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Abstract 

The structural equation modeling (SEM) method has stronger predicting power than path 

analysis and multiple regression because SEM is able to analyze to the deepest level of the 

variables or constructs studied.  This literature review  aims to describe the use of structural 

equation modeling in research.  In general, SEM can be used to analyze research models that have 

several independent (exogenous) and dependent (endogenous) variables as well as moderating or 

intervening variables. SEM provides several benefits and advantages for researchers, including 

building research models with many variables,  researching variables or constructs that cannot be 

observed or cannot be measured directly (unobserved), testing measurement errors for observed 

variables or constructs and confirmatory factor analysis.  The outline of the SEM method can be 

classified into two types, namely covariance based structural equation modeling (CB-SEM) and 

variance or component based SEM (VB-SEM) which includes partial least square (PLS) and 

generalized structural component analysis (GSCA).  This literature review  aims to describe the 

use of structural equation modeling in research. 

Keywords: Data analysis, Predicting power, Social research, Structural equation modelling, 

Variable. 

 

1.Introduction 

Thebasic human beings want to continue to advance and develop in order to achieve a 

better quality of life. This is also the case in the world of research. Experts in the social or 

behavioral sciences including management  consistently continue to develop research methods that 
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can be used to obtain better, perfect, fast, accurate, effective and efficient quality research results. 

Experts in the field of social or behavioral sciences including management have developed a 

research method called Structural Equation Modeling (SEM). At first, the SEM method was only 

good at the level of conception. The SEM method at that time still could not be operationalized 

due to technological limitations. With the rapid development of computer technology, the SEM 

method today is becoming increasingly known and widely used in behavioral and management 

research. The SEM method is a development of path analysis and multiple regression which are 

both forms of multivariate analysis models. In associative, multivariate-correlational or causal-

effect analyses, the SEM method seems to break the dominance of the use of multiple path and 

regression analysis that has been used for decades.  Compared to path analysis and multiple 

regression, the SEM method is superior because it can analyze data more comprehensively. Data 

analysis on path analysis and multiple regression is only carried out on variable total score data 

which is the sum of the items of the research instrument. Thus, path analysis and multiple 

regression are actually performed only at the level of latent (unobserved) variables. Meanwhile, 

data analysis on the SEM method can pierce deeper because it is carried out on each question item 

score of a research variable instrument. Instrument items in SEM analysis are referred to as 

manifest variables (observed) or indicators of a construct or latent variable. 

The SEM method has stronger predicting power than path analysis and multiple regression 

because SEM is able to analyze to the deepest level of the variables or constructs studied. The 

SEM method is more comprehensive in explaining research phenomena. Meanwhile, path analysis 

and multiple regression are only able to reach the level of latent variables so that they experience 

a dead end to parse and analyze empirical phenomena that occur at  the level of grains or indicator 

indicators of latent variables. Judging from the data used, path analysis and multiple regression 

actually only reach the outer shell of a research model. Meanwhile, the SEM method can be likened 

to being able to reach and parse and analyze the deepest entrails of a research model. The SEM 

method is expected to be able to answer the weaknesses and deadlocks faced by the previous 

generation of multivariate methods, namely path analysis and multiple regression. The 

development of SEM methods is becoming increasingly significant in the practice of social, 

behavioral and management research along with the advancement of information technology. 

Many multivariate statistical methods that in the 1950s were difficult to operationalize manually, 

such as factor analysis, multiple regression of more than three free variables, pathway analysis and 



discriminant analysis gradually became inevitable due to the invention of computer programs such 

as: SPSS (Statistical Package for Social Science), Minitab, Prostate, QSB, SAZAM, etc. The SEM 

method is currently estimated to be the most dominant multivariate method. Computer programs 

that can currently be used to process data in SEM method research include AMOS, LISREL, PLS, 

GSCA, and TETRAD.  This literature review  aims to describe the use of structural equation 

modeling in research. 

 

Benefits of SEM in penelitian 

In general, SEM can be used to analyze research models that have several independent 

(exogenous) and dependent (endogenous) variables as well as moderating or intervening variables. 

SEM provides several benefits and advantages for researchers, including building research models 

with many variables, researching variables or constructs that cannot be observed or cannot be 

measured directly (unobserved), m testing measurement errors for observed variables or 

constructs,  m confirming the theory in accordance with research data (confirmatory factor 

analysis), dapat answers various research problems in a set of analysis more systematically and 

comprehensively;  lis illustrative, robust and reliable compared to regression models when 

modeling interaction, non-linearity, error measurement, error terms correlation, and correlation 

between multiple independent latent variables;  duse as an alternative to path analysis and time 

series data analysis based on covariates;  analysis of factors, pathways and regressions; explain the 

complex interrelationships of variables and the direct or indirect effects of one or more variables 

on another; and havegreater flexibility for researchers to link theory to data. 

 

3. Types of SEM 

 As stated above, broadly speaking, the SEM method can be classified into two types, 

namely covariance based structural equation modeling (CB-SEM) and variance or component 

based SEM (VB-SEM) which includes partial least square (PLS) and generalized structural 

component analysis (GSCA). Variance is the deviation of the data from the mean (average) value 

of the sample data. Variance measures the deviation of data from the mean value of a sample, so 

it is a measure for metric variables. Mathematically, variance is the average of the squared 

differences between each observation and the mean, so variance is the mean value of the squared 

mean of the standard deviation. A variable must have a variance that is always positive, if it is zero 



then it is not a variable but a constant. While covariance shows the linear relationship that occurs 

between two variables, namely X and Y. If a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X and Y is opposite, then the covariance is 

negative. If there is no relationship between the two variables X and Y, then the covariance is zero.  

 

Covariance based structural equation modeling (CB-SEM) 

Covariance-based SEM (CB-SEM) was first developed by Joreskog (1973), Keesling (1972) and 

Wiley (1973). CB-SEM became popular after the availability of the LISREL III program 

developed by Joreskog and Sorbom in the mid-1970s. By using the maximum likelihood (ML) 

function, CB-SEM seeks to minimize the difference between the sample covariance matrix and 

the predicted covariance matrix by theoretical models so that the estimation process produces a 

residual covariance matrix whose value is small near zero. Some things that need to be considered 

in the CB-SEM analysis include: 

a. The assumption of using CB-SEM is like parametric analysis. The assumption that must be met 

is that the observed variables must have a multivariate normal distribution and the observations 

must be independent of each other. If the sample is small and not asymptomatic, it will give poor 

results of paramater estimates and statistical models or even produce a negative variant called the 

Heywood Case.  

b. A small sample count will potentially result in a Type II error i.e. a bad model still produces a 

fit model.  

c. CB-SEM analysis requires the form of latent variables whose indicators are reflective. In 

reflective models, indicators or manifests are considered variables that are influenced by latent 

variables according to the classical theory of measurement. In reflective indicator models, 

indicators on a construct (latent variable) are influenced by the same concept. Changes in one item 

or indicator will affect changes in other indicators in the same direction.  The example referred to 

as a reflective variable  is: 

 

 

 

 

 

Leadership 

Democratic 

Autocratic 

Laizez-faire 



 

Figure 1. An example of a reflective variable of a latent variable (construct). Democratic, 

autocratic and Laizez-faire are the variables of the chorusofleadership. Reflective variables are 

variables that stay away from latent variables (constructs) as seen in the blue arrow above. 

