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ARTICLE INFO ABSTRACT

Keywords: Indonesia has the world’s largest tropical peatland, mostly located in the southern province of Sumatra, the south
Peatland fire of Kalimantan, and Papua. The catastrophic fires between June and October 2015 induced by the El Nifio event
Subsidence burnt most of these peatland areas. We analyzed spatio-temporal peat subsidence during pre- and post-fires in
Vegetation cover the peat hydrological unit of Sungai Sugihan - Sungai Saleh (KHGSS), South Sumatra using Sentinel-1 images by
S[.‘.:i;adatlon applying DInSAR-SBAS algorithm. Based on our analysis, the linear subsidence rate after the 2015 peat fires
SAR increased by a factor 6.4 compared to that of pre-fires. Generally, the estimated subsidence is temporally well-

correlated with the precipitation variation. In addition, the subsidence patterns are spatially correlated with the
hotspot distribution, peat thickness, and drainage networks. Furthermore, we mapped vegetation cover over the
KHGSS by using the Sentinel-1 images as well. The results show that the vegetation degradation is correlated
with the hotspot distribution and the highly-degraded vegetation associated with the 2015 peat fires. It de-
monstrated that the 2015 El Nifio event has significant impacts on increasing the amount of the subsidence and

the vegetation degradation in KHGSS area.

1. Introduction

Peatland is one of the wetland ecosystems characterized by the
accumulation of organic matter over a long time. Tropical peatlands in
Indonesia cover an area of around 20.2 Mha, distributed across Sumatra
(7.1 Mha), Kalimantan (5.7 Mha) and the Papua (7.4 Mha) (Murdiyarso
et al., 2011). Forested peatlands can mitigate greenhouse gases from
the atmosphere. However, this capacity has been threatened by some
human activities such as deforesting and draining peatlands, so that the
peat becomes dry, oxidized, flammable, and subsidence prone.

The progressive subsidence at drained peatland, due to peat de-
composition resulting in CO, emission, as well as compaction was
schematically illustrated (Hooijer et al., 2010). Total subsidence due to
drainage of peat soils includes four components, ie., consolidation,
compaction, shrinkage, and oxidation (Hooijer et al., 2012a,b; Wosten
et al, 1997). In addition, the rate of subsidence varies depending on
factors such as peat type, rate of decomposition, density and the peat
deposit thickness, drainage depth, climate, land use and period of

drainage (Grzywna, 2017). Decreasing the water table in tropical
peatland makes the peat surface dry and the vegetation dies and be-
comes fire prone. In the dry season, normally the peat layer can bum to
a depth of around 50 cm, but can penetrate to 100 cm in some places
(Limin et al., 2008). The fires destroy the peat layers and vegetation;
thus, it increases the rate of subsidence (Wosten et al., 1997) . Mean-
while, the fires in degraded peatlands can also quickly release large
amounts of the greenhouse gas CO2 (Page et al., 2002).

Between June and October 2015, the peatland in Sumatra and
Kalimantan experienced increasingly dry conditions because of a strong
El Nifio event. Severe fires during the 2015 El Nifio-related dry season
have burnt large area of these peatlands. As a consequent, vegetation
cover and peat surface have been degraded. In addition, the following
subsidence increased in the depression of the peatland surface, having
the potential to result in the loss of peatland layer. Therefore, peat
cannot store water in the pores of its layer, which has experienced se-
vere compaction (Couwenberg and Hooijer, 2013).

The release of carbon dioxide into the atmosphere from the
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Fig. 1. Location of study area.

oxidation of the soil organic fraction in the upper aerated zone causes a
soil mass loss which manifests itself as land subsidence (Gambolati
et al, 2005a). This anthropogenic subsidence will increase when the
extreme climate events (i.e., hotter and dryer seasons) is longer. The
subsidence rate due to bio-oxidation process as the agriculture practices
in the Venice peatland was between 1.5 and 2 cm/yr (Gambolati et al.,
2005b). Subsidence rates in other sites have also been documented,
such as 30 mm/yr in the East Anglian Fenlands, UK (Hotchinson, 1980);
650 mm/yr in the Sacramento-San Joaquin Delta, USA (Deverel and
Leighton, 2010); 33mm/yr in Everglade, USA (Stephens, 1956);
75 mm/yr in Johor, Malaysia (Wosten et al., 1997). Cumulative sub-
sidence reported in peat in SE Asia of more than 3 m in thickness over
the first 5 years after drainage is between 1 and 1.5m (Hooijer et al.,
2012a,b). Peatland subsidence of 6 m is expected over 100-year drai-
nages, excluding the effect of fires (Page et al., 2002).

