
 

  

Abstract— The discrete location problem has given more 

attention to operations research as the prevalent location-

allocation problem in recent years. Discrete location problems 

have three main classifications: covering-based, median-based, 

and some different problems. An open facility location must 

cover demand in terms of range or travelled period in covering-

based problems. The prospective site must cover all request 

points at the network centre in median-based problems. These 

problem categories are suitable for determining the public 

facility's location. There are very few literature reviews and 

models related to location-allocation theory. This paper aims to 

present detailed calculations or numerical methods 

computations and an overview of the studies, types, models, and 

previous researchers' methods to solve discrete location 

problems. We describes the set covering location problems, 

maximal covering location problems, 𝒑-center location 

problems, 𝒑-median location problems, and fixed charge facility 

locations problems. This paper also briefly explains several 

heuristic algorithms to solve discrete location problems, such as 

genetic algorithm, particle swamp optimization, and greedy 

reduction algorithm. We implemented the model and algorithm 

to determine the optimal temporary disposal places in 

Palembang City. The map of optimal temporary disposal places 

as the solution of the model was served in this paper. 

 

Index Terms— discrete location problems, covering-based 

problems, median-based problems, heuristic algorithms  

I. INTRODUCTION 

            

PERATIONS research is a scientific method or     

qualitative decision-making approach that determines 

the  optimum  decision under limited resource constraints. 

The mathematical model is at the core of operations research 

and solves the problem using an algorithm or programmable  
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procedures. Mathematical programming models widely used 

are linear programming (LP), integer linear programming 

(ILP), inventory, dynamic programming (DP), non-linear 

programming (NLP), network analysis, and stochastic 

programming (SP). Deterministic problems use these models. 

The location determination problems or facility location 

problems (FLP) also require a mathematical model to solve 

them. The solutions to these problems are to place facilities 

that can optimize services, cover the request points, distribute 

goods, optimize distances, transportation costs, or several 

other parameters. 

One of the optimization problems is determining the 

optimal facility location. Location is a place to serve or 

provide facilities for the community to meet daily human 

needs. Public facilities are always related to community 

service to meet the economy and government's life needs. 

Sufficient conditions can increase the community's welfare 

without discriminating against the social level of the 

community [1]. Private and public sectors need to optimize 

the location procedures. Because of these location problem 

interpretations, not one but many problems exist, and each 

variation alters the mathematical character problem. Thus, 

various approaches solve location problems. Each is designed 

to meet the specifications of the particular interpretation 

problem. 

FLP is divided into continuous location problems (CLP) 

and discrete location problems (DLP). If the number of 

prospective facility locations is limited, the problem is 

categorized as DLP. On the other hand, if the open facility 

can be placed in some continuous places, it is called the CLP. 

Previous FLP research has been done by [2]–[8]. This survey 

focuses on DLP, selecting the best location for facilities from 

a set of possible sites to minimize total costs while still 

satisfying consumer demand. DLP can be classified into 

models with each property to know the fit algorithm to solve 

the problems. 

Previous studies on location determination have been 

carried out. However, they discussed determining the location 

using exact or heuristic algorithms without mentioning the 

model. They showed some numerical processes and detailed 

computation by using those algorithms. There have been 

limited studies concerned with the types and model 

formulation of DLP. Each problem will have different models 

and methods, so we explained the classes and models of 

discrete facility location (DFL). Each model has specific 

characteristics, especially in the objective function. The 

advantage of the survey in this paper is as a preliminary study 
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in research on set covering problems, especially DFL, to 

develop advanced models further and propose new solving 

methods. Therefore, this paper briefly reviews the types, 

general model of DLP, and some algorithms proposed by 

earlier researchers. 

The rest of this paper is arranged as follows. Section 2 

presents the literature review of DLP, such as problem type, 

review of results, and the proposed methods. Section 3 briefly 

explains the classification of models in DLP, their 

characteristics, and some heuristic algorithms to solve the 

problem. Section 4 shows the numerical experiments for 

finding the optimal temporary disposal sites and the optimal 

mapping of DLP. Some conclusions are drawn in section 5. 

II.  LITERATURE REVIEW 

 

The DLP broadly consists of two scopes. First, some open 

facilities are given, and the objective is to cover the maximum 

demand point. Second, this problem intends to reduce the 

number of opened facility locations but cover all customers 

within the maximum distance. This paper discusses the DFL, 

consisting of feasible facility locations and a limited group of 

demand points or requests. 

The research on FLP has been improved fast for many 

years. Most researchers discussed and developed the methods 

or algorithms for the FLP without explaining the general 

model briefly. They designed and applied the classical, 

heuristics, semi-heuristics, and metaheuristics methods. 

Some researchers also reviewed articles. Paul and Hariharan 

[9] determined the location and capacities of stockpile sites 

using two delays and a generic model. Basu et al. [10] 

reviewed metaheuristic applications for finding different 

versions and models of the DLP. Javid et al. [2] reviewed and 

surveyed healthcare facility locations. Ghasemi and Razzazi 

[11] generalized the bin packing and the unit covering 

problem and called them the first-fit algorithm. 

