cryptography against side channel attacks
Kamaruzzaman Seman, Muhammad Fahim Roslan, Azni Haslizan Ab Halim and M Nor Azizi Syam Mohd Sayuti

+ Open abstract View article PDF
OPEN ACCESS 012002

The effect of interactive demonstration method on heat energy learning

Ria Triayomi

+ Open abstract
View article
\% PDF

OPEN ACCESS
Improved cloud computing model of internet pricing schemes based on Cobb-Douglas utility function

Indrawati, Fitri Maya Puspita, Evi Yuliza, Oki Dwipurwani, Yossy Eka Putri and Affriyanti

+ Open abstract B View article PDF

OPEN ACCESS 012004
Optimization production and distribution using production routing problem with perishable inventory (PRPPI) models

Novi Rustiana Dewi, Eka Susanti, Eddy Roflin, Tiara Bella Octalia and Rika Novita

+ Open abstract
View article

8. PDF

OPEN ACCESS 012005
Naive Bayes classifier for infant weight prediction of hypertension mother
Anita Desiani, Rifkie Primartha, Muhammad Arhami and Osvari Orsalan

+ Open abstract
View article

8) PDF

OPEN ACCESS	012006

Joint life insurance based on Gompertz assumptions and interest rate affected by the excange rate

Des Ahwine Zayanti, Endang Sri Kresnawati and Mulya Megah

+ Open abstract B View article PDF

OPEN ACCESS 012007
Simulation of pension plan supplemental cost based on withdrawal rate interpolation and different benefit

Endang Sri Kresnawati and Yulia Resti

+ Open abstract 國 View article PDF
OPEN ACCESS 012008

Set covering models in optimizing the emergency unit location of health facility in Palembang
Robinson Sitepu, Fitri Maya Puspita, Setia Romelda, Ahmad Fikri, Beta Susanto and Hadir Kaban

+ Open abstract
View article
2 PDF

OPEN ACCESS
012009
Triangular fuzzy number in probabilistic fizzy goal programming with pareto distribution
Eka Susanti, Oki Dwipurwani, Robinson Sitepu, Wulandari and Liani Natasia

+ Open abstract
View article
\% PDF

Providing biodiversity information to support sustainable development of Sugihan wethands, South Sumatra Arum Setiawan, Muhammad Iqbal, Doni Setiawan and Indra Yustian

+ Open abstract
(1) View article
g PDF

OPEN ACCESS 012109
Microplastic contamination on Anadara granosa Linnaeus 1758 in Pangkal Babu mangrove forest area, Tanjung Jabung Barat district, Jambi

Syaidah Fitri and M P Patria

+ Open abstract View article PDF

OPEN ACCESS
Propagation for conserving endangered taxol producing tree Taxus sumatrana through shoot cuttings technique

A Susilowati, H H Rachmat, C R Kholibrina, K S Hartini and H A Rambe

+ Open abstract \quad View article PDF

JOURNAL LINKS
Journal home
Information for organizers
Information for authors
Search for published proceedings
Contact us
Reprint services from Curran Associates

Set covering models in optimizing the emergency unit location of health facility in Palembang

To cite this article: Robinson Sitepu et al 2019 J. Phys.: Conf. Ser. 1282012008

View the article online for updates and enhancements.

IOP ebooks ${ }^{\text {"I }}$

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Set covering models in optimizing the emergency unit location of health facility in Palembang

Robinson Sitepu ${ }^{1}$, Fitri Maya Puspita ${ }^{1, \mathrm{a}}$, Setia Romelda ${ }^{1}$, Ahmad Fikri ${ }^{1}$, Beta Susanto ${ }^{2}$, Hadir Kaban ${ }^{3}$
${ }^{1}$ Mathematics Department, ${ }^{2}$ Marine Department, ${ }^{3}$ Physics Department, Faculty of Mathematics and Natural Science, Sriwijaya University, Jl. Raya Palembang Prabumulih KM. 32 Indralaya Ogan Ilir Indonesia 30662
acorresponding author: fitrimayapuspita@unsri.ac.id

Abstract

Palembang comprises 16 districts, but in this research, the focus area is limited to 8 districts namely Sukarami, Sako, Sematang Borang, Kalidoni, Kemuning, Ilir Timur II, Seberang Ulu II, and Plaju. There are currently only 7 districts that have emergency installations. This research is designed to optimize the number and location of emergency installation in Palembang. Optimization of emergency installation location is required to improve health services in Palembang. This optimization uses covering-based models that include location set covering problem and maximal covering location problem. The solutions are obtained by using branch and bound solver on Lingo 13.0. The results of the computation with the best time of 15 minutes are 6 locations of emergency installations in order to serve the existing 8 districts.