The degraded peatland in Central Kalimantan, which was highly
drained peatland at around 50 m from canals experienced 0.97 m of
total subsidence in 15 years (Hooijer et al., 2014). Oxidation in this
area through biological oxidation and fire reached 80% of the total
loss of peat volume since drainage, while compaction, i.e., com-
pression above the water table explained 20%. Hooijer et al. (2014)
also found that the total amount of subsidence and peat carbon loss
is 27% higher in burnt areas compared to areas that are drained but
still forested. Furthermore, the burnt and forested high drainage
and burnt moderate drainage were estimated to have subsided by
1.08 = 0.32, 0.86 = 0.12 and 0.79 = 0.14m respectively since
drainage in the mid-1990s. From other studies the subsidence rates
of peat surface in the Central Kalimantan subsidence based on ALOS
SAR images were 7.65cm/yr with the largest subsidence up to
25 cm from December 2006 to September 2010 (Zhou et al., 2016)
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Table 1

The SAR images used in this study.
Subsidence Land Cover
Date acquired Bper (m) Date acquired
Pre-fire
20,141,024 0 20,141,024
20141117 27 20,150,317
20141211 145 20150504
20150128 74 20150715
20150221 20 20151019
20,150,317 25 20160428
20150410 204 20160802
20150504 —-19 20161224
Post-fire
20,151,112 0
20151230 —104
20160123 —50
20160311 —41
20160428 —d4
20160802 —101
20161013 —52
20161130 —65
20161224 —58

* Dates are in year-month-day format.
** Master Image.

and 2.02 cm/yr from January 2007 to March 2011 (Shimada et al.,
2013).

For large, remote, and inaccessible areas, satellite InSAR-based
method is powerful for estimating peat subsidence. Our previous stu-
dies have successfully applied the InSAR technology using L-band ALOS
PALSAR data to estimate land surface deformation (Khakim et al.,
2014, 2013). Interferogram coherence of this SAR data is higher than
that of C-band Sentinel-1 in vegetated area. However, the L-band data
from ALOS 2 is costly and quantitively insufficient for covering the
study area. In contrast, C-band Sentinel-1 data is free to access and
available with a 12-day repeat cycle in a single pass (ascending or
descending).

In this study, we utilized C-band Sentinel-1A dataset to analyze
spatio-temporal peat subsidence and vegetation cover changes in the
peat hydrological unit of Sungai Sugihan - Sungai Saleh (KHGSS),
South Sumatra, Indonesia as a result of the 2015 El Nifo event. This
study area covers an area of approximately 189,652 ha (Fig. 1). We
analyzed the estimated subsidence and vegetation cover changes with
corresponding rainfall variation, hotspot distribution, peat thickness,
and drainage networks. It must be noted, however, that this study did
not separately quantify the peat surface subsidence from each compo-
nent influencing it, instead of the cumulative impacts.

2. Data and methods
2.1. Hotspot distribution

The VIIRS active fires data (VNP14IMGT) is the latest fire mon-
itoring product to FIRMS (Fire Information for Resource Management
System), which identifies global fire locations in near-real time
(https://earthdata.nasa.gov/earth-observation-data/near-real-time/
firms). Information is collected from the Visible Infrared Imaging
Radiometer Suite (VIIRS) sensor. Each dot on the map represents the
center of a 375-meter pixel that has been flagged by the algorithm. The
VIIRS data replaces the existing fires data from MODIS that was pre-
viously available on Global Forest Watch. The VIIRS data has a higher
spatial resolution (375-meter pixels vs. 1-kilometer pixels), which im-
proves the detection of smaller fires and provides a more reliable esti-
mate of fire perimeters.