Some researchers have developed and modified the 

algorithms for solving the more significance of FLP. Fischetti 

et al. [12] solved a large-scale facility location by redesigning 

benders decomposition. Yadav et al. [13] formulated the FLP 

model for managing municipal solid waste in uncertain 

environments. They used a mathematical programming 

language called AMPL with KNITRO as a solver of the 

model.  Xie [6] developed the multi gravity method to locate 

the logistics facilities and mapped them by Geographic 

Information Systems. 

Furthermore, Martins de Sá et al. [14] applied the Benders 

Decomposition technique to solve a location problem. Kinay 

et al. [3] investigated multi-criteria modeling frameworks for 

solving discrete stochastic FLP with single sourcing. 

Corberán et al. [15] presented compact FLP models and 

improved them with valid inequalities separated in a branch-

and-cut method. We also summarized some previous research 

about location-allocation problems. A brief table containing 

a summary study of DLP, which consists of the problem type, 

review of results, and proposed methods, can be seen in Table 

I.  

TABLE I 

DISCRETE LOCATION PROBLEMS 

References Problem Type Review of Results Proposed Methods 

Javid et al. 

[2]  

Healthcare facility location 

(HFL) 

Gave the survey of HFL and its application Did not propose any methods 

Kinay et al. 
[3]  

Capacitated DFL problem Applied stochastic shelter site location 
problem and tested the models using 
uncertainty and multiple objectives 

Rawlsian approach, vectorial 
optimization, and goal programming 

Tamir [4]  Multi-facility location 
problem 

Solved the 𝑝-facility 𝑘-centrum problem on 
path and tree graphs 

Polynomial-time algorithms 

Wolf [5]  Location models and 
covering metrics 

Explained history, applications, and 
advancements of location covering models 

Did not propose any methods 

Paul and 
Hariharan 

[9]  

Location-allocation 
problem 

Applied the model for hurricanes and 
earthquakes 

Mixed-integer programming models 

Xie [6]  Logistics facilities location Designed a multi centre of gravity logistics 
location algorithm based on Geographic 

Information Systems 

Multi centre of gravity method 

Ye and 

Kim [7]  

Healthcare facility location 

problem 

Applied the proposed algorithm to evaluate 

prospective facility sites fully, considered 
service capabilities, and demonstrated the 

integration of GIS 

A network-based covering location 

problem 

Zhang et 
al. [8]  

Emergency service 
facilities location problem 

Formulized the uncertain location set 
covering model and illustrated by a case 

study 

Three uncertain covering models 

Basu et al. 

[10]  

Discrete facility location 

problem 

Provided a detailed review of metaheuristic 

applications on DFL problems 

Genetic algorithm, tabu search, and 

particle swarm optimization 

Ghasemi 
and 

Razzazi 
[11]  

Capacitated unit covering 
problem 

The problem was not approximable within a 
factor better than 1.5 

First-fit algorithm 

Fischetti 
and 

Monaci 
[16]  

Large-scale facility 
location 

Benders decomposition allowed for a 
significant boost in the performance of a MIP 

solver 

Benders decomposition 
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Yadav et 
al. [13]  

Facility location problem 
in the municipal solid 

waste management system 

The developed model selects five 
economically best locations out of ten 

potential locations 

Fuzzy mathematical programming and 
grey programming 

Martins de 
Sa et al. 

[14]  

Incomplete hub location 
problem 

Focused on multiple allocation incomplete 
hub location problem 

Benders decomposition method 

Corberan et 
al. [15]  

Discrete facility location 
problem 

Presented compact models which are tested 
with several hundred instances 

Mixed-integer mathematical 
programming 

Du et al. 
[17]  

p-CLP The proposed methods perform the best 
solution 

A linear reformulation, benders dual 
cutting plane method, and a column and 

constraint generation method 

Silva and 
Ramalho 

[18]  

SCP Applied a non-hybrid ant colony optimization 
and adopted a more accurate experimental 

evaluation method 

Ant colony optimization 

Iwamura et 
al. [19]  

SCP Opened a source program written in C to 
generate an input data set for the set covering 

problem 

Open C source program 

Lust and 
Tuyttens 

[20]  

Bi-objective SCP Proposed a new heuristic method to generate 
a good approximation of the Pareto efficient 

solutions 

Two-phase Pareto local search 

Pereira and 
Averbakh 

[21]  

Robust SCP The approach was recommended for 
problems that cannot be solved to optimality 

by exact algorithms 

Benders decomposition, branch and cut 

Crawford 
et al. [22]  

SCP The binary cat swarm algorithm produced 
competitive results solving a portfolio of 

SCP from the OR-Library 

Cat swarm optimization 

Octarina et 
al. [23]  

SCP Implemented SCP in solving CSP Branch and bound 

Al-Shihabi 
et al. [24]  