1. Introduction

Mathematically, optimization is a way of reaching prices of certain functions with limiting factors. If the decision will issue the maximum desired value, the result will be maximization. Optimization in solving problems is ways to produce optimal results [1].

Location facility issues such as emergency service facilities form an important class of location problems in optimization. These problems usually involve the optimal location of the facility[2]. For example ambulance vehicles, emergency care centers, fire stations, schools, libraries, and emergency equipment. The objective function of location problems usually involves costs, distance, and service utilization. Optimization problems relate to the need to fulfill a number of constraints that are specified. These constraints may be related to safety, available resources, service level, and time [3-5]. Location Set Covering Problem (LSCP) is a problem in a distribution system that aims to find the optimum number of facility location placements so that it can serve all points of demand [6]. Maximal Covering Location Problem (MCLP) aims to maximize the number of points of demand with the number of locations of facilities (Emergency Installation) whose limits are only available at a number of points of facility location so that they can cover all customer demand points. The median problem aims to minimize the average weighted distance between the location point of the service facility and the point of request [7].

Optimization is the search for variable values that are considered optimal, effective and efficient to achieve the desired goals. Optimization issues vary according to the conditions under which the system works. One of the most frequent optimization problems, especially in the field of
transportation, is about finding the shortest path. Optimization in the shortest path can be based on the closest mileage to a facility or based on the fastest time to reach it. This settlement process still has to pay attention to the conditions that arise in it for a journey from the place of origin to the destination point such as congestion. The results of solving the shortest route problem can be called the optimal route. The optimal route is a route that has a minimum travel time and distance [8-9].

In integer programming problem, the variables are integer types. Integer programming is used to model problems whose variables cannot be non-integer numbers (which are real numbers), such as variables that represent the number of people, because the number of people is expressed in integers. Integer programming is usually chosen to model a problem because linear programs with real number variables are not good at modeling problems that require an integer number solution [10].
Lingo is software designed to solve general optimization models, including linear models, integer models, and nonlinear models. Using this software allows calculation of linear programming problems with n variables. Lingo's main working principle is entering data, completing, and estimating the truth and feasibility of the data based on its completion. To solve the problem of zero-one integer linear programming using the Lingo software branch and bound method. To determine the optimal value by using Lingo several steps are needed, namely determining mathematical models based on real data; determining the program formulation for Lingo and reading the report results produced by Lingo [11].

Basically, this paper contributes some ideas. First, the design of the optimization problem of ER location in Palembang and second, the design of optimal route from population covered by the nearest facility location.

2. Research Methodology

In this study, the data used will be described in the form of the number of sub-districts in the city of Palembang and travel time from one sub-district to another. The data obtained will then be defined variables and parameters for LSCP, MCLP, P-median problem, and P-center problem. The solution of the four covering based models is obtained by using Lingo 13.0 software.

3. Result and Discussion

In this study, the optimal number of emergency unit locations was determined using LSCP. The model is as follows.
Minimize :

$$
\begin{equation*}
Z_{L S C P}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8} \tag{1}
\end{equation*}
$$

Subject to:

$$
\begin{align*}
& x_{1} \geq 1 \tag{2}\\
& x_{2} \geq 1 \tag{3}\\
& x_{2}+x_{3} \geq 1 \tag{4}\\
& x_{4}+x_{6} \geq 1 \tag{5}\\
& x_{5} \geq 1 \tag{6}\\
& x_{4}+x_{6} \geq 1 \tag{7}\\
& x_{7} \geq 1 \tag{8}\\
& x_{8} \geq 1 \tag{9}
\end{align*}
$$

Solution obtained I presented in Table 1:
Table 1. Optimal LSCP Solutions

Solver Status	
Model Class	PILP
State	Global Optimal
Objective	6
Infeasibility	0
Iterations	0

Extended Solver Status	
Solver Type	Branch and Bound
Best Objective	6
Objective bound	6
Steps	0
Active	0
Update Interval	2
GMU (K)	20
ER (sec)	0

