${ }^{\text {st }}$ International Conference on Computer Science and Engineering

 (Q) -iaes 1 il

Converging Technologies for Smairt Environments

EXECUTIVE BOARD

STEERING COMMITTEE

1. Prof. Dr. Germano Lambert-Torres, Universidade Federal de Itajuba, Brazil
2. Prof. Dr. Serhat Şeker, Istanbul Technical University, Turkey
3. Prof. Dr. Sci. Ildar Z Batyrshin. Ph.D, Mexican Petroleum Institute, Mexico

PROGRAM CO-CHAIRS

1. Assoc. Prof. Dr. Dejan Gjorgjevikj,

SS Cyril and Methodius University, Skopje, Macedonia
2. Assoc. Prof. Dr. Ion Tutanescu, University of Pitesti, Romania
3. Dr. Reza Firsandaya Malik

Universitas Sriwijaya
4. Dr. Deris Stiawan

Universitas Sriwijaya

PROGRAM COMMITTEE

1. Prof. Dr. Tahir M. Lazimov, Azerbaijan Technical University, Azerbailan
2. Prof. Dr. Eleonora Guseinoviene, Klaipeda University, Lithuania

Prof. Dr. Eng. Sattar Bader Sadkhan. SMIEEE, University of Babylon, Iraq
4. Prof. Dr.-Ing. It. Kalamullah Ramli, Universitas Indonesia Indonesia
5. Assoc. Prof. Dr. Tahir Cetin Akinci, Kirklareli University, Turkey

Assoc. Prof. Dr. Siti Zaiton Mahd Hashim, Universiti Teknolog Malaysia, Malaysia
Assoc. Prof. Tole Sutikno, University of Ahmad Dahlan
ndonesia
Banduniof. Dr.lr. Aciek Ida Wuryandari, Institut Teknolog

- Assoc indonesia

Assoc. Prof. Dr. Moch Facta
Assoc, Universitas Diponegoro,
Indonesia Dr. Munawar Riyadi, Universitas Diponegoro
12. Dr. Ir. Endra Pitowarno, Politeknik Elektro

- PENS, Indonesia
Miohd, Politeknik Elektronika Negeri Surabaya Malaysia Aluan Ahmad, Universiti Teknikal Malaysia Melaka, AREA EDTIOR FOR COMPUIER SCIENCE AND INFORMATICS

$$
\begin{aligned}
& \text { 1. Prof. Dr. Kamal Bechkoum, School of Science and Technology, } \\
& \text { 2. Horthampton, United Kingdom } \\
& \text { 3. Asoc, Prof. Dr. Simon xu, Algoma University College, Canada } \\
& \text { Or. Aydin Nusret Guclu, METU, Ankara, Turkey }
\end{aligned}
$$

4. Asst. Prof. Dr. Rozita Jamili Oskouei, Institute of Advanced Basic Science, Iran, Islamic Republic of
5. Asst. Prof. Dr. Sultan Noman Qasem, Al-Imam Muhammad Ibn Saud Islamic University, Saudi Arabia
6. Dr. Aina Musdholifah, University of Gadjah Mada, Indonesia
7. Imam Much. Ibnu Subroto, Universitas Islam Sultan Agung, Indonesia

AREA EDITOR FOR CONTROL AND AUTOMATION

1. Assoc. Prof. Dr. Zhong Hu, South Dakota State University, Brookings, United States
2. Assoc. Prof. Dr. Serdar Ethem Hamamci, Inonu University, Turkey
3. Assoc. Prof. Dr Gökhan Gökmen, Marmara University, Turkey
4. Assoc. Prof. Dr. Audrius Senulis, Klaipeda University, Lithuania
5. Dr. Peng Peng, Sr. Development Engineer at Seagate Technology, United States
6. Assoc. Prof. Ir. Bambang Tutuko, Faculty of Computer Science Sriwijaya University, Indonesia
7. Rossi Passarella., Faculty of Computer Science, Sriwijaya University, Indonesia