IntJ Appl Earth Obs Geoinformation 84 (2020) 101953

2.2, Subsidence estimation

We used 17 raw (level 1) Sentinel-1A Single Look Complex (SLC)
SAR data acquired by the Copernicus Programme satellite constellation
conducted by the European Space Agency (ESA). This satellite carries a
C-band SAR instrument with a central frequency at 5.405GHz
(Geudtner et al., 2013). Eight SAR data were used to estimate peatland
subsidence for the period of before the 2015 peat fire, namely pre-event
(24 October 2014 - 4 May 2015) with Path/Frame of 98,1171, while 9
SAR data with Path/Frame of 98/1170 from 12 November 2015 to 24
December 2016 were for after the fire, namely post-event (Table 1).
Observation mode is Interferometric Wide (IW) acquired from as-
cending orbits with single polarization (VV).

ESA’s SNAP software was used to perform SAR data processing. For
interferometric processing, co-registration of selected SLC images to a
single master image was performed with perpendicular baselines less than
204 m. This co-registration ensured that each ground target contributes to
the same pixel in both the master and the slave image. We used precise
orbits provided by ESA and the Shuttle Radar Topography Mission { SETM)
Digital Elevation Model (DEM) for co-registration, followed by a refine-
ment of the azimuth shift using enhanced spectral diversity (Geudtner
et al, 2016; Prats-Iraola et al, 2012). After the co-registration, inter-
ferograms were then generated on a burst-by-burst basis.

The level-1 IW SLC product is provided as 3 separate sub-swaths
(i.e., W1, IW2, and IW3) and each sub-swath consists of a series of the
bursts. To cover the study area of interest, we concatenated bursts from
1to 5 and from 3 to 7 of sub-swath IW1 for before and after the 2015
peat fire, respectively. We used the SRTM DEM with the 3-arcsecond
resolution to remove topographic fringes. To reduce the phase noises
that cause pseudo phase residues and strongly affect phase unwrapping,
we applied multilooking and Goldstein phase filtering (Goldstein and
Werner, 1998), respectively. Phase unwrapping of the interferogram
was conducted using the Statistical-cost, Network-flow Algorithm for
Phase Unwrapping (SNAPHU) with a coherence threshold of 0.2 (Chen
and Zebker, 2001). After a successful unwrapping process, the inter-
ferometric phase images were projected into a map coordinate system
(WGS84). These projected interferograms were used for time series
analysis based on the Small BAseline Subset (SBAS) method (Berardino
et al.,, 2002; Samsonov et al., 2011).

SBAS retrieves linear deformation rates with corresponding errors
and time series of deformation from a set of co-registered unwrapped
differential interferograms removing decorrelated areas. We applied
high-pass filtering in a spatial domain for each interferogram to remove
residual orbital ramps and other long-wavelength noises. Temporal and
spatial of atmospheric disturbances produce an offset in each inter-
ferogram. The atmospheric phase delay can be estimated by a generic
InSAR atmospheric correction model (Yu et al, 2018a, 2018b). This
model has been developed by using both HRES-ECMWF grid model
output and GPS ZTD pointwise observations, tightly integrated using
the ITD model to produce atmospheric correction maps.

A simultaneous inversion was performed by applying singular value
decomposition (SVD) to estimate deformation rates and residual topo-
graphic errors (Samsonov et al., 2011). The linear deformation rates
were then calculated using the linear regression algorithm. The errors
of the linear deformation rate were also calculated. Furthermore, the
cumulative deformations were reconstructed by integration (Kwoun
et al., 2006).

2.3. Land Cover mapping and change detection

Land cover was obtained from eight level-1 Sentinel-1A TW SLC SAR
images with variable rainfall (Table 1). All of the images used are in VV
polarization mode. SAR data pre-processing of the Level-1 SLC image was
performed using the SNAP software including calibration, thermal noise
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removal, TOPSAR deburst, mosaicking, as well as 4 x 4 multilooking.
Speckle effects, which are characteristic of radar images influencing the
radiometric information, were compensated using a Refined Lee low-pass
filter, which averages the images while preserving feature edges (Wang
et al., 2012). Thus, these images were converted to the backscatter coef-
ficient (") values in the decibel unit (dB), terrain corrected using SRTM
DEM, and geocoded to map projection (WGS84) before classification.