The computation of the LSCP problem is resolved using Lingo 13.0 super edition with an optimal solution of 6 . In a row the emergency unit should be in the following 6 locations, namely as follows.
a. Ilir Timur II
b. Kalidoni
c. Sako
d. Seberang Ulu II
e. Sematang Borang
f. Sukarami

Further analysis was carried out aimed at determining the location of the Emergency Unit selected when there were restrictions on the number of Emergency Units being built. The calculation results assuming the best time ≤ 15 minutes using the LSCP shows that the number of locations chosen to meet all points of demand is 6 . The optimal Emergency Unit amounts to 6 , in the sensitivity analysis try 3 other alternatives to see selected location. The alternatives are 4,5 , and 6 . The selection of 3 alternatives is done to see how many sub-districts can be served if the number of facilities built is limited. How to determine the selected location on this problem is by using the Maximal Covering Location Problem (MCLP) which aims to maximize the total demand that can be met.

If the location of the facility is only built in 4 locations, then the locations of the proposed facilities can maximize the demand that is served. The model then is as follows.
Maximize :

$$
\begin{equation*}
\mathrm{Z}=12 y_{1}+5 y_{2}+6 y_{3}+7 y_{4}+4 y_{5}+7 y_{6}+4 y_{7}+7 y_{8} \tag{10}
\end{equation*}
$$

Subject to:

$$
\begin{align*}
& x_{1} \geq y_{1} \tag{11}\\
& x_{2} \geq y_{2} \tag{12}\\
& x_{2}+x_{3} \geq y_{3} \tag{13}\\
& x_{4}+x_{6} \geq y_{4} \tag{14}\\
& x_{5} \geq y_{5} \tag{15}\\
& x_{4}+x_{6} \geq y_{6} \tag{16}\\
& x_{7} \geq y_{7} \tag{17}\\
& x_{8} \geq y_{8} \tag{18}\\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=4 \tag{19}
\end{align*}
$$

Solution for this model is obtained in Table 2 as follows.
Table 2. Optimal Solution for $p=4 M C L P$

Solver Status	
Model Class	PILP
State	Global Optimal
Objective	44
Infeasibility	0

Iterations	0
Extended Solver Status	
Solver Type	Branch and Bound
Best Objective	44
Objective bound	44
Steps	0
Active	0
Update Interval	2
GMU (K)	22
ER (sec)	0

The resolution of the MCLP problem was solved using Lingo 13.0 Super Edition with an alternative $p=4$ which obtained the optimal solution of 4 , but all of the existing demand points have not been fulfilled. In a row the Emergency Unit should be built in the following 4 locations, namely:
a. Ilir Timur II
b. Kalidoni
c. Seberang Ulu II
d. Sukarami

If the location of the facility is only built in 5 locations, then the location points of the proposed facility can maximize the demand that is served. The model is described as follows.
Maximize :

$$
\begin{equation*}
\mathrm{Z}=12 y_{1}+5 y_{2}+6 y_{3}+7 y_{4}+4 y_{5}+7 y_{6}+4 y_{7}+7 y_{8} \tag{20}
\end{equation*}
$$

Subject to :

$$
\begin{align*}
& x_{1} \geq y_{1} \tag{21}\\
& x_{2} \geq y_{2} \tag{22}\\
& x_{2}+x_{3} \geq y_{3} \tag{23}\\
& x_{4}+x_{6} \geq y_{4} \tag{24}\\
& x_{5} \geq y_{5} \tag{25}\\
& x_{6} \geq y_{6} \tag{26}\\
& x_{7} \geq y_{7} \tag{27}\\
& x_{8} \geq y_{8} \tag{28}\\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=5 \tag{29}
\end{align*}
$$

Solution obtained is presented in Table 3.
Table 3. Optimal Solution for $p=5 M C L P$

Solver Status	
Model Class	PILP
State	Global Optimal
Objective	48
Infeasibility	0
Iterations	0
Extended Solver Status	
Solver Type	
Best Objective	Branch and Bound
Objective bound	

Steps	0
Active	0
Update Interval	2
GMU (K)	22
ER (sec)	0

Completion of the MCLP problem was solved using Lingo 13.0 Super Edition with the alternative $\mathrm{p}=5$ the optimal solution was obtained by 5 , but all existing demand points have not been fully fulfilled. In a row the Emergency Unit should be built in the following 5 locations, namely :
a. Ilir Timur II
b. Kalidoni
c. Sako
d. Seberang Ulu II
e. Sukarami