AREA EDITOR FOR SECURITY AND COMMUNICATION NETWORKS

1. Prof. Dr. Gamal Abdel Fadeel Khalaf, Faculty of Engineering, Helwan University, Cairo, Egypt
2. Assoc. Prof. Dr. Dana Prochazkova. PhD., DrSc, Czech Technical University, Czech Republic
3. Asst. Prof. Dr. Eng. Khoirul Anwar, Japan Advanced Institute of Science and Technology (JAIST), Japan
4. Dr. Óscar Mortágua Pereira, Universidade de Aveiro, Portugal
5. Dr. Satria Mandala, Universitas Islam Negeri (UIN), Maulana Malik Ibrahim, Indonesia
6. Charles Lim. ECSA, ECSP, ECIH, CEH, Faculty of information Technology, Swiss-German University, Indonesia

AREA EDITOR FOR SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITON

1. Assoc. Prof. Dr. Hasan Demir, Namik Kemal University, Turkey
2. Dr. Eng. Anto Satriyo Nugroho, Center for the Assessment \& Application of Technology (PTIK-BPPT), Indonesia
3. Dr. Hoirul Basori, Institut Teknologi Sepuluh Nopember,
Indonesia

AREA EDITOR FOR GRID AND CLOUD COMPUTNG

1. Asst. Prof. Dr. Adil Yousif, University of Science and Technology, Khartoum, Sudan
2. Dr. Ming Mao, University of Virginia, United States

ORGANIZING COMMITTEE

Conference Board of Director

1. Prof. Dr. Germano Lambert-Torres,
2. Prof. Dr. Serhat Seker,
3. Prof. Dr. Sci. Ildar Z Batyrshin. Ph.D,
4. Prof.Dr. Badia Parizade
5. Prof. Dr. Ir. H. Anis Saggaff
6. Dr. Darmawilaya

Universidade Federal de Itajuba, Brazil
Istanbul Technical University, Turkey
Mexican Petroleum Institute, Mexico
Universitas Sriwijaya, Indonesia
Universitas Sriwijaya, Indonesia
Universitas Sriwijaya, Indonesia

Conference Chair	: Assoc.Prof. Dr. Siti Nurmaini
Vice Chair	: Rossi Passarella, M.Eng
Secretary	: Firdaus, M.Kom
	Atika Mailasari
Technical and Logistic	: Ahmad Zarkasih, MT
	Bambang Tutuko, MT
Food and Berverages	: Nurhefi
Schedule and program	: Dr. Deris Stiawan
We	Drs. Saparudin, PhD
Website	: Dr. Reza Firsandaya Malik
	Tasmi Salim, SSi
Registration and Visa	: Ahmad Fali Oklilas, MT
	Erwin S.Si M.Si
General Info	: Ahmad Heriyanto, M, K
	Sri Desy, MT
Publication and Documentation	: Sutarno, MT
Proceeding	: Hude Ubaya, MT
	Ahmad Rifat, MT

Table of Contents

Articles

Numerical Solution of Internet Pricing_Scheme Based on Perfect		PDF
Substitute Utility Function	$1-4$	
Indrawati Indrawati		

Generalized Model and Optimal Solution of Internet Pricing	$\frac{\text { PDF }}{5-8}$
Scheme in Single Link under Multiservice Networks	

Analysis of Security Service Oriented Architecture (SOA) With	$9-12$
Access Control Models Dynamic Level	
Erick Fernando, Pandapotan Siagian	9

An Improved Model of Internet Pricing Scheme Of Multi Link	
Multi Service Network With Various Value of Base Price,Quality.	$13-16$
Premium and QoS Level	

Automated Vehicle Monitoring System	
Agustinus Deddy Arief Wibowo, Rudi Heriansyah	$17-20$

Target Localization With Fuzzy-Swarm Behavior	$\frac{\text { PDF }}{21-24}$
Siti Nurmaini	

Sensor Fusion and Fuzzy Logic for Stabilization System of	
Gimbal Camera on Hexacopter	$25-32$
Huda Ubaya, Hanipah Mawarni	

Noise Reduction Technique for Heart Rate Monitoring_Devices	
Q.H Hii, Reza Firsandaya Malik	$33-36$