Land cover was classified using unsupervised K-means cluster ana-
lysis in the SNAP toolbox. The classification was performed with 30
iterations to produce four major land cover classes, i.e., forest/planta-
tion, shrub/bush, cultivation/bare land, and water. A confusion matrix
was used to calculate the frequency of class agreement between re-
ference ground truth data and SAR-based classified land cover map.
Accuracy measures of land cover classification are user’s and producer’s
accuracy, error commission and omission, overall accuracy, and Kappa
coefficient. A spatial change map was obtained by subtracting the land
cover of 2015/03/17 (as a baseline) from those of other dates for the
same area.

3. Results and discussion

The extreme climate due to the 2015 El Nifio caused an increase in
vulnerability of peatlands in this area from surface subsidence and
vegetation degradation. To investigate these impacts, we used hotspots
obtained from the Visible Infrared Imaging Radiometer Suite (VIIRS)
active fires data and a canal map derived from LiDAR data (BRG, 2017).
The hotspot distribution for the period from 2014 to 2017 shows that
the most severe fire occurred in 2015 (Fig. 2). Most hotspots occurred in
the southem part of the study area dominated by peat layers with the
thickness in a range of 50-300 cm.

3.1. Peat surface subsidence

Peat surface displacements were estimated for two periods (pre- and
post-event) to evaluate impacts of the extreme climate due to the
2015 El Nifio event on spatio-temporal subsidence in the KHGSS area.
The maps of linear deformation rates and errors are presented in
Fig. 3A-B and d-e for pre- and post-events, respectively. The rate of
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Fig. 4. Spatio-temporal atmospheric path delay for pre-fire 2015.

this linear subsidence for pre-event increased by a factor 6.4 compared
to that of the pre-event. Furthermore, estimate topographic errors
are + 1.5E-04m for pre-events (Fig. 3c) and + 1.5E-01m for post-
events (Fig. 3f), respectively. Moreover, spatiotemporal atmospheric
delays estimated based on a generic InSAR atmospheric correction
model are only up to ~7.0E-04 m (Figs. 4 and 5). Thus, atmospheric
disturbances insignificantly affected the deformation.

Subsidence generally occurred in the southern part of the study
area, namely Karang Anyar and Rambai village, spatially associated
with peat areas (Fiz. 6). We compared subsidence rates to the dis-
tribution of fire hotspots. Subsidence during the pre-event is spatially
uncorrelated with the 2014 hotspot distribution but correlated with the
peat thickness. The 2014 fire hotspots were generally distributed along
the edge of the peatland area, burning being the cheapest and most
comfortable means of site preparation for cultivation and plantation.
Peat surface subsidence is controlled by drainage and water levels
during pre-events. This lowering water level also increased the peat
compaction and oxidation above the water table. Furthermore, the
consolidation may also increase below the water table.

It can also be shown that dense artificial canals have been ex-
tensively established at or around the subsiding area. Moreover, these
subsiding areas are also located near the river, which fast discharged
much amount of water from peatland. There are several components
associated with drainage inducing subsidence in peatlands such as
oxidation, compaction and shrinkage, and consolidation (Hooijer et al.,
2012a,b). These components increased in subsidence magnitude when
groundwater is removed by dense drainage canals. The oxidation de-
composed peat in the aerated zone above the water table. Compaction
reduced peat volume in the aerated zone above the water table re-
sulting from the pressure applied on the peat surface by heavy materials
and shrinkage occurs through contraction of organic fiber when drying.
Meanwhile, consolidation compressed saturated peat below the water
table due to loss of buoyancy of the top peat.

In contrary, post-fires subsidence patterns are spatially-well corre-
lated with the 2015 hotspot distribution, which mostly occurred in the
peat areas (Fig.7). From subsidence map, the area around point 1 (A ")
located in Northern Karang Anyar did not subside during pre-fire 2015.
Despite no artificial canal networks established in this area, significant




M.Y.N. Khakim, et al.