 

Variance based SEM (VB-SEM) 

 PLS-SEM 

PLS-SEM aims to test predictive relationships between constructs by seeing if there are 

relationships or influences between them. The logical consequence of the use of PLS-SEM is that 

testing can be carried out without a solid theoretical basis, ignoring some assumptions (non-

parametric) and the parameters of the accuracy of the prediction model in view of the value of the 

coefficient of determination (R2). PLS-SEM is very appropriate to be used in research aimed at 

developing theories. PLS-SEM was developed to address testing that  cannot be done with CB-

SEM.  For example,  in testing formative  variables, as for examples of formative variables  below: 

 

 

 

 

 

 

Figure 1. An example of a formative variable of a latent variable (construct). Education, 

Employment and Income are formative variables of socioeconomic status. Formative variables are 

variables that go to or affect or form latent variables (constructs) as seen in the blue arrow above.  

 

GSCA 

  The GSCA combines the characteristics found in CB-SEM and PLS-SEM. The GSCA can 

handle latent variables with many indicators just like PLS-SEM, requiring the model's goodness 

of fit criteria and indicators and constructs to be correlated such as CB-SEM. The GSCA method 

to date has rarely been widely used by researchers because this method is relatively new. GSCA 

serves the same purpose as PLS-SEM, does not require the assumption of multivariate normality 

of data, and can be tested without a solid theoretical basis with a small number of samples. 
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Covariance-based SEM (CB-SEM) models are often called hard-modeling, while 

component-based or variance-based SEM (VB-SEM) modeling is called soft-modeling. Hard 

modeling aims to provide a statement of the causality relationship or provide a description of the 

mechanism of causality (cause-and-effect) relationships. This provides a scientifically ideal picture 

in data analysis. However, the data to be analyzed does not always meet the ideal criteria so it 

cannot be analyzed by hard modeling. As a solution, soft modeling tries to analyze data that is not 

ideal. Literally, soft actually means soft or soft, but in the context of soft research is defined as not 

basing on the assumption of measurement scale, data distribution and number of samples. The 

main objective of analysis with hard modeling is to test the causality relationships between those 

already built on the theory, whether the model can be confirmed with its empirical data. 

Meanwhile, the main purpose of soft modeling analysis is to find predictive linear relationships 

between latent constructs. It should be understood that causality or estimation relationships are not 

the same as predictive relationships. On causality relationships, CB-SEM looks for invariant 

parameters that structurally or functionally describe how systems in this world work. Invariant 

parameters describe causality relationships between variables in a closed system so that existing 

events can be fully controlled. Whereas in Partial Least Square, Variance or Component -Based 

SEM, the optimal linear relationship between latens is calculated and interpreted as the best 

predictive relationship available with all existing limitations. So that the existing events cannot be 

fully controlled. If the data to be analyzed meets all the assumptions required by CB-SEM, then 

researchers should analyze the data by hard modeling using appropriate software, such as AMOS, 

LISREL.  

If the data does not meet all the required assumptions but the researcher continues to use 

hard modeling analysis or CB-SEM, then some of the problems that may be faced are: tbecome an 

im-proper solution or a solution that is not as effective, because of the Heywood Case, which is a 

symptom of a negative variant value; model becomes un-identified due to indeterminacy factors; 

and non-convergence algorithm.  If the above conditions occur and we still want to analyze the 

data, then the goal we change is not to look for causality relationships between variables, but to 

find optimal predictive linear relationships using components or variance based-SEM.  

Based on the objectives of empirical research, quantitative paradigms can be divided into 

two, namely estimates and predictions. Estimation research is research that aims to test an 



empirical model with valid and reliable measurements. Tests and measurements are carried out at 

the indicator level. The hypothesis tested is the model hypothesis. The measurement criteria for 

testing the feasibility of a model are called goodness of fit tests. For estimation research purposes, 

CB-SEM is the right technique to use. Prediction research is research that aims to test the influence 

between constructs to predict causal relationships. Tests and measurements are carried out at the 

level of constructs or latent variables. The hypotheses carried out are generally partial hypotheses. 

Partial test criteria with predictive significance tests of relationships between variables using t -

statistical tests. PLS-SEM and regression techniques are the right choice of statistical techniques 

to use. So component or variance based SEM (PLS and GSCA) is only used if the data we have 

cannot be solved with covariance based SEM (CB-SEM). 

Conclusion 

SEM can be used to analyze research models that have several independent and dependent 

variables as well as moderating or intervening variables. 
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Abstract→3 

The structural equation modeling (SEM) method has stronger predicting power than path 

analysis and multiple regression because SEM is able to analyze to the deepest level of the 

variables or constructs studied.  This literature review  aims to describe the use of structural 

equation modeling in research.  In general, SEM can be used to analyze research models that have 

several independent (exogenous) and dependent (endogenous) variables as well as moderating or 

intervening variables. SEM provides several benefits and advantages for researchers, including 

building research models with many variables,  researching variables or constructs that cannot be 

observed or cannot be measured directly (unobserved), testing measurement errors for observed 

variables or constructs and confirmatory factor analysis.  The outline of the SEM method can be 

classified into two types, namely covariance based structural equation modeling (CB-SEM) and 

variance or component based SEM (VB-SEM) which includes partial least square (PLS) and 

generalized structural component analysis (GSCA).  This literature review  aims to describe the 

use of structural equation modeling in research. 

Keywords: Data analysis, Predicting power, Social research, Structural equation modelling, 

Variable. →2 

 

1.Introduction→4 

Thebasic human beings want to continue to advance and develop in order to achieve a 

better quality of life. This is also the case in the world of research. Experts in the social or 

behavioral sciences including management  consistently continue to develop research methods that 

can be used to obtain better, perfect, fast, accurate, effective and efficient quality research results. 
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Experts in the field of social or behavioral sciences including management have developed a 

research method called Structural Equation Modeling (SEM). At first, the SEM method was only 

good at the level of conception. The SEM method at that time still could not be operationalized 

due to technological limitations. With the rapid development of computer technology, the SEM 

method today is becoming increasingly known and widely used in behavioral and management 

research. The SEM method is a development of path analysis and multiple regression which are 

both forms of multivariate analysis models. In associative, multivariate-correlational or causal-

effect analyses, the SEM method seems to break the dominance of the use of multiple path and 

regression analysis that has been used for decades.  Compared to path analysis and multiple 

regression, the SEM method is superior because it can analyze data more comprehensively. Data 

analysis on path analysis and multiple regression is only carried out on variable total score data 

which is the sum of the items of the research instrument. Thus, path analysis and multiple 

regression are actually performed only at the level of latent (unobserved) variables. Meanwhile, 

data analysis on the SEM method can pierce deeper because it is carried out on each question item 

score of a research variable instrument. Instrument items in SEM analysis are referred to as 

manifest variables (observed) or indicators of a construct or latent variable. 

The SEM method has stronger predicting power than path analysis and multiple regression 

because SEM is able to analyze to the deepest level of the variables or  constructs studied. The 

SEM method is more comprehensive in explaining research phenomena. Meanwhile, path analysis 

and multiple regression are only able to reach the level of latent variables so that they experience 

a dead end to parse and analyze empirical phenomena that occur at  the level of grains or indicator 

indicators of latent variables. Judging from the data used, path analysis and multiple regression 

actually only reach the outer shell of a research model. Meanwhile, the SEM method can be likened 

to being able to reach and parse and analyze the deepest entrails of a research model. The SEM 

method is expected to be able to answer the weaknesses and deadlocks faced by the previous 

generation of multivariate methods, namely path analysis and multiple regression. The 

development of SEM methods is becoming increasingly significant in the practice of social, 

behavioral and management research along with the advancement of information technology. 