SCP The proposed algorithm can be considered 
the new state-of-the-art meta-heuristic to 

solve the SCP 

Improved hybrid algorithm 

Weerasena 
et al. [25]  

Multi-objective SCP The new algorithm executed best on some 
instances 

Heuristic algorithm 

Astorga et 
al. [26]  

SCP The approach has proved to be very effective 
in the parametrization of the metaheuristic 

responsible for resolving the problem 

A meta-optimization approach 

Sitepu et 
al. [27]  

SCP in health facility 
location 

Optimized the number and location of 
emergency installations in Palembang 

Branch and bound 

Octarina et 
al. [28]  

SCP Implemented GRASP in SCP to find the 
optimal pattern 

 GRASP 

Davari et 
al. [29]  

MCLP The proposed method finds solutions with 
objective values no worse than 1.35% below 

the optimal solution 

Fuzzy simulation and simulated 
annealing 

Kim [30]  Set multi-cover problem Presented a new method with random 
selection rules for the partial set multicover 

problem 

Greedy heuristic 

Gazani et 
al. [31]  

Capacitated MCLP The heuristic method is capable of producing 
optimal solutions in a rational execution time 

Metaheuristic approach and GA 

Cordeau et 

al. [32]  

MCLP Can cover the larger number of customers Benders decomposition 

Amarilies 
et al. [33]  

MCLP Implemented the new algorithm to find the 
optimal trashcan location 

Greedy heuristics 

Sandoval et 
al. [34]  

𝑝-CLP The proposed algorithm performs 
significantly faster than the best-known exact 

solution method for this model 

Sandoval–Díaz–Ríos algorithm 

Irawan et 
al. [35]  

Bi-objective capacitated 𝑝-
median problem 

Developed a mathematical model using ILP 
to determine the optimal location of open 

facilities with their optimal capacity 

Compromise programming with an 
exact method and with a variable 

neighbourhood search 

Mokhtar et 
al. [36]  

𝑝-hub median problem Proposed a mathematical formulation and 
developed a modified benders decomposition 

method for solving hub-location problems 

Modified benders decomposition 
method 

Romero et 

al. [37]  
𝑝-median problem Applied the proposed approach to get a good 

solution to the 𝑝-median problem 

Tabu search algorithm 

Lai et al. 
[38]  

Max-mean dispersion 
problem 

Investigated the two-hybrid evolutionary 
algorithms incorporating tabu search for 

solving the generalized max-mean dispersion 
problem 

Two hybrids evolutionary 
algorithms/tabu search approaches 
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III. RESULTS AND DISCUSSION 

 

DLP are divided into three groups: 

a. Covering-based problems (CBP) consist of set covering 

location problems (SCLP), maximal covering location 

problems (MCLP), and p-center location problems (𝑝-

CLP).  

b. Median-based problems (MBP) consist of 𝑝-median 

location problems (𝑝-MLP) and fixed charge facility 

locations problems (FCFLP). 

c. Some different problems such as maximum dispersion, 𝑝-

dispersion, and MNS location problems. 

 

A.  CBP 

The main objective of these problems is to fulfill the 

service and satisfaction. The CBP ensured that the request 

location must cover a specific range or traveled period from 

the facilities that serve it. There are three fundamental CBP: 

SCLP, MCLP, and 𝑝-CLP.  

 

1) SCLP 

The SCLP is a related part of ILP in optimization, which 

concerns selecting the location-allocation, the best 

alternative, and aims to minimize those factors that affect the 

constraints model. Application of SCLP in daily life includes 

determining vehicle routes, garbage transportation, choosing 

vehicles to pick up passengers, buses at bus stops, airplane 

crew scheduling, resource allocation, etc. 

Previous research on the SCLP has been carried out. Silva 

and Ramalho [16] applied the ant systems to solve the SCLP. 

Because of the large data set, Iwamura et al. [17] developed 

a program to generate the benchmark data set for solving the 

SCLP. Lust and Tuyttens [18] used a two-phase Pareto local 

method to solve the bi-objective SCLP. Finally, Pereira and 

Averbakh [19] studied the SCLP with uncertain cost, called 

the robust SCLP with interval data. They compared several 

heuristic methods to the problems.  

Some applications of the heuristic method to solve SCLP 

are developing. Al-Shihabi et al. [20] improved a hybrid 

method to solve the SCLP, and Crawford et al. [21] used a 

cat swarm optimization algorithm to solve SCLP. The cat 

swarm algorithm works to follow the behavior of discrete cats 

and is known as a recent swarm metaheuristic technique. 

They applied the algorithm to many practical applications. 

Weerasena et al. [22] proposed an algorithm that used a 

branching technique on a tree structure and developed the 

node exploration for the multi-objective SCLP.  

On the other hand, Astorga et al. [23] created a meta-

optimization method to resolve the SCLP. For the 

application, Sitepu et al. [24] formulated the SCLP models to 

optimize the emergency unit location of the hospital in 

Palembang. They found six emergency unit locations that can 

serve eight sub-districts of Palembang City.  