If the location of the facility is only built in 6 locations, then the location points of the proposed facility can maximize the demand that is served. Then the model is as follows.
Maximize :

$$
\begin{equation*}
\mathrm{Z}==12 y_{1}+5 y_{2}+6 y_{3}+7 y_{4}+4 y_{5}+7 y_{6}+4 y_{7}+7 y_{8} \tag{30}
\end{equation*}
$$

Subject to :

$$
\begin{align*}
& x_{1} \geq y_{1} \tag{31}\\
& x_{2} \geq y_{2} \tag{32}\\
& x_{2}+x_{3} \geq y_{3} \tag{33}\\
& x_{4}+x_{6} \geq y_{4} \tag{34}\\
& x_{5} \geq y_{5} \tag{35}\\
& x_{4}+x_{6} \geq y_{6} \tag{36}\\
& x_{7} \geq y_{7} \tag{37}\\
& x_{8} \geq y_{8} \tag{38}\\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}=6 \tag{39}
\end{align*}
$$

then the solution obtained is in Table 4.
Table 4. Optimal Solution for $p=6 M C L P$

Solver Status	
Model Class	PILP
State	Global Optimal
Objective	52
Infeasibility	0
Iterations	0
Extended Solver Status	
Solver Type	Branch and Bound
Best Objective	52
Objective bound	52
Steps	0
Active	0
Update Interval	2
GMU (K)	22
ER (sec)	0

Completion of the MCLP problem was solved using Lingo 13.0 Super Edition with alternative p = 6 the optimal solution was obtained by 6 and all available request points could be fulfilled. In succession the Emergency Unit should be built in the following 6 locations, namely :
a. Ilir Timur II
b. Kalidoni
c. Sako
d. Seberang Ulu II
e. Sematang Borang
f. Sukarami
P-Median Problem and P-Center Problem use location data of Emergency Unit facilities and also location of request for emergency services. Location of facility uses location obtained from LSCP.To minimize the average distance between the point of request location and the location of the nearest facility is used in p-median problem with Lingo 13.0.the model is as follows.
Minimize :
$Z=0 x_{1,1}+38 x_{1,2}+17 x_{1,3}+37 x_{1,4}+19 x_{1,5}+33 x_{1,6}+29 x_{1,7}+43 x_{1,8}+40 x_{2,1}+0 x_{2,2}+26 x_{2,3}+$ $49 x_{2,4}+29 x_{2,5}+45 x_{2,6}+22 x_{2,7}+48 x_{2,8}+16 x_{3,1}+13 x_{3,2}+0 x_{3,3}+40 x_{3,4}+21 x_{3,5}+36 x_{3,6}+$
$36 x_{3,7}+27 x_{3,8}+41 x_{4,1}+49 x_{4,2}+40 x_{4,3}+0 x_{4,4}+40 x_{4,5}+12 x_{4,6}+68 x_{4,7}+67 x_{4,8}+20 x_{5,1}+$
$20 x_{5,2}+27 x_{5,3}+40 x_{5,4}+0 x_{5,5}+50 x_{5,6}+33 x_{5,7}+25 x_{5,8}+37 x_{6,1}+44 x_{6,2}+35 x_{6,3}+12 x_{6,4}+$
$52 x_{6,5}+0 x_{6,6}+64 x_{6,7}+62 x_{6,8}+30 x_{7,1}+24 x_{7,2}+40 x_{7,3}+62 x_{7,4}+34 x_{7,5}+58 x_{7,6}+0 x_{7,7}+$
$54 x_{7,8}+41 x_{8,1}+38 x_{8,2}+30 x_{8,3}+65 x_{8,4}+24 x_{8,5}+60 x_{8,6}+53 x_{8,7}+0 x_{8,8}$
Subject to :
$x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}+x_{1,7}+x_{1,8}=1$
$x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}+x_{2,5}+x_{2,6}+x_{2,7}+x_{2,8}=1$
$x_{3,1}+x_{3,2}+x_{3,3}+x_{3,4}+x_{3,5}+x_{3,6}+x_{3,7}+x_{3,8}=1$
$x_{4,1}+x_{4,2}+x_{4,3}+x_{4,4}+x_{4,5}+x_{4,6}+x_{4,7}+x_{4,8}=1$
$x_{5,1}+x_{5,2}+x_{5,3}+x_{5,4}+x_{5,5}+x_{5,6}+x_{5,7}+x_{5,8}=1$
$x_{6,1}+x_{6,2}+x_{6,3}+x_{6,4}+x_{6,5}+x_{6,6}+x_{6,7}+x_{6,8}=1$
$x_{7,1}+x_{7,2}+x_{7,3}+x_{7,4}+x_{7,5}+x_{7,6}+x_{7,7}+x_{7,8}=1$
$x_{8,1}+x_{8,2}+x_{8,3}+x_{8,4}+x_{8,5}+x_{8,6}+x_{8,7}+x_{8,8}=1$
$y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8}=6$
$x_{1,1}, x_{2,1}, x_{3,1}, x_{4,1}, x_{5,1}, x_{6,1}, x_{7,1}, x_{8,1} \leq y_{1}$
$x_{1,2}, x_{2,2}, x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}, x_{7,2}, x_{8,2} \leq y_{2}$
$x_{1,3}, x_{2,3}, x_{3,3}, x_{4,3}, x_{5,3}, x_{6,3}, x_{7,3}, x_{8,3} \leq y_{3}$
$x_{1,4}, x_{2,4}, x_{3,4}, x_{4,4}, x_{5,4}, x_{6,4}, x_{7,4}, x_{8,4} \leq y_{4}$
$x_{1,5}, x_{2,5}, x_{3,5}, x_{4,5}, x_{5,5}, x_{6,5}, x_{7,5}, x_{8,5} \leq y_{5}$
$x_{1,6}, x_{2,6}, x_{3,6}, x_{4,6}, x_{5,6}, x_{6,6}, x_{7,6}, x_{8,6} \leq y_{6}$
$x_{1,7}, x_{2,7}, x_{3,7}, x_{4,7}, x_{5,7}, x_{6,7}, x_{7,7}, x_{8,7} \leq y_{7}$
$x_{1,8}, x_{2,8}, x_{3,8}, x_{4,8}, x_{5,8}, x_{6,8}, x_{7,8}, x_{8,8} \leq y_{8}$
Solution obtained is presented in Table 5 .
Table 5. P-Median Problem Optimal Solution