Many multivariate statistical methods that in the 1950s were difficult to operationalize manually, 

such as factor analysis, multiple regression of more than three free variables, pathway analysis and 

discriminant analysis gradually became inevitable due to the invention of computer programs such 



as: SPSS (Statistical Package for Social Science), Minitab, Prostate, QSB, SAZAM, etc. The SEM 

method is currently estimated to be the most dominant multivariate method. Computer programs 

that can currently be used to process data in SEM method research include AMOS, LISREL, PLS, 

GSCA, and TETRAD.  This literature review  aims to describe the use of structural equation 

modeling in research. 

 

Benefits of SEM in penelitian 

In general, SEM can be used to analyze research models that have several independent 

(exogenous) and dependent (endogenous) variables as well as moderating or intervening variables. 

SEM provides several benefits and advantages for researchers, including building research models 

with many variables, researching variables or constructs that cannot be observed or cannot be 

measured directly (unobserved), m testing measurement errors for observed variables or 

constructs,  m confirming the theory in accordance with research data (confirmatory factor 

analysis), dapat answers various research problems in a set of analysis more systematically and 

comprehensively;  lis illustrative, robust and reliable compared to regression models when 

modeling interaction, non-linearity, error measurement, error terms correlation, and correlation 

between multiple independent latent variables;  duse as an alternative to path analysis and time 

series data analysis based on covariates;  analysis of factors, pathways and regressions; explain the 

complex interrelationships of variables and the direct or indirect effects of one or more variables 

on another; and havegreater flexibility for researchers to link theory to data. 

 

3. Types of SEM 

 As stated above, broadly speaking, the SEM method can be classified into two types, 

namely covariance based structural equation modeling (CB-SEM) and variance or component 

based SEM (VB-SEM) which includes partial least square (PLS) and generalized structural 

component analysis (GSCA). Variance is the deviation of the data from the mean (average) value 

of the sample data. Variance measures the deviation of data from the mean value of a sample, so 

it is a measure for metric variables. Mathematically, variance is the average of the squared 

differences between each observation and the mean, so variance is the mean value of the squared 

mean of the standard deviation. A variable must have a variance that is always positive, if it is zero 

then it is not a variable but a constant. While covariance shows the linear relationship that occurs 



between two variables, namely X and Y. If a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X and Y is opposite, then the covariance is 

negative. If there is no relationship between the two variables X and Y, then the covariance is zero.  

 

Covariance based structural equation modeling (CB-SEM) 

Covariance-based SEM (CB-SEM) was first developed by Joreskog (1973), Keesling (1972) and 

Wiley (1973). CB-SEM became popular after the availability of the LISREL III program 

developed by Joreskog and Sorbom in the mid-1970s. By using the maximum likelihood (ML) 

function, CB-SEM seeks to minimize the difference between the sample covariance matrix and 

the predicted covariance matrix by theoretical models so that the estimation process produces a 

residual covariance matrix whose value is small near zero. Some things that need to be considered 

in the CB-SEM analysis include: 

a. The assumption of using CB-SEM is like parametric analysis. The assumption that must be met 

is that the observed variables must have a multivariate normal distribution and the observations 

must be independent of each other. If the sample is small and not asymptomatic, it will give poor 

results of paramater estimates and statistical models or even produce a negative variant called the 

Heywood Case.  

b. A small sample count will potentially result in a Type II error i.e. a bad model still produces a 

fit model.  

c. CB-SEM analysis requires the form of latent variables whose indicators are reflective. In 

reflective models, indicators or manifests are considered variables that are influenced by latent 

variables according to the classical theory of measurement. In reflective indicator models, 

indicators on a construct (latent variable) are influenced by the same concept. Changes in one item 

or indicator will affect changes in other indicators in the same direction.  The example referred to 

as a reflective variable  is: 
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Figure 1. An example of a reflective variable of a latent variable (construct). Democratic, 

autocratic and Laizez-faire are the variables of the chorusofleadership. Reflective variables are 

variables that stay away from latent variables (constructs) as seen in the blue arrow above. 

 

Variance based SEM (VB-SEM) 

 PLS-SEM 

PLS-SEM aims to test predictive relationships between constructs by seeing if there are 

relationships or influences between them. The logical consequence of the use of PLS-SEM is that 

testing can be carried out without a solid theoretical basis, ignoring some assumptions (non-

parametric) and the parameters of the accuracy of the prediction model in view of the value of the 

coefficient of determination (R2). PLS-SEM is very appropriate to be used in research aimed at 

developing theories. PLS-SEM was developed to address testing that  cannot be done with CB-

SEM.  For example,  in testing formative  variables, as for examples of formative variables  below: 

 

 

 

 

 

 

Figure 1. An example of a formative variable of a latent variable (construct). Education, 

Employment and Income are formative variables of socioeconomic status. Formative variables are 

variables that go to or affect or form latent variables (constructs) as seen in the blue arrow above.  

 

GSCA 

  The GSCA combines the characteristics found in CB-SEM and PLS-SEM. The GSCA can 

handle latent variables with many indicators just like PLS-SEM, requiring the model's goodness 

of fit criteria and indicators and constructs to be correlated such as CB-SEM. The GSCA method 

to date has rarely been widely used by researchers because this method is relatively new. GSCA 

serves the same purpose as PLS-SEM, does not require the assumption of multivariate normality 

of data, and can be tested without a solid theoretical basis with a small number of samples. 
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Covariance-based SEM (CB-SEM) models are often called hard-modeling, while 

component-based or variance-based SEM (VB-SEM) modeling is called soft-modeling. Hard 

modeling aims to provide a statement of the causality relationship or provide a description of the 

mechanism of causality (cause-and-effect) relationships. This provides a scientifically ideal picture 

in data analysis. However, the data to be analyzed does not always meet the ideal criteria so it 

cannot be analyzed by hard modeling. As a solution, soft modeling tries to analyze data that is not 

ideal. Literally, soft actually means soft or soft, but in the context of soft research is defined as not 

basing on the assumption of measurement scale, data distribution and number of samples. The 

main objective of analysis with hard modeling is to test the causality relationships between those 

already built on the theory, whether the model can be confirmed with its empirical data. 

Meanwhile, the main purpose of soft modeling analysis is to find predictive linear relationships 

between latent constructs. It should be understood that causality or estimation relationships are not 

the same as predictive relationships. On causality relationships, CB-SEM looks for invariant 

parameters that structurally or functionally describe how systems in this world work. Invariant 

parameters describe causality relationships between variables in a closed system so that existing 

events can be fully controlled. Whereas in Partial Least Square, Variance or Component -Based 

SEM, the optimal linear relationship between latens is calculated and interpreted as the best 

predictive relationship available with all existing limitations. So that the existing events cannot be 

fully controlled. If the data to be analyzed meets all the assumptions required by CB-SEM, then 

researchers should analyze the data by hard modeling using appropriate software, such as AMOS, 

LISREL.  

If the data does not meet all the required assumptions but the researcher continues to use 

hard modeling analysis or CB-SEM, then some of the problems that may be faced are: tbecome an 

im-proper solution or a solution that is not as effective, because of the Heywood Case, which is a 

symptom of a negative variant value; model becomes un-identified due to indeterminacy factors; 

and non-convergence algorithm.  If the above conditions occur and we still want to analyze the 

data, then the goal we change is not to look for causality relationships between variables, but to 

find optimal predictive linear relationships using components or variance based-SEM.  