Other applications of the SCLP model are in the cutting 

stock problem (CSP). Octarina et al. [25] formulated the set 

covering problem (SCP) model to solve the multiple CSP. 

The model showed the efficient usage of stocks. In the same 

year, Octarina et al. [26] applied the greedy randomized 

adaptive search procedure (GRASP) in formulating the SCP 

model. The method can give different patterns but still yield 

the trim loss. 

The SCLP aims to minimize the number of facilities built 

or the total fees of locations that can still fulfill the request 

level coverage. This issue determines the number and facility 

locations to cover all request points within a specified range 

or traveled period from the open facilities which serve 

customers.  

The formulation of SCLP is: 

𝑍𝑆𝐶𝐿𝑃 = min∑𝑓𝑗𝑥𝑗                                                                 (1)
𝑗∈𝐽

 

Subject to 

∑ 𝑥𝑗 ≥ 1, 𝑖 ∈ 𝐼
𝑗∈𝑁𝑖

                                                                (2) 

𝑥𝑗 ∈ {0,1}                                                                                     (3) 

Some notations that are used in the SCLP modeling: 

𝑍𝑆𝐶𝐿𝑃 =  Objective function of the SCLP model. 

𝐽 =  The prospective locations. 

𝑓𝑗 = The settled fees of locating at the prospective 

location 𝑗 ∈ 𝐽. 

𝑥𝑗 = {
1,  if a facility is established at prospective location 𝑗;  

0,  otherwise.                                                                  
 

𝐼  = The request points. 

𝑁𝑖 =  All prospective locations 𝑖 ∈ 𝐼  

            (𝑁𝑖 = {𝑗 ∈ 𝐽: 𝑑𝑖𝑗 ≤ 𝐷𝑖}). 

𝑑𝑖𝑗  =  The range or travel period from request point 𝑖 to       

prospective location 𝑗.  
𝐷𝑖       =  The maximum cover range or travel period from 

request area 𝑖 ∈ 𝐼. 

Eq (1) is the objective function. It minimizes the facility 

location's cost required to cover all request points. Constraint 

(2) ensures that the solution must cover each request point, 

and Constraint (3) is a binary integer constraint. 

 

2) MCLP 

The MCLP differentiates vertices with tremendous and 

small requests by assigning a request level to each point. This 

problem allocates the 𝑝 facility's location to maximize the 

request covered by the maximum coverage distance 𝐷𝑖. 

Davari et al. [27] used simulated annealing (SA) and a hybrid 

algorithm of fuzzy simulation to solve Fuzzy MCLP. The 

results showed a good performance. The objective values of 

the proposed SA were better than 1.35% below the optimal 

solution. Kim [28] solved the multicover problem in a partial 

set and used a minimum k direction finder to cover the likely 

transmitter positions.  

Other research for large-scale MCLP was developing. 

Cordeau et al. [29] applied Benders Decomposition to solve 

massive scale partial SCP dan MCLP. Amarilies et al. [30] 

used Greedy Heuristic to solve MCLP in finding the optimal 

trashcan location, and Gazani et al. [31] developed a meta-

heuristic approach and a constructive heuristic method to 

solve the capacitated MCLP with heterogeneous facilities and 

vehicles. They applied a genetic algorithm (GA) to construct 

the technique. 

The MCLP model is as follows. 
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𝑍𝑀𝐶𝐿𝑃 =  max∑𝑤𝑖𝑧𝑖                                                               (4)
𝑖∈𝐼

 

Subject to 

∑𝑥𝑗 = 𝑝            
𝑗∈𝐽

                                                                        (5) 

𝑧𝑖 ≤ ∑ 𝑥𝑗

𝑗∈𝑁𝑖

                                                                                  (6) 

𝑧𝑖 ∈ {0,1}                                                                                      (7) 

𝑥𝑗 ∈ {0,1}                                                                                     (8) 

Some notations that are used in the MCLP modeling: 

𝑍𝑀𝐶𝐿𝑃 =  Objective function of MCLP model 

𝑤𝑖 =  The number of request at area 𝑖 ∈ 𝐼. 

𝑧𝑖        =  {
1, if the request area 𝑖 ∈ 𝐼 is covered;  

0, otherwise.                                           
 

𝑝         =  The number of prospective locations will be built. 

The objective function (4) aims to maximize the coverage 

of request points or areas. Constraint (5) located 𝑝 facilities 

in the area. In addition, Constraint (6) shows that open 

facilities only cover the request point. The last two 

constraints, Constraint (7) and Constraint (8) offer binary 

integer solutions. 

 

3) 𝑝-CLP 

The third type of CBP is 𝑝-CLP. This problem finds the 

minimum of the maximum range or travel period of allocated 

areas and facilities, where the facilities must cover each 

request point. A request point is assigned to the opened 

closest facility when the facility is out of capacity. The 𝑝-CLP 

is a type of min-max problem. It is also a location-allocation 

problem as long as this problem requires simultaneous 

location and allocation from the request point to the facility. 

