PUTRI, RIZKI EKA and Desiani, Anita and Suprihatin, Bambang (2023) KOMBINASI ALGORITMA RELIEFF DAN MULTIPLE IMPUTATION BY CHAINED EQUATION (MICE) UNTUK PENANGANAN DATA HILANG PADA DATASET PENYAKIT GINJAL KRONIS. Undergraduate thesis, Sriwijaya University.
Text
RAMA_44201_08011281924051.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (1MB) | Request a copy |
|
Text
RAMA_44201_08011281924051_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (8MB) | Request a copy |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (769kB) |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (209kB) | Request a copy |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (99kB) | Request a copy |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (418kB) | Request a copy |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (26kB) | Request a copy |
|
Text
RAMA_44201_08011281924051_0011127702_0026017102_06_ref.pdf - Bibliography Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (160kB) | Request a copy |
Abstract
Missing data is a problem where there are empty values or incomplete values in the data. The University of California Irvine (UCI) Machine Learning Repository dataset that records chronic kidney disease patient data is one of the datasets that has a data loss problem. Lost data handling can be done by two methods, namely deletion and imputation. One of the deletion algorithms is ReliefF, while one of the imputation algorithms is Multiple Imputation by Chained Equation (MICE). This study aims to overcome missing data in the UCI chronic kidney disease dataset using a combination of the ReliefF and MICE algorithms. The results of the combination of algorithms were tested using the K-Nearest Neighbor (KNN) method to determine the increase in classification performance. The results of the ReliefF feature selection show that there are 15 features that influence classification with an increase in accuracy of 23,5%. The results shown from the combination of the two methods are an increase in accuracy, precision, and recall of 25,5%, 19,7%, 23,08%. The chronic kidney disease dataset experienced significant increases in accuracy, precision, and recall. It can be concluded that the combination of the ReliefF and MICE algorithms can improve classification performance in the UCI chronic kidney disease dataset.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Data Hilang, Seleksi Fitur, Imputasi, ReliefF, MICE |
Subjects: | Q Science > QA Mathematics > QA8.9-QA10.3 Computer science. Artificial intelligence. Computational complexity. Data structures (Computer scienc. Mathematical Logic and Formal Languages |
Divisions: | 08-Faculty of Mathematics and Natural Science > 44201-Mathematics (S1) |
Depositing User: | Rizki Eka Putri |
Date Deposited: | 19 May 2023 08:12 |
Last Modified: | 19 May 2023 08:12 |
URI: | http://repository.unsri.ac.id/id/eprint/103989 |
Actions (login required)
View Item |