Based on the objectives of empirical research, quantitative paradigms can be divided into 

two, namely estimates and predictions. Estimation research is research that aims to test an 

empirical model with valid and reliable measurements. Tests and measurements are carried out at 



the indicator level. The hypothesis tested is the model hypothesis. The measurement criteria for 

testing the feasibility of a model are called goodness of fit tests. For estimation research purposes, 

CB-SEM is the right technique to use. Prediction research is research that aims to test the influence 

between constructs to predict causal relationships. Tests and measurements are carried out at the 

level of constructs or latent variables. The hypotheses carried out are generally partial hypotheses. 

Partial test criteria with predictive significance tests of relationships between variables using t -

statistical tests. PLS-SEM and regression techniques are the right choice of statistical techniques 

to use. So component or variance based SEM (PLS and GSCA) is only used if the data we have 

cannot be solved with covariance based SEM (CB-SEM). 

Conclusion →5 

SEM can be used to analyze research models that have several independent and dependent 

variables as well as moderating or intervening variables. 
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Abstract→3 

The structural equation modeling (SEM) method has stronger predicting power than path 

analysis and multiple regression because SEM is able to analyze to the deepest level of the 

variables or constructs studied.  This literature review  aims to describe the use of structural 

equation modeling in research.  In general, SEM can be used to analyze research models that have 

several independent (exogenous) and dependent (endogenous) variables as well as moderating or 

intervening variables. SEM provides several benefits and advantages for researchers, including 

building research models with many variables,  researching variables or constructs that cannot be 

observed or cannot be measured directly (unobserved), testing measurement errors for observed 

variables or constructs and confirmatory factor analysis.  The outline of the SEM method can be 

classified into two types, namely covariance based structural equation modeling (CB-SEM) and 

variance or component based SEM (VB-SEM) which includes partial least square (PLS) and 

generalized structural component analysis (GSCA).  This literature review  aims to describe the 

use of structural equation modeling in research. 

Keywords: Data analysis, Predicting power, Social research, Structural equation modelling, 

Variable. →2 

 

1.Introduction→4 

Thebasic human beings want to continue to advance and develop in order to achieve a 

better quality of life. This is also the case in the world of research. Experts in the social or 

behavioral sciences including management  consistently continue to develop research methods that 

can be used to obtain better, perfect, fast, accurate, effective and efficient quality research results. 

mailto:rachmathidayat@fk.unsri.ac.id


Experts in the field of social or behavioral sciences including management have developed a 

research method called Structural Equation Modeling (SEM). At first, the SEM method was only 

good at the level of conception. The SEM method at that time still could not be operationalized 

due to technological limitations. With the rapid development of computer technology, the SEM 

method today is becoming increasingly known and widely used in behavioral and management 

research. The SEM method is a development of path analysis and multiple regression which are 

both forms of multivariate analysis models. In associative, multivariate-correlational or causal-

effect analyses, the SEM method seems to break the dominance of the use of multiple path and 

regression analysis that has been used for decades.  Compared to path analysis and multiple 

regression, the SEM method is superior because it can analyze data more comprehensively. Data 

analysis on path analysis and multiple regression is only carried out on variable total score data 

which is the sum of the items of the research instrument. Thus, path analysis and multiple 

regression are actually performed only at the level of latent (unobserved) variables. Meanwhile, 

data analysis on the SEM method can pierce deeper because it is carried out on each question item 

score of a research variable instrument. Instrument items in SEM analysis are referred to as 

manifest variables (observed) or indicators of a construct or latent variable. 

The SEM method has stronger predicting power than path analysis and multiple regression 

because SEM is able to analyze to the deepest level of the variables or  constructs studied. The 

SEM method is more comprehensive in explaining research phenomena. Meanwhile, path analysis 

and multiple regression are only able to reach the level of latent variables so that they experience 

a dead end to parse and analyze empirical phenomena that occur at  the level of grains or indicator 

indicators of latent variables. Judging from the data used, path analysis and multiple regression 

actually only reach the outer shell of a research model. Meanwhile, the SEM method can be likened 

to being able to reach and parse and analyze the deepest entrails of a research model. The SEM 

method is expected to be able to answer the weaknesses and deadlocks faced by the previous 

generation of multivariate methods, namely path analysis and multiple regression. The 

development of SEM methods is becoming increasingly significant in the practice of social, 

behavioral and management research along with the advancement of information technology. 

Many multivariate statistical methods that in the 1950s were difficult to operationalize manually, 

such as factor analysis, multiple regression of more than three free variables, pathway analysis and 

discriminant analysis gradually became inevitable due to the invention of computer programs such 



as: SPSS (Statistical Package for Social Science), Minitab, Prostate, QSB, SAZAM, etc. The SEM 

method is currently estimated to be the most dominant multivariate method. Computer programs 

that can currently be used to process data in SEM method research include AMOS, LISREL, PLS, 

GSCA, and TETRAD.  This literature review  aims to describe the use of structural equation 

modeling in research. 

 

Benefits of SEM in penelitian 

In general, SEM can be used to analyze research models that have several independent 

(exogenous) and dependent (endogenous) variables as well as moderating or intervening variables. 

SEM provides several benefits and advantages for researchers, including building research models 

with many variables, researching variables or constructs that cannot be observed or cannot be 

measured directly (unobserved), m testing measurement errors for observed variables or 

constructs,  m confirming the theory in accordance with research data (confirmatory factor 

analysis), dapat answers various research problems in a set of analysis more systematically and 

comprehensively;  lis illustrative, robust and reliable compared to regression models when 

modeling interaction, non-linearity, error measurement, error terms correlation, and correlation 

between multiple independent latent variables;  duse as an alternative to path analysis and time 

series data analysis based on covariates;  analysis of factors, pathways and regressions; explain the 

complex interrelationships of variables and the direct or indirect effects of one or more variables 

on another; and havegreater flexibility for researchers to link theory to data. 

 

3. Types of SEM 

 As stated above, broadly speaking, the SEM method can be classified into two types, 

namely covariance based structural equation modeling (CB-SEM) and variance or component 

based SEM (VB-SEM) which includes partial least square (PLS) and generalized structural 

component analysis (GSCA). Variance is the deviation of the data from the mean (average) value 

of the sample data. Variance measures the deviation of data from the mean value of a sample, so 

it is a measure for metric variables. Mathematically, variance is the average of the squared 

differences between each observation and the mean, so variance is the mean value of the squared 

mean of the standard deviation. A variable must have a variance that is always positive, if it is zero 

then it is not a variable but a constant. While covariance shows the linear relationship that occurs 



between two variables, namely X and Y. If a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X and Y is opposite, then the covariance is 

negative. If there is no relationship between the two variables X and Y, then the covariance is zero.  