Du et al. [32] formulated a two-stage robust model and solved 

it using developed Bender’s dual cutting plane and column-

and-constraint generation for a reliable 𝑝-CLP. The general 

formula for p-CLP is 

𝑍𝑝−𝑐𝑒𝑛𝑡𝑒𝑟 = min𝐿                                                                      (9) 

Subject to 

∑𝑦𝑖𝑗 = 1,   𝑖 ∈ 𝐼
𝑗∈𝐽

                                                                   (10) 

∑𝑥𝑗 = 𝑝
𝑗∈𝐽

                                                                                  (11) 

∑𝑑𝑖𝑗𝑦𝑖𝑗 ≤ 𝐿             
𝑗∈𝐽

                                                              (12) 

𝑦𝑖𝑗 ≤ 𝑥𝑗                                                                                       (13) 

𝑦𝑖𝑗 ∈ {0,1}                                                                                 (14) 

𝑥𝑗 ∈ {0,1}                                                                                   (15) 

𝐿 ≥ 0                                                                                          (16) 

Some notations that are used in the 𝑝-CLP modeling: 

𝑍𝑝−𝑐𝑒𝑛𝑡𝑒𝑟  =  Objective function of 𝑝-CLP model 

𝑦𝑖𝑗              

=   {
1, if the request point 𝑖 is established at prospective location 𝑗 ;  
0, otherwise.                                                                                     

 

The objective function (9) minimizes the range or traveled 

period of the maximum weighted request between the request 

point and the closest facility allocation. Constraint (10) states 

that only one facility can cover each request point. Constraint 

(11) shows the number of facilities built. Then, Constraint 

(12) determines the distance or time of the maximum 

weighted request. Constraint (13) indicates that open 

facilities cover the request point. Constraints (14) - (15) are 

binary integer constraints, and Constraints (16) are non-

negative constraints. 

 

B. MBP 

 MBP locates facilities in prospective areas to find the 

minimum weighted average fees of the range. We measured 

the distance from the request point to the assigned facility and 

located the facility at the midpoints of the network. These 

issues can be categorized as the location-allocation problem. 

Irawan et al. [33] expanded an ILP model to determine the 

optimum capacity of the open facility’s location. They used 

compromise programming and VNS to execute the model. 

Then, Mokhtar et al. [34] combined the two-allocation 𝑝-hub 

median problem and a modified Benders Decomposition 

algorithm for solving hub location problems. They solved the 

hub median problem by designing a hub network in which the 

location of 𝑝-hubs needs to be decided. Finally, Romero et al. 

[35] used the Tabu search approach for solving the 𝑝-median 

problem. MBP is divided into 𝑝-MLP and FCFLP.  

 

1) 𝑝-MLP 

𝑝-MLP is the most well-known type of FLP that 

establishes 𝑝 facilities in a network. The model formulation 

of the 𝑝-MLP is 

𝑍𝑝−𝑚𝑒𝑑𝑖𝑎𝑛 = min∑∑𝑤𝑖𝑑𝑖𝑗𝑦𝑖𝑗                                       (17)

𝑗∈𝐽𝑖∈𝐼

 

Subject to 

∑𝑦𝑖𝑗 = 1             
𝑗∈𝐽

                                                                   (18) 

∑𝑥𝑗 = 𝑝
𝑗∈𝐽

                                                                                  (19) 

𝑦𝑖𝑗 ≤ 𝑥𝑗                                                                                       (20) 

𝑦𝑖𝑗 ∈ {0,1}                                                                                 (21)          

𝑥𝑗 ∈ {0,1}                                                                                   (22) 

The objective function (17) of the 𝑝-MLP minimizes the 

weighted request’s entire range or traveled period. In 

addition, Constraint (18) shows that only one facility serves 

each request point. Constraint (19) states the number of 

facilities built. Constraint (20) shows that assignments are 

only given to open facilities. Constraints (21)-(22) are binary 

integer constraints. 

 

2) FCFLP 

FCFLP is almost similar to p-median problems. Model p-

median problem ignores the difference in the building 

facilities cost at various candidate locations. In contrast, 

FCFLP strives to get the minimum total fees from opening 

and traveling the facility. The general model of the FCFLP is 

𝑍𝐹𝐶𝐿𝑃 = min ∑ 𝑓𝑗𝑥𝑗

𝑗∈𝐽  

+ 𝑣 ∑∑𝑤𝑖𝑑𝑖𝑗𝑦𝑖𝑗                        (23)

𝑗∈𝐽𝑖∈𝐼

 

Subject to 

∑𝑦𝑖𝑗 = 1             
𝑗∈𝐽

                                                                   (24) 

𝑦𝑖𝑗 ≤ 𝑥𝑗                                                                                       (25)     

𝑦𝑖𝑗 ∈ {0,1}                                                                                 (26) 

𝑥𝑗 ∈ {0,1}                                                                                  (27) 
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The notation 𝑣 shows the transportation fees variable in 

one distance unit. The objective function (23) minimizes the 

opening facilities and transportation fees. Constraint (24) 

ensures that open facilities serve each demand point, while 

Constraint (25) restricts assignments only to open facilities. 