Implementation of Quadcopter for Capturing Panoramic Image
at Sedayu Bantul

Anton Yudhana, Nuryono Satya Widodo, Sunardi Sunardi

First Person View on Flying, Robot For Real Time Monitoring.	
Huda Ubaya, Muhammad Iqbal	$\frac{\text { PDF }}{41-44}$

Design of Context Dependent Blending_(CDB) in Behaviour	
Based Robot Using Particle Swarm Fuzzy Controller (PSFC).	$45-50$
Andi Adriansyah	

ELCONAS Electronic Control Using Android System With PDF
Bluetooth Communication And Sms Gateway Based 51-54

Microcontroller
Ahmad Fadhil, Yandi Prasetia, Adiansyah Adiansyah, Titin Wahdania Tunnisa, Ayu Ambarwati, rossi Passarella
Data Optimization on Multi Robot Sensing System with RAM

based Neural Network Method
Ahmad Zarkasi, Siti Nurmaini

Identification of Ambiguous Sentence Pattern in Indonesian	PDF Using Shift-Reduce Parsing. M Fachrurrozi, Novi Yusliani, Muharromi Maya Agustin

Hand Gesture Recognition as Password to Open The Door With
Camera and Convexity Defect Method

rossi passarella, Muhammad Fadli, Sutarno Sutarno

Signature Similarity Search Using Cluster Image Retrieval	PDF
	75-80
Rock Genre Classification using K-Nearest Neighbor	PDF
Yoppy Sazaki	81-84
Simplification Complex Sentences in Indonesia Language using	PDF PDF
Rule-Based Reasoning	85-88
Rifka Widyastuti, M Fachrurrozi, Novi Yusliani	
Watershed Segmentation for Face Detection Using Artificial	PDF
Neural Network 89-92 Julian Supardi	
uation of Protection Against Collapse from Buckling of Stiffened	PDF
Column Based on ASME BPVC Sec. VIII Div. 2 Using Finite	93-98
Element Simulation	
Purwo adarno	
Searching Optimal Route for Public Transportation Of Palembang.	PDF
City Using A*Algorithm	99-104
Fithri Selva Jumeilah	
The Simulation and Design of High Subsonic Wing Aircraft	PDF
Prasetyo Edi	105-109
Molecular Docking on Azepine Derivatives as Potential Inhibitors	PDF
for H1N1-A Computational Approach	111-112
Neni Frimayanti, Fri Murdiya, rossi passarella	
Risk Management for Enterprise Resource Planning_Post	PDF
Implementation Using COBIT 5 for Risk	113-117
Dwi Rosa Indah, Harlili Harlili, Afriyan Firdaus	
Fuzzy Logic Implementation on Enemy Speed Control to Raise	PDF
Player Engagement	119-123
Abdiansah abdiansah, Anggina Primanita, Frendredi Muliawan	
The Development Model for Customer Relationship Management	PDF
(CRM) to Improve The Quality of Services in Academic	125-130
Information Systems Faculty of Computer Science Sriwijaya	
University	
Fathoni Fathoni	
Cost Estimation System for Construction Project (CES-CP).	PDF
Upasana Narang, Firdaus Firdaus, Ahmad Rifai	131-134

An Improved Model of Internet Pricing Scheme Of Multi Link Multi Service Network With Various Value of Base Price, Quality Premium and QoS Level

Fitri Maya Puspita ${ }^{1}$, Irmeilyana, Indrawati
Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Sriwijaya, South Sumatera Indonesia
${ }^{1}$ pipitmac140201@gmail.com

Abstract

Internet Service Providers (ISPs) nowadays deal with high demand to promote good quality information. However, the knowledge to develop new pricing scheme that serve both customers and supplier is known, but only a few pricing plans involve QoS networks. This study will seek new proposed pricing plans offered under multi link multi service networks. The multi link multi service networks scheme is solved as an optimization model by comparing our four cases set up to achieve ISPs goals in obtaining profit. The decisions whether to set up base price to be fixed to recover the cost or to be varied to compete in the market are considered. Also, the options of quality premium to be fixed to enable user to choose classes according to their preferences and budget or to be varied to enable ISP to promote certain service are set up. Finally, we compare the previous research with our model to obtain better result in maximizing the ISPs profit.