 

Covariance based structural equation modeling (CB-SEM) 

Covariance-based SEM (CB-SEM) was first developed by Joreskog (1973), Keesling (1972) and 

Wiley (1973). CB-SEM became popular after the availability of the LISREL III program 

developed by Joreskog and Sorbom in the mid-1970s. By using the maximum likelihood (ML) 

function, CB-SEM seeks to minimize the difference between the sample covariance matrix and 

the predicted covariance matrix by theoretical models so that the estimation process produces a 

residual covariance matrix whose value is small near zero. Some things that need to be considered 

in the CB-SEM analysis include: 

a. The assumption of using CB-SEM is like parametric analysis. The assumption that must be met 

is that the observed variables must have a multivariate normal distribution and the observations 

must be independent of each other. If the sample is small and not asymptomatic, it will give poor 

results of paramater estimates and statistical models or even produce a negative variant called the 

Heywood Case.  

b. A small sample count will potentially result in a Type II error i.e. a bad model still produces a 

fit model.  

c. CB-SEM analysis requires the form of latent variables whose indicators are reflective. In 

reflective models, indicators or manifests are considered variables that are influenced by latent 

variables according to the classical theory of measurement. In reflective indicator models, 

indicators on a construct (latent variable) are influenced by the same concept. Changes in one item 

or indicator will affect changes in other indicators in the same direction.  The example referred to 

as a reflective variable  is: 
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Figure 1. An example of a reflective variable of a latent variable (construct). Democratic, 

autocratic and Laizez-faire are the variables of the chorusofleadership. Reflective variables are 

variables that stay away from latent variables (constructs) as seen in the blue arrow above. 

 

Variance based SEM (VB-SEM) 

 PLS-SEM 

PLS-SEM aims to test predictive relationships between constructs by seeing if there are 

relationships or influences between them. The logical consequence of the use of PLS-SEM is that 

testing can be carried out without a solid theoretical basis, ignoring some assumptions (non-

parametric) and the parameters of the accuracy of the prediction model in view of the value of the 

coefficient of determination (R2). PLS-SEM is very appropriate to be used in research aimed at 

developing theories. PLS-SEM was developed to address testing that  cannot be done with CB-

SEM.  For example,  in testing formative  variables, as for examples of formative variables  below: 

 

 

 

 

 

 

Figure 1. An example of a formative variable of a latent variable (construct). Education, 

Employment and Income are formative variables of socioeconomic status. Formative variables are 

variables that go to or affect or form latent variables (constructs) as seen in the blue arrow above. 

 

GSCA 

  The GSCA combines the characteristics found in CB-SEM and PLS-SEM. The GSCA can 

handle latent variables with many indicators just like PLS-SEM, requiring the model's goodness 

of fit criteria and indicators and constructs to be correlated such as CB-SEM. The GSCA method 

to date has rarely been widely used by researchers because this method is relatively new. GSCA 

serves the same purpose as PLS-SEM, does not require the assumption of multivariate normality 

of data, and can be tested without a solid theoretical basis with a small number of samples. 
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Covariance-based SEM (CB-SEM) models are often called hard-modeling, while 

component-based or variance-based SEM (VB-SEM) modeling is called soft-modeling. Hard 

modeling aims to provide a statement of the causality relationship or provide a description of the 

mechanism of causality (cause-and-effect) relationships. This provides a scientifically ideal picture 

in data analysis. However, the data to be analyzed does not always meet the ideal criteria so it 

cannot be analyzed by hard modeling. As a solution, soft modeling tries to analyze data that is not 

ideal. Literally, soft actually means soft or soft, but in the context of soft research is defined as not 

basing on the assumption of measurement scale, data distribution and number of samples. The 

main objective of analysis with hard modeling is to test the causality relationships between those 

already built on the theory, whether the model can be confirmed with its empirical data. 

Meanwhile, the main purpose of soft modeling analysis is to find predictive linear relationships 

between latent constructs. It should be understood that causality or estimation relationships are not 

the same as predictive relationships. On causality relationships, CB-SEM looks for invariant 

parameters that structurally or functionally describe how systems in this world work. Invariant 

parameters describe causality relationships between variables in a closed system so that existing 

events can be fully controlled. Whereas in Partial Least Square, Variance or Component-Based 

SEM, the optimal linear relationship between latens is calculated and interpreted as the best 

predictive relationship available with all existing limitations. So that the existing events cannot be 

fully controlled. If the data to be analyzed meets all the assumptions required by CB-SEM, then 

researchers should analyze the data by hard modeling using appropriate software, such as AMOS, 

LISREL.  

If the data does not meet all the required assumptions but the researcher continues to use 

hard modeling analysis or CB-SEM, then some of the problems that may be faced are: tbecome an 

im-proper solution or a solution that is not as effective, because of the Heywood Case, which is a 

symptom of a negative variant value; model becomes un-identified due to indeterminacy factors; 

and non-convergence algorithm.  If the above conditions occur and we still want to analyze the 

data, then the goal we change is not to look for causality relationships between variables, but to 

find optimal predictive linear relationships using components or variance based-SEM.  

Based on the objectives of empirical research, quantitative paradigms can be divided into 

two, namely estimates and predictions. Estimation research is research that aims to test an 

empirical model with valid and reliable measurements. Tests and measurements are carried out at 



the indicator level. The hypothesis tested is the model hypothesis. The measurement criteria for 

testing the feasibility of a model are called goodness of fit tests. For estimation research purposes, 

CB-SEM is the right technique to use. Prediction research is research that aims to test the influence 

between constructs to predict causal relationships. Tests and measurements are carried out at the 

level of constructs or latent variables. The hypotheses carried out are generally partial hypotheses. 

Partial test criteria with predictive significance tests of relationships between variables using t -

statistical tests. PLS-SEM and regression techniques are the right choice of statistical techniques 

to use. So component or variance based SEM (PLS and GSCA) is only used if the data we have 

cannot be solved with covariance based SEM (CB-SEM). 

Conclusion →5 

SEM can be used to analyze research models that have several independent and dependent 

variables as well as moderating or intervening variables. 
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1. Introduction

Human nature wants to continue to progress and

develop in order to achieve a better quality of life. This 

also happens in the world of research. Experts in the 

social or behavioral sciences, including management, 

consistently develop research methods that can be 

used to obtain better, perfect, fast, accurate, effective, 

and efficient quality research results (Burhan, 2011). 

Experts in the field of social or behavioral sciences, 

including management, have developed a research 

method called structural equation modelling (SEM) 

(Byrne, 2013). At first, the SEM method was only good 

at the conception level. At that time, the SEM method 

could not be operationalized due to technological 

limitations. With the rapid development of computer 

technology, the SEM method is now becoming 

increasingly recognized and widely used in behavioral 

and management research (Capmourteres, 2016). The 

SEM method is a development of path analysis and 

multiple regression, which are both forms of 

multivariate analysis models. In an associative, 

multivariate-correlational, or causal-effect analysis, 

the SEM method seems to break the domination of the 

use of path analysis and multiple regression, which 

have been used for decades. Compared to path 

analysis and multiple regression, the SEM method is 

superior because it can analyze data more 

comprehensively (Chang, 1981). Data analysis in path 

analysis and multiple regression was only carried out 

on the total variable score data, which is the sum of 
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the research instrument items. Thus, path analysis 

and multiple regression are actually only carried out 

at the level of latent variables (unobserved). In 

comparison, data analysis in the SEM method can 

penetrate deeper because it is carried out on each item 

score of a research variable instrument. Instrument 

items in SEM analysis are referred to as manifest 

variables (observed) or indicators of a construct or 

latent variable (Chen, 2010). 