Solver Status	
Model Class	PILP
State	Global Optimal
Objective	8512
Infeasibility	0
Iterations	0

Extended Solver Status	
Solver Type	Branch and Bound
Best Objective	8512
Objective bound	8512
Steps	0
Active	0
Update Interval	2
GMU (K)	48
ER (sec)	0

The calculation of the P-Median Problemshows that
a. Customers in Ilir Timur II District $\left(x_{1}\right)$ were placed at the facility location in Ilir Timur II District $\left(x_{1}\right)$
b. Customers in Kalidoni District $\left(x_{2}\right)$ are placed at the facility's location in Kalidoni District $\left(x_{2}\right)$
c. Customers in Kemuning District $\left(x_{3}\right)$ are placed at the location of the facility in Kemuning District (x_{3})
d. Customers in Plaju District $\left(x_{4}\right)$ are placed at the facility location in Seberang Ulu II $\left(x_{6}\right)$
e. Customers in Sako District $\left(x_{5}\right)$ are placed at the facility location in Sako District $\left(x_{5}\right)$
f. Customers in Seberang Ulu II District $\left(x_{6}\right)$ are placed at the facility location in Seberang Ulu II (x_{6})
g. Customers in Sematang Borang District $\left(x_{7}\right)$ are placed at the facility location in Sukarami District $\left(x_{8}\right)$
h. Customers in Sukarami District $\left(x_{8}\right)$ are placed at the facility location in Sukarami $\operatorname{District}\left(x_{8}\right)$
Then again, the P-Center Problemwas resolved using Lingo 13.0. Then the model is as follows.
Minimize:
$\mathrm{Z}=\mathrm{Z}_{\mathrm{p} \text {-center }}$