Keywords - multi link multi service network, internet pricing, base price, quality premium, QoS level

I. Introduction

Previous works on pricing scheme of QoS networks is due to [1-3]. They described the pricing scheme based auction to allocate QoS and maximize ISP's revenue. The auction pricing scheme is actually scalability, efficiency and fairness in sharing resources (see in [4-10]).

Recent studies have also been conducted to address problem of multiple service network, other kind of pricing scheme in network. Sain and Herpers [11] discussed problem of pricing in multiple service networks. They solve the internet pricing by transforming the model into optimization model and solved using Cplex software. Also, [12, 13] discussed the new approach and new improved model of [11, 14] and got better results in getting profit maximization of ISP.

Although QoS mechanisms are available in some researches, there are few practical QoS network. Even recently a work in this QoS network proposed by [14-17], it only applies simple network involving one single route from source to destination.

So, the contribution is created by improving the mathematical formulation of $[1,13,14,18]$ into new formulation by taking into consideration the utility function, base price as fixed price or variable, quality premium as fixed prices and variable, index performance, capacity in more than one link and also bandwidth required. The problem of internet charging scheme is considered as Mixed Integer Nonlinear Programming (MINLP) to obtain optimal solution by using

LINGO 13.0 [19] software. In this part, the comparison of two models is conducted in which whether decision variable is to be fixed of user admission to the class or not. This study focuses to vary the quality premium parameters and see what decision can be made by ISP by choosing this parameter.

Our contribution will be a new modified on solving internet charging scheme of multi link multi service networks Again, we formulate the problem as MINLP that can be solved by nonlinear programming method to obtain exact solution.

II. Past literature review

Table I and Table II below present the several past research focusing on internet pricing and current research on wired internet pricing under multiple QoS network.

TABLE I
SEVERAL Past RESEARCH ON INTERNET PRICING

Pricing Strategy	How it Works
Responsive Pricing [20]	Three stages proposed consist of not using feedback and user adaptation, using the closed-loop feedback and one variation of closed loop form.
Pricing plan [21]	It Combines the flat rate and usage based pricing. Proposed pricing scheme offers the user a choice of flat rate basic service, which provides access to internet at higher QoS, and ISPs can reduce their peak load.
Pricing strategy [14] Based on economic criteria. They Design proper pricing schemes with quality index yields simple but dynamic formulas'. Possible changes in service pricing and revenue changes can be made Optimal pricing strategy [22] The schemes are Flat fee, Pure usage based, Two part tariff. Supplier obtains better profit if chooses one pricing scheme and how much it can charge. Two part of analysis homogenous and heterogeneous. Paris Metro Pricing [23, 24] Different service class will have a different price. The scheme makes use of user partition into classes and move to other class it found same service from other class with lower unit price.	

TABLE II
Current Research conducted on wired Internet Networks

Method	How It works
New Approach on solving optimization of internet pricing scheme in multiservice networks proposed by Puspita et al [12]	By comparing with previous work done by Sain and Herpers [11], we obtain better result done by LINGO 13.0. Work in multi service network with availability of QoS level.
Improved Model of internet pricing scheme in single bottleneck multi service network proposed by Puspita et al.[6] and in multiple bottleneck links proposed by Puspita et al. [18]	By improving and modifying the method proposed by Sain and Herpers [11] and Byun and Chatterjee [14], the new improved methods are proven to result in better profit for ISP. The improved model proposed works in single and multiple bottleneck links in multiservice network which has QoS level for each service.
Improved Model of internet pricing scheme in single bottleneck and multi bottleneck links in multiple QoS networks proposed by Puspita et al. [4], Puspita et al. [59]	By Improving and modifying the method proposed by Yang [1], Yang et al. $[2,3,25]$ and Byun and Chatterjee [14], the new improved models that are solved by LINGO 13.0 can perform better results that maximize the ISP profit. The models work on both single and multiple bottleneck links in multi QoS networks.