The SEM method has stronger predicting power 

than path analysis and multiple regression because 

SEM is able to analyze at the deepest level the 

variables or constructs studied (Cohen, 2013). The 

SEM method is more comprehensive in explaining 

research phenomena. Meanwhile, path analysis and 

multiple regression are only able to reach the level of 

latent variables, so they experience a dead end in 

parsing and analyzing empirical phenomena that 

occur at the level of items or indicators of latent 

variables. Judging from the data used, path analysis 

and multiple regression actually only reach the outer 

shell of a research model (Cudeck, 1994). In 

comparison, the SEM method can be likened to being 

able to reach as well as parse and analyze the deepest 

entrails of a research model. The SEM method is 

expected to be able to answer the weaknesses and 

impasses faced by the previous generation of 

multivariate methods, namely path analysis and 

multiple regression (Curran, 2003). The development 

of SEM methods is becoming increasingly significant 

in the practice of social, behavioral, and management 

research, along with advances in information 

technology (Duncan et al., 2013). Many multivariate 

statistical methods which were difficult to operate 

manually in the 1950s, such as factor analysis, 

multiple regression with more than three independent 

variables, path analysis, and discriminant analysis, 

gradually became necessary because of the invention 

of computer programs such as SPSS (Statistical 

Package for Social Science), Minitab, Prostat, QSB, 

SAZAM, etc. The SEM method is currently estimated 

to be the most dominant multivariate method. 

Computer programs that can currently be used to 

process data in SEM research methods include AMOS, 

LISREL, PLS, GSCA, and TETRAD. This literature 

review aims to describe the use of structural equation 

modeling in research (Eisenhauer et al., 2015). 

 

The benefits of SEM in research 

In general, SEM can be used to analyze research 

models that have several independents (exogenous) 

and dependent (endogenous) variables, as well as 

moderating or intervening variables (Fan et al., 1999). 

SEM provides several benefits and advantages for 

researchers, including building research models with 

many variables, examining variables or constructs 

that cannot be observed or cannot be measured 

directly (unobserved), testing measurement errors 

(measurement errors) for observed variables or 

constructs (observed), confirming the theory in 

accordance with research data (confirmatory factor 

analysis), being able to answer various research 

problems in a more systematic and comprehensive 

analysis set; more illustrative, robust and reliable than 

the regression model when modeling interaction, non-

linearity, measurement error, correlation of error 

terms, and correlation between multiple independent 

latent variables; used as an alternative to path 

analysis and covariate-based time series data 

analysis; factor, path and regression analysis; explain 

the complex interrelationships of variables and direct 

or indirect effects of one or several variables on other 

variables; and has higher flexibility for researchers to 

relate the theory with data (Fritz et al., 2007; Grace, 

2006). 

 

Types of SEM 

 As stated above, in general, the SEM method can 

be classified into two types, namely covariance-based 

structural equation modelling (CB-SEM) and variance 

or component-based SEM (VB-SEM), which includes 

partial least squares (PLS) and generalized structured 
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component analysis (GSCA) (Grace, 2008; Grace, 

2010). A variant is the deviation of the data from the 

mean (average) value of the sample data. Variance 

measures the deviation of data from the mean value of 

a sample, so it is a measure of metric variables. 

Mathematically, the variance is the average of the 

squared differences between each observation and the 

mean, so the variance is the average squared value of 

the standard deviation (Haavelmo, 1943).  A variable 

must have a variance that is always positive. If it is 

zero, then it is not a variable but a constant. 

Meanwhile, covariance shows a linear relationship 

that occurs between two variables, namely X and Y. If 

a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X 

and Y is opposite, then the covariance is negative. If 

there is no relationship between the two variables, X 

and Y, then the covariance is zero. 

 

Covariance-based structural equation modelling 

(CB-SEM) 

Covariance-based SEM (CB-SEM) was first 

developed by Joreskog (1973), Keesling (1972), and 

Wiley (1973). CB-SEM became popular after the 

availability of the LISREL III program developed by 

Joreskog and Sorbom in the mid-1970s. By using the 

maximum likelihood (ML) function, CB-SEM tries to 

minimize the difference between the sample 

covariance matrix and the covariance matrix predicted 

by the theoretical model so that the estimation process 

produces a residual covariance matrix with a small 

value close to zero. Some things that need to be 

considered in CB-SEM analysis include the following: 

a) The assumption of using CB-SEM is like the 

parametric analysis. The assumptions that must be 

met are that the observed variables must have a 

multivariate normal distribution, and the observations 

must be independent of one another. If the sample is 

small and not asymptotic, it will give poor parameter 

estimates and statistical models or even produce a 

negative variance, which is called the Heywood Case. 

b) A small sample size will potentially result in a Type 

II error, i.e., a bad model will still result in a fit model. 

c) CB-SEM analysis requires the form of latent 

variables whose indicators are reflective. In the 

reflective model, indicators or manifest are considered 

variables that are influenced by latent variables 

according to the classical measurement theory. In the 

reflective indicator model, indicators in a construct 

(latent variable) are influenced by the same concept. 

Changes in one item or indicator will affect changes in 

other indicators in the same direction. The examples 

referred to as reflective variables are: 

 

 

 

 

 

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of a reflective variable from a latent (construct) variable. Democratic, autocratic, and Laizez-

faire are reflective variables of leadership. Reflective variables are variables that stay away from latent (construct) 

variables, as shown in the blue arrows above.
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Variance-based SEM (VB-SEM) 

 PLS-SEM     

 PLS-SEM aims to test predictive relationships 

between constructs by seeing whether there is a 

relationship or influence between these constructs 

(Hair et al., 2013). The logical consequence of using 

PLS-SEM is that testing can be carried out without a 

strong theoretical basis, ignoring some assumptions 

(non-parametric) and the parameter accuracy of the 

prediction model seen from the value of the coefficient 

of determination (R2). PLS-SEM is very appropriate for 

use in research that aims to develop theory. PLS-SEM 

was developed to overcome tests that cannot be done 

with CB-SEM. (Harrington, (2009). For example, in 

testing formative variables, the examples of formative 

variables are as follows: 

 

 

 

 

     

 

  

 

 

 

 

Figure 2. An example of a formative variable from latent (construct) variables. Education, Occupation, and Income 

are formative variables of socioeconomic status. Formative variables are variables that lead to or influence or form 

latent (construct) variables, as shown in the blue arrow above. 

 

GSCA 

  GSCA combines the characteristics found in CB-

SEM and PLS-SEM. GSCA can handle latent variables 

with many indicators, the same as PLS-SEM, requiring 

goodness of fit model criteria, and indicators and 

constructs must be correlated like CB-SEM. Until now, 

the GSCA method is rarely used widely by researchers 

because this method is relatively new. GSCA has the 

same goal as PLS-SEM, does not require the 

assumption of multivariate normality data, and can be 

tested without a strong theoretical basis with a small 

number of samples (Hoyle, 2013). 