Subject to

$0 x_{1,1}+38 x_{1,2}+17 x_{1,3}+37 x_{1,4}+19 x_{1,5}+33 x_{1,6}+29 x_{1,7}+43 x_{1,8}+40 x_{2,1}+0 x_{2,2}+26 x_{2,3}+49 x_{2,4}+$
$29 x_{2,5}+45 x_{2,6}+22 x_{2,7}+48 x_{2,8}+16 x_{3,1}+13 x_{3,2}+0 x_{3,3}+40 x_{3,4}+21 x_{3,5}+36 x_{3,6}+36 x_{3,7}+27 x_{3,8}+$
$41 x_{4,1}+49 x_{4,2}+40 x_{4,3}+0 x_{4,4}+40 x_{4,5}+12 x_{4,6}+68 x_{4,7}+67 x_{4,8}+20 x_{5,1}+20 x_{5,2}+27 x_{5,3}+40 x_{5,4}+0 x_{5,5}$
$+50 x_{5,6}+33 x_{5,7}+25 x_{5,8}+37 x_{6,1}+44 x_{6,2}+35 x_{6,3}+12 x_{6,4}+52 x_{6,5}+0 x_{6,6}+64 x_{6,7}+62 x_{6,8}+30 x_{7,1}+$
$24 x_{7,2}+40 x_{7,3}+62 x_{7,4}+34 x_{7,5}+58 x_{7,6}+0 x_{7,7}+54 x_{7,8}+41 x_{8,1}+38 x_{8,2}+30 x_{8,3}+65 x_{8,4}+24 x_{8,5}+$
$60 x_{8,6}+53 x_{8,7}+0 x_{8,8} \leq Z_{P-\text { Center }}$
$x_{1,1}+x_{1,2}+x_{1,3}+x_{1,4}+x_{1,5}+x_{1,6}+x_{1,7}+x_{1,8}=1$
$x_{2,1}+x_{2,2}+x_{2,3}+x_{2,4}+x_{2,5}+x_{2,6}+x_{2,7}+x_{2,8}=1$
$x_{3,1}+x_{3,2}+x_{3,3}+x_{3,4}+x_{3,5}+x_{3,6}+x_{3,7}+x_{3,8}=1$
$x_{4,1}+x_{4,2}+x_{4,3}+x_{4,4}+x_{4,5}+x_{4,6}+x_{4,7}+x_{4,8}=1$
$x_{5,1}+x_{5,2}+x_{5,3}+x_{5,4}+x_{5,5}+x_{5,6}+x_{5,7}+x_{5,8}=1$
$x_{6,1}+x_{6,2}+x_{6,3}+x_{6,4}+x_{6,5}+x_{6,6}+x_{6,7}+x_{6,8}=1$
$x_{7,1}+x_{7,2}+x_{7,3}+x_{7,4}+x_{7,5}+x_{7,6}+x_{7,7}+x_{7,8}=1$
$x_{8,1}+x_{8,2}+x_{8,3}+x_{8,4}+x_{8,5}+x_{8,6}+x_{8,7}+x_{8,8}=1$
$y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}+y_{7}+y_{8} \leq 6$
$x_{1,1}, x_{2,1}, x_{3,1}, x_{4,1}, x_{5,1}, x_{6,1}, x_{7,1}, x_{8,1} \leq y_{1}$
$x_{1,2}, x_{2,2}, x_{3,2}, x_{4,2}, x_{5,2}, x_{6,2}, x_{7,2}, x_{8,2} \leq y_{2}$
$x_{1,3}, x_{2,3}, x_{3,3}, x_{4,3}, x_{5,3}, x_{6,3}, x_{7,3}, x_{8,3} \leq y_{3}$
$x_{1,4}, x_{2,4}, x_{3,4}, x_{4,4}, x_{5,4}, x_{6,4}, x_{7,4}, x_{8,4} \leq y_{4}$
$x_{1,5}, x_{2,5}, x_{3,5}, x_{4,5}, x_{5,5}, x_{6,5}, x_{7,5}, x_{8,5} \leq y_{5}$
$x_{1,6}, x_{2,6}, x_{3,6}, x_{4,6}, x_{5,6}, x_{6,6}, x_{7,6}, x_{8,6} \leq y_{6}$
$x_{1,7}, x_{2,7}, x_{3,7}, x_{4,7}, x_{5,7}, x_{6,7}, x_{7,7}, x_{8,7} \leq y_{7}$
$x_{1,8}, x_{2,8}, x_{3,8}, x_{4,8}, x_{5,8}, x_{6,8}, x_{7,8}, x_{8,8} \leq y_{8}$
Solution obtained is in Table 6
Table 6. P-Center Problem Optimal Solution