Constraints (26)-(27) show binary integer solutions. 

 In capacitated FCFLP, we defined a new parameter 𝑈𝑗  as 

the maximal capacity at each facility 𝑗. The Capacitated 

FCFLP is the same as the FCFLP model with a capacity 

Constraint (28). 

∑𝑤𝑖𝑦𝑖𝑗 ≤ 𝑈𝑗 , 𝑗 ∈ 𝐽  
  𝑖∈𝐼

                                                     (28) 

 

C. Different Problems 

Different problems are other problems that are not included 

in covering-based and median-based. Maximum dispersion, 

𝑝-dispersion, and MNS location problems are included in this 

category. The maximum dispersion problem exaggerates the 

mean split distance between open facilities. We located 𝑝 

facilities in the 𝑝-dispersion problem and maximized the 

minimum range between opened facilities. It can be 

implemented in service facilities, service systems, or retails.  

Lai et al. [36] developed two evolutionary algorithms to fix 

the generalized max-mean dispersion problem. They reported 

computational results on 160 benchmark instances. Sandoval 

et al. [37] solved the p-center-based dispersion minimization 

problem by improving an exact algorithm. It assigns the base 

number of health staff employed in an area. 

This section also discusses some heuristic algorithms to 

solve discrete location problems, such as genetic algorithm, 

particle swamp optimization, and greedy reduction algorithm. 

The brief explanations are as follows: 

 

A. Genetic Algorithm (GA) 

The first stage in the GA is to evaluate the fitness value of 

each individual based on the given objective function. The 

crossover process is a gene exchange between two 

individuals to produce new individuals. The next stage is a 

mutation, which changes the value of genes in an individual. 

The GA process determines the new generation according to 

the objective function. Chromosomes in each individual are 

composed of several value genes. Genes can be integer, float, 

binary, character, or combinatorial values. Values contained 

in one gene are called alleles. The population starts by 

initializing some individuals. Each individual is a collection 

of genes called chromosomes. The GA is arranged with 

columns and rows to form a binary number matrix. 

Matrix rows are chromosomes, while the column number 

is the gene number. The gene number is the multiplication of 

the Nvar value (the number of variables) with the Nbit value 

(the number of bits). In contrast, the row number in a matrix 

is UkPop (population size) [39]. 

The fitness value measures whether or not a solution is 

expressed as an individual on an existing problem. The fitness  

value can be used to achieve the optimal solution [40]. The 

GA aims to find individuals with the highest fitness value (for 

the maximization case) or the lowest (for the minimization 

case). The better the fitness value of an individual, the more 

likely that individual will survive and continue to the next 

generation. The fitness value of each chromosome can be 

calculated as follows:  

∑𝑠𝑖𝑗𝑐𝑖𝑗                                                                                                                        (29)

𝑛

𝑗=1

 

𝑠𝑖𝑗  = binary value of the 𝑗𝑡ℎcolumn in the 𝑖𝑡ℎ  chromosome 

𝑐𝑗   = distance value of the 𝑗𝑡ℎcolumn   

Selection is used to select individuals in the interbreeding 

and mutation. The first step in the selection is finding the 

fitness value, which will be used in the following stages. The 

higher the fitness value of an individual (maximum case), the 

more likely it is to be selected, or the smaller the fitness value 

of an individual (minimum case), the more likely it is to be 

chosen. In this study, the selection method used is roulette 

wheel selection, where the individual or parent is selected 

based on their fitness value. The steps for the roulette wheel 

selection process are as follows: 

a. Calculate the relative fitness value (𝑝𝑖) with 

𝑝𝑖 =
fitness value (𝑖)

total of fitness value
                                                (30) 

b. Calculate the cumulative fitness value (𝑞𝑖) with  

    𝑞𝑖 = 𝑞(𝑖−1) + 𝑝𝑖                                                                     (31) 

c. Generate random numbers in [0,1] as much as the 

population size in the problem. Then select the 

𝑖𝑡ℎ  chromosome as the surviving chromosome using the 

rule: 

    𝑞(𝑖−1) ≤ 𝑟𝑖 ≤ 𝑝𝑖                                                                     (32)

  

The better the quality of a chromosome, the greater the 

chance of being selected as parents in the following process, 

namely crossover. Crossover aims to find new values, 

combining two or more chromosomes to become a new 

chromosome. We exchange genetic information on the parent 

chromosome to replace some traits or characteristics on the 

resulting new chromosome [41]. 