III. MODEL FORMULATION

We have parameters as follows (adopted in [18]).
$\alpha_{j}:$ base price for class j, can be fixed or variables
β_{j} : quality premium of class j that has I_{j} service performance
$C_{l}:$ total capacity available in link l
$p_{i l}$: price a user willing to pay for full QoS level service of i in link l

The decision variables are as follows.
$x_{i l}$: number of users of service i in link l
$a_{i l}$: reserved share of total capacity available for service i in link l
I_{i} : quality index of class i

Formulation when we assign α and β fixed is as follows.
$\max \sum_{l=1}^{L} \sum_{i=1}^{S}\left(\alpha+\beta I_{i}\right) p_{i l} x_{i l}$

Such that

$I_{i} d_{i l} x_{i l} \leq a_{i l} C_{l}, i=1, \ldots S, l=1, \ldots, L$
$\sum_{l=1}^{L} \sum_{i=1}^{S} I_{i} d_{i l} x_{i l} \leq C_{l}, i=1, \cdots, S ; l=1, \cdots, L$
$\sum_{l=1}^{L} a_{i l}=1, i=1, \cdots, S$
$0 \leq a_{i l} \leq 1, i=1, \cdots, S ; l=1, \cdots, L$
$m_{i} \leq I_{i} \leq 1, i=1, \cdots, S$
$0 \leq x_{i l} \leq n_{i}, i=1, \cdots, S ; l=1, \cdots, L$

With m_{i} and n_{i} are prescribed positive integer numbers.
$\left\{x_{i l}\right\}$ integer

Formulation when we assign α fixed and β vary is as follows.
$\max \sum_{l=1}^{L} \sum_{i=1}^{S}\left(\alpha+\beta_{i} I_{i}\right) p_{i l} x_{i l}$
subject to (2)-(8) with additional constraints as follows.
$\beta_{i} I_{i} \geq \beta_{i-1} I_{i-1}, i>1, i=1, \cdots, S$
$k \leq \beta_{i} \leq q,[k, q] \in[0,1]$

Formulation we have when α and β vary
$\max \sum_{l=1}^{L} \sum_{i=1}^{S}\left(\alpha_{i}+\beta_{i} I_{i}\right) p_{i l} x_{i l}$

Subject to Constraint (2)-(8) and (10) with additional constraints
$\alpha_{i}+\beta_{i} I_{i} \geq \alpha_{i-1}+\beta_{i-1} I_{i-1}, i>1, i=1, \cdots, S$
$y \leq \alpha_{i} \leq z,[y, z] \in[0,1]$

Formulation when we have α vary and β fixed
$\max \sum_{l=1}^{L} \sum_{i=1}^{S}\left(\alpha_{i}+\beta I_{i}\right) p_{i l} x_{i l}$
Subject to constraint (2)-(8) and (13)-(14).
Since ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences like stated in (1). Constraint (2) shows that the required capacity of service does not exceed the network capacity reserved. Constraint (3) explains that required capacity cannot be greater than the network capacity C in link 1. Constraint (4) guarantee that network capacity has different location for each service that lies between 0 and 1 (5).
Constraint (6) explains that QoS level for each service is between the prescribed range set up by ISP. Constraint (7) shows that users applying the service are nonnegative and cannot be greater than the highest possible users determined by service provider. Constraint (8) states that the number of users should be positive integers. Objective function (9) explains that ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based
on their preferences. Constraint (10) explains that quality premium has different level for each service which is at least the same level or lower level. Constraint (11) states that value of quality premium lies between two prescribed values. ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences like stated in (12). Constraint (13) explains that the summation of base cost and quality premium has different level for each service which is at least the same level or lower level. Constraint (14) shows that the base price should lie between prescribed base price set up by ISP. ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences as stated in objective function (15).

IV. OPTIMAL SOLUTION

Will solve the model by using LINGO 13.0 then

1. Case 1: α and β as constant by modifying the QoS level so we divide Case 1 into three sub cases.
2. Case 2: α as constant and β as a variable by modifying the quality premium and QoS level so we divide Case 2 into 9 sub cases.
3. Case 3: α as variable and β as constant so we divide Case 4 into 9 cases
4. Case 4: α and β as variables by modifying the base price, quality premium and QoS level so we divide Case 3 into 27 sub cases.

We have total of 48 sub cases. According to the results of LINGO 13.0 we have two solutions of sub case from each case as follows. We also compare out results with the result previously discussed by [18].