Solver Status	
Model Class	MILP
State	Global Optimal
Objective	8512
Infeasibility	0
Iterations	0
Extended Solver Status	
Solver Type	Branch and Bound
Best Objective	8512
Objective bound	8512
Steps	0
Active	0
Update Interval	2
GMU (K)	48
ER (sec)	0

Completion of the P-Median Problem is obtained :
a. Customers in Ilir Timur II District $\left(x_{1}\right)$ were placed at the facility location in Ilir Timur II District (x_{1})
b. Customers in Kalidoni District $\left(x_{2}\right)$ are placed at the facility's location in Kalidoni District $\left(x_{2}\right)$
c. Customers in Kemuning District $\left(x_{3}\right)$ are placed at the location of the facility in Kemuning District (x_{3})
d. Customers in Plaju District $\left(x_{4}\right)$ are placed at the facility location in Seberang Ulu II (x_{6})
e. Customers in Sako District $\left(x_{5}\right)$ are placed at the facility location in Sako District $\left(x_{5}\right)$
f. Customers in Seberang Ulu II District $\left(x_{6}\right)$ are placed at the facility location in Seberang Ulu II $\left(x_{6}\right)$
g. Customers in Sematang Borang District $\left(x_{7}\right)$ are placed at the facility location in Sukarami District (x_{8})
h. Customers in Sukarami District $\left(x_{8}\right)$ are placed at the facility location in Sukarami District $\left(x_{8}\right)$

4. Conclusion

Based on the discussion, it can be concluded that the number of Emergency Unit locations in order to serve 8 sub-districts in Palembang City is 6 locations. The location of the Emergency Unit can be built in the following 6 locations: Ilir Timur II Subdistrict, Kalidoni Subdistrict, Sako Subdistrict, Seberang Ulu II Subdistrict, Sematang Borang Subdistrict, and Sukarami Subdistrict.

Acknowledgment

The research leading to this study was financially supported by Sriwijaya University for support through Grant Scheme Unggulan Kompetitif Sriwijaya University Year 2018.

References

[1] Dzator M 2006 The optimal location of emergency units within cities Thesis Curtin University of Technology, Perth
[2] Segall M, Lumb R, Lall V, \& Moreno, A 2017 Healthcare Facility Location: A DEA Approach American Journal of Management 17(6), 54-65
[3] Dzator M and Dzator J 2015 An Efficient Modified Greedy Algorithm for the P-Median Problem Paper presented at the 21st International Congress on Modelling and Simulation
[4] Dzator M and Dzator J 2017 The p-Median Problem and Health Facilities: Cost Saving and Improvement in Healthcare Delivery Through Facility Location. In R. Sarker, H. Abbass, S. Dunstall, P. Kilby, R. Davis \& L. Young (Eds.), Data and Decision Sciences in Action, Lecture Notes in Management and Industrial Engineering: Springer International Publishing AG 2018
[5] Neebe A W 1988 A Procedure for Locating Emergency-Service Facilities for All Possible Response Distances J. Opt Res. Soc. 39(8) 743-748
[6] Rahmawati M 2009 Penentuan Jumlah dan Lokasi Halte Rute I Bus Rapid Transit (BRT) di Surakarta dengan Model Set Covering Problem (Surakarta : Universitas Sebelas Maret)
[7] Daskin M S and Maass K L 2015 The P-Median Problem (USA : University of Michigan)
[8] Hannawati A, Thiang and Eleazer 2002 Pencarian Rute Optimum Menggunakan Algoritma Genetika Universitas Kristen Petra
[9] Puspita, F. M., Hartono, Y., Syaputri, N. Z., \& Pratiwi, W. D. (2018). Robust Counterpart Open Capacitation Vehicle Routing (RCOCVRP) Model in Optimization of Garbage Transportation in Sako District and Sukarami District, Palembang City. International Journal of Electrical and Computer Engineering (IJECE), 8(6)
[10] Hayati E N 2010 Aplikasi Algoritma Branch and Bound Untuk Menyelesaikan Integer Programming Universitas Stikubank Semarang
[11] Anonim 2011 Tutorial Penggunaan Lingo. https://ko2smath06.wordpress.com. (Accessed on February 6, 2018, pukul 09.18 WIB)

Sriwijaya International Conference on Basic and Applied Sciences