IntJ Appl Earth Obs Geoinformation 84 (2020) 101953

016

e A

30 Dec 2015
T

Atmospheric Delay
{m)

x10 x107*

™ High: 6.0 ™ High : 6.0

& Low:00 M Low:00
B8 River
[ Regency Boundary | [] Regency Boundary
S Peal Thickness (om) S Paat Thickness (om)

11 Mar 2016 28 Apr 2016

Kicmatars
L) E

Atmospheric Delay Atmospheric Delay
m} {m}

x10™* x10™
- ™ High : 6.0 ™ High : 6.0
7 " Low: 0.0 M Low:00
]| EE River B2 River
= | [] Regency Boundary [] Regency Boundary

S Peat Thickness (cm) = Peal Thickness (om)

02 Aug 2016

A 13 Oct 2016

&r Yy
A
N
r—

o5 10 o s 1w o
Atmospheric Delay Atmaospheric Delay|
(m) (m)

x104 x107
™ High : 6.0 ™ High : 6.0
FEEE M Low:00

= . Low:00 el I 7
B River _} ‘ | Rwer
[] Regency Boundary [] Regency Boundary

<P Peat Thickness (cm) 7 < Peat Thickness (cm)

24 Dec 2016

30 Mov 2016

Hicmaters
L) =

Atmospheric Delay)| Atmospheric Delay
im) {m}

x10™? 3 x104
™ High : 6.0 e ™ High : 6.0
JOT mLew:o0 .'_.""' - Low: 0.0
& River { | B River

[] Regency Boundary 1 Regency Boundary
S Peal Thickness (cm) SC Peat Thickness (cm)

Fig. 5. Spatio-temporal atmospheric path delay for post-fire 2015.

subsidence was observed after the 2015 peat fires. A significant decrease
in rainfall during the 2015 extreme El Nifio event caused the peat surface
dry, the vegetation dies and becomes fire prone. In the dry season,
usually, the peat layer can burn to several depth and fires can penetrate
to 100 cm in some places (Limin et al., 2008). The combustion of the peat
layer present at several depths also led to the creation of subsurface
hollows at different places (Foy et al., 2014). Thus, the volume reduction
associated with the peat buming likely caused the subsidence in this
area. Subsidence also increased due to peat fires in several areas, espe-
cially around the points 2-6 (A>"®) located in Southem Karang Anyar,
Rambai, and Rumbai. In these areas, an amount of subsidence during this
period became much larger than that of the pre-fires. Subsidence mag-
nitude estimated from the SBAS-DInSAR technique reached ~0.12m and
~2.5m during the pre- and post fires of 2015, respectively.

Furthermore, we constructed 14 time-lapse profiles of subsidence
across the center of the peat dome along lines A-B and C-D (Fig. 8a).
These profiles indicate that more considerable subsidence occurred in
areas which are closer to the river discharging water from peatland.
These areas also experienced severe fires during the 2015 extreme El
Nifio drought.

Estimated trends of nonlinear subsidence may correspond with the
water level. Information of the water level during study periods in the
KHGSS was unavailable; we thus compared the deformation of surface
peatland at seven locations to rainfall variation for seasonal analysis of
subsidence characteristics during the study period (Fig. 8b). The trends
of peatland subsidence are generally correlated with the rainfall var-
iation. However, the first six months after the 2015 peat fires, the
subsidence trends do not correlate with rainfalls suggesting the pre-
cipitation during these months did not penetrate the peat pores after the
severe fires.

3.2, Land cover changes

Spatio-temporal land cover was classified based on Sentinel-1 data
with single polarization (VV) using unsupervised K-means cluster ana-
lysis. The previous study shows that VV has higher accuracy than VH
for the land cover classification (Abdikan et al., 2016). The classifica-
tion was performed with 30 iterations to produce 4 major landcover
classes, i.e., forest/plantation, shrub/bush, cultivation/bare land, and
water. Fig. 9 shows examples of different land cover classes. Tall woody
vegetations such as palm plantation, rubber plantation, secondary and
primary forests are grouped into a forest/plantation class. Meanwhile,
lower vegetations such as shrub, bush, and grass are merged as a shrub/
bush class; rice field, cultivated area, degraded area, and bare land are
merged as a cultivation/bare land class. In addition, water class is used
to identify fish pond, river, and other water bodies.

We evaluated the accuracy of land cover classification using ground
truth data because optical data, such as both Sentinel-2 and Landsat 8,
covering the study area are heavily cloudy/hazy during study periods.
Locations of these ground truth surveys are presented in Fig. 9. The ac-
curacy assessments (Conglaton, 1991; Story and Congalton, 1986) in-
cluding User's Accuracy (UA), Producer’s Accuracy (PA), Error Com-
mission (EC), Error Omission (EO), Overall Accuracy (OA), and Kappa
are presented in Table 2. The overall accuracy and Kappa of classification
is 91% and 84%, respectively. The accuracy of the water class is the
highest for both the user’s and producer’s accuracies in the land cover
classification. On the other hand, the lowest user’s and producer's ac-
curacies are respectively cultivation/bare land and shrub/bush classes.