In this study, the method used for the crossbreeding 

process is the one-point crossover method. This method uses 

the crossover probability (PC). This study uses 0.25, then 

generates a random number (𝑟) at [0, 1] and compares it with 

the PC value. If the 𝑟 on the chromosome is less than the PC 

value, then the chromosome will be crossed. Then, to select 

the position to be crossed, the crossing process is done by 

generating random numbers from 1 to 𝑛 (chromosome 

length).  

Mutations aim to get a new chromosome with the best 

fitness value by replacing several selected parent or parent 

chromosome genes. Mutation probability is used to determine 

the rate of mutation that occurs. A high mutation rate will 

cause the offspring to be more similar to the parent.  A good 

mutation probability is 0.01 – 0.3 [42]. The first step is to 

count the number of genes by multiplying the population size 

by the chromosome length. The mutation probability (PM) in 

this study uses 0.01, then generates at [0,1] as many as the 

gene number. Genes with a random number value (𝑟) smaller 

than the predetermined PM value will undergo a mutation 

process. 

 

B. Particle Swamp Optimization (PSO) 

According to [43], the steps in running the PSO algorithm 

are as follows: 

1.  Initialize the position (𝑋) and speed (𝑣) 

2.  Determine the open facility using Eq (33) 
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𝑌𝑖 = ⌊|𝑋𝑖𝑚𝑜𝑑 2|⌋                                                         (33)                                         

3.  Evaluate the fitness value 

4.  Determine personal best and global best 

5.  Update the velocity (𝑣) and position (𝑋) using Equation  

(34) and (35) 

𝑣𝑖
(𝑡+1) = 𝑤. 𝑣𝑖

(𝑡) + 𝑐1𝑟1(𝑝𝑖
(𝑡) − 𝑋𝑖

(𝑡)) + 𝑐2𝑟2(𝑔 
(𝑡) −

𝑋𝑖
(𝑡))                                                                              (34) 

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡) + 𝑣𝑖

(𝑡+1)                                                 (35) 

6.  Update the open facility using Eq (33) 

7.  Evaluate the fitness value 

8.  Determine the new personal best and global best 

9.  Take the global best position (𝑋𝑔) vector as 𝑠0  

10.  Update 𝑠0 with Eq (36) based on ƞ and 𝑘 and give a new 

name, namely 𝑠. 

𝑔𝑖 = {
𝑔𝑖 + 1, jika 𝑔𝑖 ≥ 0 atau 𝑔𝑖 < −1
𝑔𝑖 + 2, jika − 1 ≤ 𝑔𝑖 < 0             

                     (36) 

11.  Apply the flip operator on 𝑠 and get 𝑠1.  
12.  Compare the fitness value 𝑠1 with 𝑠.  

 If 𝑓(𝑠1) ≤ 𝑓(𝑠) then change s to 𝑠1. 

If the condition is not met then repeat the steps until the 

maximum iterations as 𝑛 many times. 

13.  Compare the fitness value 𝑠0 with 𝑠.  
 If 𝑓(𝑠) ≤ 𝑓(𝑠0), then change 𝑠0 to 𝑠. 

14.  If the iteration has been maximum or has converged, then 

stop the algorithm process, if it is not maximized then 

repeats step 4. 

 

C. Greedy Reduction Algorithm (GRA) 

GRA is an algorithm that is commonly used to solve 

optimization problems. One of the optimization problems is 

determining the optimal facility point in a place. Several 

constraining factors include the distance between the best 

final solution in the form of a globally optimum solution. 

There are several essential elements in the facility and the 

location quality. GRA is an algorithm used to solve 

optimization problems sequentially, producing a local 

optimum at each step and producing the function, feasibility, 

and objective function. The steps of GRA are as follows: 

1. Form a distance matrix 𝐷 with size 𝑚 × 𝑛. 
2. Look for the dominating matrix value in all existing 

matrix columns, provided that the dominating column is 

the one with a smaller value than the other column values  

 𝑑𝑖𝑘 ≤ 𝑑𝑖𝑙 ; ∀𝑖 ≠ 𝑘 and ∀𝑖 ≠ 𝑙. 
3. From the selected dominating column select the 

dominating value by comparing all columns with the 

dominant column. 

4. Finding the optimum value by comparing the entry values 

between columns with the selected dominant column. 

5. From the selected dominant column pair, the column is 

then compared again with each column and looks for the 

optimum value of the comparison. 

6. Analyze the results of each step and recapitulate the 

results. 

IV. NUMERICAL EXPERIMENTS 

The case study used for the numerical experiment is the 

Temporary Disposal Places (TDP) data in Kertapati District, 

Palembang City. This section will determine the optimal TDP 

using the SCLP model, 𝑝-Median Problem, and GRA. TDP 

data in Kertapati District was obtained from the 

Environmental and Hygiene Office of Palembang City, which 

was then surveyed and grouped based on the TDP location in 

each village. Table II shows the distribution of TDP based on 

village location points. 