Model covariance-based SEM (CB-SEM) is often 

called hard modeling, while component-based or 

variance-based SEM (VB-SEM) modeling is called soft 

modeling. Hard modeling aims to provide a statement 

about the causality relationship or provide a 

description of the mechanism of the causality 

relationship (cause and effect). This provides an ideal 

picture scientifically in data analysis. However, the 

data to be analyzed does not always meet the ideal 

criteria, so it cannot be analyzed by hard modeling 

(Hu, 1999). As a solution, soft modeling tries to 

analyze data that is not ideal. Literally, soft actually 

means soft or soft, but in the research context, soft is 

defined as not based on assumptions on the scale of 

measurement, data distribution, and sample size 

(Iacobucci, 2010). The main purpose of analysis with 

hard modeling is to test the causal relationship 

between those that have been built based on the 

theory and whether the model can be confirmed with 

empirical data. In comparison, the main objective of 

soft modeling analysis aims to find predictive linear 

relationships between latent constructs. It should be 

understood that a causality or estimation relationship 

is not the same as a predictive relationship (Jackson 

et al., 2009). In terms of causality, CB-SEM looks for 

invariant parameters that structurally or functionally 

describe how the world's systems work. The invariant 

parameter describes the causal relationship between 

variables in a closed system so that events can be fully 

controlled. Whereas in Partial Least Square, Variance, 

Occupation 

cratic 

Education Income 

Socioeconomic status 

Income 

cratic 
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or Component-Based SEM, the optimal linear 

relationship between latents is calculated and 

interpreted as the best available predictive 

relationship with all the limitations that exist 

(Joreskog, 1993). So that the existing events can not 

be fully controlled, if the data to be analyzed meets all 

the assumptions required by CB-SEM, then the 

researcher should analyze the data by hard modelling 

using appropriate software, such as AMOS and 

LISREL (Kim, 2005). 

If the data does not meet all the required 

assumptions, but the researcher still uses hard 

modelling or CB-SEM analysis, then several problems 

may be encountered, an improper solution or an 

imperfect solution because of the Heywood Case, 

which is a symptom of a negative variance value; the 

model becomes unidentified due to indeterminacy; and 

non-convergence algorithms. If that conditions occur 

and we still want to analyze the data, then our goal is 

not to change causality between variables but to find 

optimal predictive linear relationships using 

component or variance-based SEM (Lamb et al., 2014). 

Based on the objective of empirical research, the 

quantitative paradigm can be divided into two, namely 

estimation and prediction. Estimation research is 

research that aims to test an empirical model with 

valid and reliable measurements. Testing and 

measurement are carried out at the indicator level. The 

hypothesis being tested is the model hypothesis. The 

measurement criterion for testing the feasibility of the 

model is called the goodness of fit test (LeCun et al., 

2015). For estimation research purposes, CB-SEM is 

an appropriate technique to use. Prediction research 

is research that aims to examine the influence between 

constructs to predict causal relationships. Testing and 

measurement are carried out at the level of constructs 

or latent variables (McDonald, 2002). The hypothesis 

that is done is generally a partial hypothesis. Partial 

testing criteria with a significance test predicting the 

relationship between variables using the t-statistic 

test. PLS-SEM and regression techniques are the right 

choices of statistical techniques to use (Mulaik et al., 

1989; Murtaugh, 2009). Therefore, component or 

variance-based SEM (PLS and GSCA) is only used if 

the data we have cannot be solved with covariance-

based SEM (CB-SEM). 

 

2. Conclusion 

SEM can be used to analyze research models that 

have several independent and dependent variables as 

well as moderating or intervening variables. 
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1. Introduction

Human nature wants to continue to progress and

develop in order to achieve a better quality of life. This 

also happens in the world of research.  Experts in the 

social or behavioral sciences, including management, 

consistently develop research methods that can be 

used to obtain better, perfect, fast, accurate, effective, 

and efficient quality research results (Burhan, 2011). 

Experts in the field of social or behavioral sciences, 

including management, have developed a research 

method called structural equation modelling (SEM) 

(Byrne, 2013). At first, the SEM method was only good 

at the conception level. At that time, the SEM method 

could not be operationalized due to technological 

limitations. With the rapid development of computer 

technology, the SEM method is now becoming 

increasingly recognized and widely used in behavioral 

and management research (Capmourteres, 2016). The 

SEM method is a development of path analysis and 

multiple regression, which are both forms of 

multivariate analysis models. In an associative, 

multivariate-correlational, or causal-effect analysis, 

the SEM method seems to break the domination of the 

use of path analysis and multiple regression, which 

have been used for decades. Compared to path 

analysis and multiple regression, the SEM method is 

superior because it can analyze data more 

comprehensively (Chang, 1981). Data analysis in path 

analysis and multiple regression was only carried out 

on the total variable score data, which is the sum of 
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the research instrument items. Thus, path analysis 

and multiple regression are actually only carried out 

at the level of latent variables (unobserved). In 

comparison, data analysis in the SEM method can 

penetrate deeper because it is carried out on each item 

score of a research variable instrument. Instrument 

items in SEM analysis are referred to as manifest 

variables (observed) or indicators of a construct or 

latent variable (Chen, 2010). 

The SEM method has stronger predicting power 

than path analysis and multiple regression because 

SEM is able to analyze at the deepest level the 

variables or constructs studied (Cohen, 2013). The 

SEM method is more comprehensive in explaining 

research phenomena. Meanwhile, path analysis and 

multiple regression are only able to reach the level of 

latent variables, so they experience a dead end in 

parsing and analyzing empirical phenomena that 

occur at the level of items or indicators of latent 

variables. Judging from the data used, path analysis 

and multiple regression actually only reach the outer 

shell of a research model (Cudeck, 1994). In 

comparison, the SEM method can be likened to being 

able to reach as well as parse and analyze the deepest 

entrails of a research model. The SEM method is 

expected to be able to answer the weaknesses and 

impasses faced by the previous generation of 

multivariate methods, namely path analysis and 

multiple regression (Curran, 2003). The development 

of SEM methods is becoming increasingly significant 

in the practice of social, behavioral, and management 

research, along with advances in information 

technology (Duncan et al., 2013). Many multivariate 

statistical methods which were difficult to operate 

manually in the 1950s, such as factor analysis, 

multiple regression with more than three independent 

variables, path analysis, and discriminant analysis, 

gradually became necessary because of the invention 

of computer programs such as SPSS (Statistical 

Package for Social Science), Minitab, Prostat, QSB, 

SAZAM, etc. The SEM method is currently estimated 

to be the most dominant multivariate method. 

Computer programs that can currently be used to 

process data in SEM research methods include AMOS, 

LISREL, PLS, GSCA, and TETRAD. This literature 

review aims to describe the use of structural equation 

modeling in research (Eisenhauer et al., 2015). 

 

The benefits of SEM in research 

In general, SEM can be used to analyze research 

models that have several independents (exogenous) 

and dependent (endogenous) variables, as well as 

moderating or intervening variables (Fan et al., 1999). 

SEM provides several benefits and advantages for 

researchers, including building research models with 

many variables, examining variables or constructs 

that cannot be observed or cannot be measured 

directly (unobserved), testing measurement errors 

(measurement errors) for observed variables or 

constructs (observed), confirming the theory in 

accordance with research data (confirmatory factor 

analysis), being able to answer various research 

problems in a more systematic and comprehensive 

analysis set; more illustrative, robust and reliable than 

the regression model when modeling interaction, non-

linearity, measurement error, correlation of error 

terms, and correlation between multiple independent 

latent variables; used as an alternative to path 

analysis and covariate-based time series data 

analysis; factor, path and regression analysis; explain 

the complex interrelationships of variables and direct 

or indirect effects of one or several variables on other 

variables; and has higher flexibility for researchers to 

relate the theory with data (Fritz et al., 2007; Grace, 

2006). 

 

Types of SEM 

 As stated above, in general, the SEM method can 

be classified into two types, namely covariance-based 

structural equation modelling (CB-SEM) and variance 

or component-based SEM (VB-SEM), which includes 

partial least squares (PLS) and generalized structured 
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component analysis (GSCA) (Grace, 2008; Grace, 

2010). A variant is the deviation of the data from the 

mean (average) value of the sample data. Variance 

measures the deviation of data from the mean value of 

a sample, so it is a measure of metric variables. 