Table III to Tabel VI below present the optimal solution of our four cases. Tabel III shows that in Case 1: α and β as constant, we obtain the highest optimal solution of 750.445 . Total highest capacity used is 7965 kbps or 79.65% of total capacity available. The highest profit is obtained in our model with $I_{i}<I_{i-1}$ and model proposed by [18] with capacity used of 7950 kbps or 79.50%.

TABLE III
CASE 1 SOLUTION WITH α AND β AS CONSTANTS

Link 1							
i	Model [18]		$\boldsymbol{I}_{\boldsymbol{i}}=\boldsymbol{I}_{\boldsymbol{i} \mathbf{- 1}}$		$\boldsymbol{I}_{\boldsymbol{i}}<\boldsymbol{I}_{\boldsymbol{i} \mathbf{- 1}}$		
	C Used	Profit	C Used	Profit	C Used	Profit	
1	600	15.3	210	15.105	600	15.3	
2	3375	227.025	2625	226.575	3375	227.025	
3	0	75	1155	75.525	0	75	
Link 2							
1	600	30.6	600	30.6	600	30.6	
2	3375	282.52	3375	282.52	3375	282.52	
3	0	120	0	120	0	120	
\sum	7950	750.445	7965	750.325	7950	750.445	

TABLE IV
CASE 2 Solution with α AS CONSTANT AND $\beta_{i}=\beta_{i-1}$

Link 1							
i	Model [18]		$\boldsymbol{I}_{\boldsymbol{i}}=\boldsymbol{I}_{\boldsymbol{i} \mathbf{- 1}}$		$\boldsymbol{I}_{\boldsymbol{i}}<\boldsymbol{I}_{\boldsymbol{i} \mathbf{- 1}}$		
	C Used	Profit	C Used	Profit	C Used	Profit	
1	210	23.4	210	23.4	600	39	
2	2625	351	2625	351	3375	387	
3	1155	117	1155	117	0	75	
Link 2							
1	210	46.8	210	46.8	210	46.8	
2	2625	436.8	2625	436.8	2625	436.8	
3	1155	187.2	1155	187.2	1155	187.2	
\sum	7980	1162.2	7980	1162.2	7965	1171.8	

Table IV depicts the solution of case 2 . We obtain the highest optimal solution of 1171.8 with the highest capacity used is 7965 kbps or 79.65% of total capacity available. The highest profit is obtained in our model with $I_{i}<I_{i-1}$ and model proposed by [18]. In Table V, The highest profit is 1197.445 which is obtained in our model with $I_{i}<I_{i-1}$ and capacity used of 7950 kbps or 79.50%. Table VI shows that the highest profit of 1627.6 is obtained in our model with $I_{i}<I_{i-1}$ with capacity used of 7950 kbps or 79.50%.

TABLE V
CASE 3 SOLUTION wITH α AS $\alpha_{i}=\alpha_{i-1}$ AND β AS A CONSTANT

Link 1						
i	Model [18]		$I_{i}=I_{i-1}$		$I_{i}<I_{i-1}$	
	$\begin{gathered} C \\ \text { Used } \end{gathered}$	Profit	$\begin{gathered} C \\ \text { Used } \end{gathered}$	Profit	$\begin{gathered} C \\ \text { Used } \end{gathered}$	Profit
1	210	24.105	210	24.105	600	24.3
2	2625	361.575	2625	$\begin{gathered} 361.57 \\ 5 \end{gathered}$	3375	362.025
3	1155	120.525	1155	$\begin{gathered} 120.52 \\ 5 \end{gathered}$	0	120
Link 2						
1	210	48.21	210	48.21	600	48.6
2	2625	449.96	2625	449.96	3375	450.52
3	1155	192.84	1155	192.84	0	192
Σ	7980	$\begin{gathered} 1197.21 \\ 5 \end{gathered}$	7980	$\begin{gathered} 1197.2 \\ 15 \end{gathered}$	7950	1197.445

TABLE VI
CASE 4 SOLUTION WITH α AS $\alpha_{i}=\alpha_{i-1}$ AND B AS $B_{i}=b_{i-1}$