The land covers were mapped for the period 24 October 2014 to 24
December 2016 (Fig.10). Since the peat fires have been suspected of
contributing to vegetation cover degradation, we have overlain the
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Fig. 6. Sequential subsidence patterns in the KHGSS for prefire 2015.
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classified land cover with monthly hotspot distribution. Generally, the
degradation of land cover is spatially associated with the distribution of
fire hotspots. The gradation is indicated with the change in land covers
from vegetated areas (dark/light green) into bare land (orange). Most
fires in 2014 were associated with land preparation for cultivation and
plantation. However, high degradation occurred when mainly dry
period from July to October 2015, a result of the 2015 El Nifo, con-
tributed to a severe fire season (Fig. 10e).

Furthermore, the classified land cover maps for different time are also
analyzed qualitatively by calculating spatial change map. For this

10

caleulation, the cultivation/bare land and water classes were merged to
bare land class each land cover map. Estimated change maps are presented
in Fig.11. Light degradation is used to show the change in vegetation cover
from forest/plantation class to shrub/bush class or from shrub/bush class
to bare land class; high degradation is the change from forest/plantation
class to bare land class. From the change maps, highly degraded areas are
generally related to land fire locations. On the other hand, lightly de-
graded/growth areas are seemly related to a seasonal change.

The change in land cover is also quantitatively analyzed by calcu-
lating the percentage of land cover areas and their changes (Fig.12).
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Table 2
Measures of accuracy assessments for land cover classification.
No Classes UA PA EC EOQ 0A Kappa
1 Shrub BEY BB 12% 12% 91% Ba%
2 Forest,/Plantation Q5% B0% 5% 10%
3 Cultivation/Open Land 7% B6% 21% 4%
4 ‘Water 100% 100%% [ [
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Fig. 10. Classified land cover maps overlaid with corresponding monthly hotspots from 24 October 2014 to 24 December 2016.

The forest/plantation class has the most significant decline compared
with other classes during the study period, especially in October 2015.
In this time, the degradation of vegetation cover is the highest, 41%.
However, there was a trend of vegetation re-growth for post-fire. This
post-fire vegetation re-growth indicates the potential of vegetation
succession for carbon storage and regeneration.

4. Conclusion

Spatio-temporal peatland subsidence and vegetation cover have
been successfully mapped based on Sentinel-1A C-band SAR data using
SBAS-DInSAR technique and K-means classification, respectively. The
results indicate that peat surface subsidence was caused by drainage,
which might increase consolidation, oxidation, and shrinkage of peat-
land during pre-fire 2015. The subsidence spatially occurred in areas
which are with denser drainage canals and closer to the river draining
the peatland. The subsidence rate was as much as ~0.25 m/yr for the
pre-fire period.

On the other hand, the linear rates of peat surface subsidence highly
increased by a factor 6.4 after the 2015 fires related to the El Nifo

1z

drought. The estimated trends of subsidence are temporally well cor-
related with rainfall variation. Significant decrease in the rainfall
during this period is mainly inferred decreasing the peat water levels
and therefore more considerable subsidence occurred. Besides con-
solidation, oxidation, and shrinkage of peat layers from the drainage
networks and the extreme climate, the 2015 fires destroyed them,
therefore leading to faster subsidence.

Unavailability of the data file of ground geodetic surveys limits our
results of subsidence analysis to be more quantitatively validated. In
addition, more field data and laboratory experiment are however
needed to more quantitative and comprehensive analyze each factor
and component influencing peatland subsidence.

The analysis of vegetation cover changes also demonstrates the
impact of the 2015 fire. These results showed that their land cover
changes are correlated with hotspot distributions, and the most severe
degradation of vegetation cover (41%) occurred in October 2015.
However, there was a trend of vegetation re-growth for post-fire. This
post-fire vegetation re-growth indicates the potential of vegetation
succession for carbon storage and regeneration.
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