Mathematically, the variance is the average of the 

squared differences between each observation and the 

mean, so the variance is the average squared value of 

the standard deviation (Haavelmo, 1943).  A variable 

must have a variance that is always positive. If it is 

zero, then it is not a variable but a constant. 

Meanwhile, covariance shows a linear relationship 

that occurs between two variables, namely X and Y. If 

a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X 

and Y is opposite, then the covariance is negative. If 

there is no relationship between the two variables, X 

and Y, then the covariance is zero. 

 

Covariance-based structural equation modelling 

(CB-SEM) 

Covariance-based SEM (CB-SEM) was first 

developed by Joreskog (1973), Keesling (1972), and 

Wiley (1973). CB-SEM became popular after the 

availability of the LISREL III program developed by 

Joreskog and Sorbom in the mid-1970s. By using the 

maximum likelihood (ML) function, CB-SEM tries to 

minimize the difference between the sample 

covariance matrix and the covariance matrix predicted 

by the theoretical model so that the estimation process 

produces a residual covariance matrix with a small 

value close to zero. Some things that need to be 

considered in CB-SEM analysis include the following: 

a) The assumption of using CB-SEM is like the 

parametric analysis. The assumptions that must be 

met are that the observed variables must have a 

multivariate normal distribution, and the observations 

must be independent of one another. If the sample is 

small and not asymptotic, it will give poor parameter 

estimates and statistical models or even produce a 

negative variance, which is called the Heywood Case. 

b) A small sample size will potentially result in a Type 

II error, i.e., a bad model will still result in a fit model. 

c) CB-SEM analysis requires the form of latent 

variables whose indicators are reflective. In the 

reflective model, indicators or manifest are considered 

variables that are influenced by latent variables 

according to the classical measurement theory. In the 

reflective indicator model, indicators in a construct 

(latent variable) are influenced by the same concept. 

Changes in one item or indicator will affect changes in 

other indicators in the same direction. The examples 

referred to as reflective variables are: 

 

 

 

 

 

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of a reflective variable from a latent (construct) variable. Democratic, autocratic, and Laizez -

faire are reflective variables of leadership. Reflective variables are variables that stay away from latent (construct) 

variables, as shown in the blue arrows above.
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Variance-based SEM (VB-SEM) 

 PLS-SEM     

 PLS-SEM aims to test predictive relationships 

between constructs by seeing whether there is a 

relationship or influence between these constructs 

(Hair et al., 2013). The logical consequence of using 

PLS-SEM is that testing can be carried out without a 

strong theoretical basis, ignoring some assumptions 

(non-parametric) and the parameter accuracy of the 

prediction model seen from the value of the coefficient 

of determination (R2). PLS-SEM is very appropriate for 

use in research that aims to develop theory. PLS-SEM 

was developed to overcome tests that cannot be done 

with CB-SEM. (Harrington, (2009). For example, in 

testing formative variables, the examples of formative 

variables are as follows: 

 

 

 

 

     

 

  

 

 

 

 

Figure 2. An example of a formative variable from latent (construct) variables. Education, Occupation, and Income 

are formative variables of socioeconomic status. Formative variables are variables that lead to or influence or form 

latent (construct) variables, as shown in the blue arrow above. 

 

GSCA 

  GSCA combines the characteristics found in CB-

SEM and PLS-SEM. GSCA can handle latent variables 

with many indicators, the same as PLS-SEM, requiring 

goodness of fit model criteria, and indicators and 

constructs must be correlated like CB-SEM. Until now, 

the GSCA method is rarely used widely by researchers 

because this method is relatively new. GSCA has the 

same goal as PLS-SEM, does not require the 

assumption of multivariate normality data, and can be 

tested without a strong theoretical basis with a small 

number of samples (Hoyle, 2013). 

Model covariance-based SEM (CB-SEM) is often 

called hard modeling, while component-based or 

variance-based SEM (VB-SEM) modeling is called soft 

modeling. Hard modeling aims to provide a statement 

about the causality relationship or provide a 

description of the mechanism of the causality 

relationship (cause and effect). This provides an ideal 

picture scientifically in data analysis. However, the 

data to be analyzed does not always meet the ideal 

criteria, so it cannot be analyzed by hard modeling 

(Hu, 1999). As a solution, soft modeling tries to 

analyze data that is not ideal. Literally, soft actually 

means soft or soft, but in the research context, soft is 

defined as not based on assumptions on the scale of 

measurement, data distribution, and sample size 

(Iacobucci, 2010). The main purpose of analysis with 

hard modeling is to test the causal relationship 

between those that have been built based on the 

theory and whether the model can be confirmed with 

empirical data. In comparison, the main objective of 

soft modeling analysis aims to find predictive linear 

relationships between latent constructs. It should be 

understood that a causality or estimation relationship 

is not the same as a predictive relationship (Jackson 

et al., 2009). In terms of causality, CB-SEM looks for 

invariant parameters that structurally or functionally 

describe how the world's systems work. The invariant 

parameter describes the causal relationship between 

variables in a closed system so that events can be fully 

controlled. Whereas in Partial Least Square, Variance, 

Occupation 

cratic 

Education Income 

Socioeconomic status 

Income 

cratic 
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or Component-Based SEM, the optimal linear 

relationship between latents is calculated and 

interpreted as the best available predictive 

relationship with all the limitations that exist 

(Joreskog, 1993). So that the existing events can not 

be fully controlled, if the data to be analyzed meets all 

the assumptions required by CB-SEM, then the 

researcher should analyze the data by hard modelling 

using appropriate software, such as AMOS and 

LISREL (Kim, 2005). 

If the data does not meet all the required 

assumptions, but the researcher still uses hard 

modelling or CB-SEM analysis, then several problems 

may be encountered, an improper solution or an 

imperfect solution because of the Heywood Case, 

which is a symptom of a negative variance value; the 

model becomes unidentified due to indeterminacy; and 

non-convergence algorithms. If that conditions occur 

and we still want to analyze the data, then our goal is 

not to change causality between variables but to find 

optimal predictive linear relationships using 

component or variance-based SEM (Lamb et al., 2014). 

Based on the objective of empirical research, the 

quantitative paradigm can be divided into two, namely 

estimation and prediction. Estimation research is 

research that aims to test an empirical model with 

valid and reliable measurements. Testing and 

measurement are carried out at the indicator level. The 

hypothesis being tested is the model hypothesis. The 

measurement criterion for testing the feasibility of the 

model is called the goodness of fit test (LeCun et al., 

2015). For estimation research purposes, CB-SEM is 

an appropriate technique to use. Prediction research 

is research that aims to examine the influence between 

constructs to predict causal relationships. Testing and 

measurement are carried out at the level of constructs 

or latent variables (McDonald, 2002). The hypothesis 

that is done is generally a partial hypothesis. Partial 

testing criteria with a significance test predicting the 

relationship between variables using the t-statistic 

test. PLS-SEM and regression techniques are the right 

choices of statistical techniques to use (Mulaik et al., 

1989; Murtaugh, 2009). Therefore, component or 

variance-based SEM (PLS and GSCA) is only used if 

the data we have cannot be solved with covariance-

based SEM (CB-SEM). 

 

2. Conclusion 

SEM can be used to analyze research models that 

have several independent and dependent variables as 

well as moderating or intervening variables. 
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