Link 1						
i	Model [18]		$\boldsymbol{I}_{\boldsymbol{i}}=\boldsymbol{I}_{\boldsymbol{i} \mathbf{1}}$		$\boldsymbol{I}_{i}<\boldsymbol{I}_{\boldsymbol{i} \mathbf{- 1}}$	
	C Used	Profit	C Used	Profit	C Used	Profit
1	210	32.4	210	32.4	600	48
2	2625	486	2625	486	3375	522
3	1155	162	1155	162	0	120
Link 2						
1	210	64.8	210	64.8	600	96
2	2625	604.8	2625	604.8	3375	649.6
3	1155	259.2	1155	259.2	0	192
Σ	7980	1609.2	7980	1609.2	7950	1627.6

In all cases, the requirement for QoS level for service i should be less than service $i-1$ scheme yield the highest optimal solution. From all 4 cases, the highest optimal
solution will be case 4 when we set up base price and quality premium as variables. It means ISP is able to compete the market and promote certain services if ISP varies the base price and quality premium and set up the QoS level of $I_{i}<I_{i-1}$.

V. Conclusions

We have shown that by considering new parameters, more decision variables and constraints, we obtain better profit maximization. The cases shown above basically are ISP strategy to vary its preference to achieve their goals. ISP is able to adopt the cases to suit their goals. The highest maximum profit that can be obtained by ISP is by setting up the base price and quality premium to be varied and also setting up $I_{i}<I_{i-1}$.

However, like stated in [11, 14] since it is more theoretical point of view and assumptions, we limit our result only static result in data changes, and cost preference is just based on our discrete data.

Further research should address more generalization of the model to also consider numerous services offered or generalization of more services

Acknowledgment

The research leading to this paper was financially supported by Directorate of Higher Education Indonesia (DIKTI) for support through Hibah Bersaing Tahun I, 2014.

REFERENCES

[1]. W. Yang, Pricing Network Resources in Differentiated Service Networks, School of electrical and Computer Engineering, Phd Thesis. Georgia Institute of Technology, pp. 1-111, 2004.
[2]. W. Yang, H. Owen, and D.M. Blough," A Comparison of Auction and Flat Pricing for Differentiated Service Networks," Proceedings of the IEEE International Conference on Communications, pp. 2086-2091. 2004.
[3]. W. Yang, H.L. Owen, and D.M. Blough," Determining Differentiated Services Network Pricing Through Auctions," in: P. Lorenz, and P. Dini, (Eds.), Networking-ICN 2005, 4th International Conference on Networking April 2005 Proceedings, Part I, Springer-Verlag Berlin Heidelberg, Reunion Island, France, , 2005.
[4]. F.M. Puspita, K. Seman, and B. Sanugi," Internet Charging Scheme Under Multiple QoS Networks," The International Conference on Numerical Analysis \& Optimization (ICeMATH 2011) 6-8 June 2011, Universita Ahmad dahlan, Yogyakarta, Yogyakarta, Indonesia, 2011.
[5]. F.M. Puspita, K. Seman, and B.M. Taib," A Comparison of Optimization of Charging Scheme in Multiple QoS Networks," 1st AKEPT 1st Annual Young Researchers International Conference and Exhibition (AYRC X3 2011) Beyond 2020: Today's Young Researcher Tomorrow's Leader 19-20 DECEMBER 2011, PWTC, KUALA LUMPUR, pp. 704-711, 2011.
[6]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," Models of Internet Charging Scheme under Multiple QoS Networks," International Conferences on Mathematical Sciences and Computer Engineering 2930 November 2012, Kuala Lumpur, Malaysia, 2012.
[7]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," The Improved Formulation Models of Internet Pricing Scheme of Multiple Bottleneck Link QoS Networks with Various Link Capacity Cases," Seminar Hasil Penyelidikan Sektor Pengajian Tinggi Kementerian Pendidikan Malaysia ke-3 Universiti Utara Malaysia, 2013.
[8]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii, Improved Models of Internet Charging Scheme of Single Bottleneck Link in Multi QoS Networks. Journal of Applied Sciences, vol. 13 pp.572-579, 2013.
[9]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," Improved Models of Internet Charging Scheme of Multi bottleneck Links in Multi QoS Networks," Australian Journal of Basic and Applied Sciences, vol. 7 pp.928-937, 2013.
[10]. F.M. Puspita, K. Seman, and B.M. Taib," The Improved Models of Internet Pricing Scheme of Multi Service Multi Link Networks with Various Capacity Links," 2014 International Conference on Computer and Communication Engineering (ICOCOE'2014), Melaka, Malaysia, 2014.
[11]. S. Sain, and S. Herpers," Profit Maximisation in Multi Service Networks- An Optimisation Model," Proceedings of the 11th European Conference on Information Systems ECIS 2003, Naples, Italy 2003.
[12]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," A new approach of optimization model on internet charging scheme in multi service networks," International Journal of Science and Technology, vol. 2 391-394, 2012.
[13]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," An improved optimization model of internet charging scheme in multi service networks," TELKOMNIKA, vol.10, pp.592-598, 2012.
[14]. J. Byun, and S. Chatterjee," A strategic pricing for quality of service (QoS) network business," Proceedings of the Tenth Americas Conference on Information Systems, New York, pp. 2561-2572, 2004.
[15]. Irmeilyana, Indrawati, F.M. Puspita, and L. Herdayana," Improving the Models of Internet Charging in Single Link Multiple Class QoS Networks," 2014 International Conference on Computer and Communication Engineering (ICOCOE'2014), Melaka, Malaysia, 2014.
[16]. Irmeilyana, Indrawati, F.M. Puspita, and L. Herdayana," The New Improved Models of Single Link Internet Pricing Scheme in Multiple QoS Network," International Conference Recent treads in Engineering \& Technology (ICRET'2014), Batam (Indonesia), 2014.
[17]. Irmeilyana, Indrawati, F.M. Puspita, and Juniwati," Model and optimal solution of single link pricing scheme multiservice network," TELKOMNIKA, vol. 12 pp. 173-178, 2014.
[18]. F.M. Puspita, K. Seman, B.M. Taib, and Z. Shafii," An Improved Model of Internet Pricing Scheme of Multi Service Network in Multiple Link QoS Networks," The 2013 International Conference on Computer Science and Information Technology (CSIT-2013), Universitas Teknologi Yogyakarta, 2013.
[19]. LINGO, LINGO 13.0.2.14, LINDO Systems, Inc, Chicago, 2011.
[20]. J.K. MacKie-Mason, L. Murphy, and J. Murphy," The Role of Responsive Pricing in the Internet," in: J. Bailey, and L. McKnight, (Eds.), Internet Economics Cambridge: MIT Press, pp. 279-304, 1996.
[21]. J. Altmann, and K. Chu," How to charge for network service-Flat-rate or usage-based?," Special Issue on Networks and Economics, Computer Networks vol. 36, pp.519-531, 2001.
[22]. S.-y. Wu, P.-y. Chen, and G. Anandalingam," Optimal Pricing Scheme for Information Services," University of Pennsylvania Philadelphia, 2002.
[23]. D. Ros, and B. Tuffin," A mathematical model of the paris metro pricing scheme for charging packet networks," The International Journal of Computer and Telecommunications Networking - Special issue: Internet economics: Pricing and policies, vol.46, 2004.
[24]. B. Tuffin," Charging the internet without bandwidth reservation: An overview and bibliography of mathematical approaches," Journal of Information Science and Engineering, vol.19, pp.765-786, 2003.
[25]. W. Yang, H.L. Owen, D.M. Blough, and Y. Guan," An Auction Pricing Strategy for Differentiated Service Network," Proceedings of the IEEE Global Telecommunications Conference, IEEE, pp. 41484152, 2003.

ICON-CSE 2014
 CONFERENCE
 (9) (9) - -iaes
 CERTIFICATE OF APPRECIATION

This is to certify that paper entitled
An Improved Model of Internet Pricing Scheme Of Multi Link Multi Service Network With Various Value of Base Price, Quality Premium and QoS Level
by

Fitri Maya Puspita

has been presented the paper at the
$1^{\text {st }}$ International Conference on Computer Science and Engineering
(ICON-CSE) 2014
heldat
Palembang - Indonesia, October 1, 2014

Assoc. Prof. Dr. in. Siti Nurmaini, M.T. General Chair