TABLE II 

TDP BASED ON VILLAGE LOCATION POINTS 

No Village TDP 

1 Ogan Baru 

Kemang Gajah Mungkur  
Kemang Pintu Besi Kertapati 
Kemang Kertapati Market 
Kemang Simpang Kencong 

2 Kertapati 
Sunan Market 
Kemang PJKA Station 

3 Kemas Rido Infront of Kader Bangsa Mataram 

4 
Kemang 
Agung 

Jepang Dekat Rumah Ketua DPR 

Abi Kusno Infront of Zikon 12 

Ki Marogan 

5 Keramasan -  

6 Karya Jaya -  

 

Based on Table II, Ogan Baru Village has four TDP, 

Kertapati Village has two TDP, Kemas Rido Village has only 

one TDP, and Kemang Agung Village has three TDP. 

Keramasan Village and Karya Jaya Village do not have any 

TDP. The definitions of variables for TDP and villages in the 

Kertapati District are stated in Table III and Table IV.  

TABLE IIII 

THE VARIABLES OF TDP IN KERTAPATI DISTRICT 

Variable List of TDP Names 

𝑝1 TDP Kemang PJKA Station 

𝑝2 TDP Kemang Kertapati Market 

𝑝3   TDP Kemang Pintu Besi Kertapati  

𝑝4  TDP Kemang Simpang Kencong 

𝑝5  TDP Kemang Gajah Mungkur  

𝑝6  TDP Sunan Market 

𝑝7  TDP Abi Kusno Infront of Zikon 12 

𝑝8  TDP Infront of Kader Bangsa Mataram 

𝑝9  TDP Ki Marogan  

𝑝10  TDP Jepang Near Ketua DPR House 

 

TABLE IV 

THE VARIABLES OF VILLAGES IN KERTAPATI DISTRICT 

Variable List of Villages 

𝑞1 Ogan Baru 

𝑞2 Kertapati 

𝑞3 Kemas Rido 

𝑞4 Kemang Agung 

𝑞5 Keramasan 

𝑞6 Karya Jaya 

 

Based on Table III and Table IV, there are 10 TDP and 6 

Villages in Kertapati District. Parametre 𝑝1 defines TDP 

Kemang PJKA Station, 𝑝2 defines TDP Kemang Kertapati 

Market, and so on. For the village, 𝑞1 defines Ogan Baru 

Village, 𝑞2 defines Kertapati village, and so on. The distance 

between each TDP can be seen in Table V. The distance with 

grey highlights in Table V mean that the allowable distance 

is 500 m.
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TABLE V 

THE DISTANCE BETWEEN EACH TDP 

𝒅𝒊,𝒋 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

1 0 380 440 610 710 1410 2040 2180 2880 4080 

2 380 0 60 230 330 1030 1660 1800 2500 3700 

3 440 60 0 170 270 970 1600 1740 2440 3640 

4 610 230 170 0 100 800 1430 1570 2270 3470 

5 710 330 270 100 0 700 1330 1470 2170 3370 

6 1410 1030 970 800 700 0 630 1500 2200 3400 

7 2040 1660 1600 1430 1330 630 0 2330 3030 4230 

8 2180 1800 1740 1570 1470 1500 2330 0 700 1900 

9 2880 2500 2440 2270 2170 2200 3030 700 0 1200 

10 4080 3700 3640 3470 3370 3400 4230 1900 1200 0 

We can see that the distance between TDP 1 and TDP 2 is 

380 m, the distance between TDP 1 and TDP 3 is 440 m, and 

so on. Using the data in Table III-Table V, the SCLP model is 

presented in Eq (37)-(46). 

Minimize: 

Z𝑆𝐶𝐿𝑃= 𝑝1 + 𝑝2 + 𝑝3  + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7 + 𝑝8 + 𝑝9  

             + 𝑝10                                                                (37) 

Subject to 

𝑝1 + 𝑝2 + 𝑝3  ≥ 1                                                     (38) 

𝑝1 + 𝑝2 + 𝑝3  + 𝑝4 + 𝑝5 ≥ 1                                       (39) 

𝑝2 + 𝑝3  + 𝑝4 + 𝑝5 ≥ 1                                      (40) 

𝑝6 ≥ 1                                                                (41) 

𝑝7 ≥ 1                                                                (42) 

𝑝8 ≥ 1                                                                      (43) 

𝑝9 ≥ 1                                                                (44) 

𝑝10 ≥ 1                                                             (45) 

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10 ∈ {0,1}                     (46) 

The objective function (37) minimizes the number of TDP 

to satisfy all demand points. Constraint (38) to Constraint (45) 

state at least 1 request must be met for each TDP. Constraint 

(46) states that the variables  𝑝1 to 𝑝10  are binary. The optimal 

solution of the model is attached in Table VI.  

There are six optimal solutions of SCLP model, and then we 

measured the distance between each villages and the optimal 

TDP, that can be seen in Table VII. 

TABLE VI 

OPTIMAL SOLUTIONS OF SCLP MODEL 

Variable List of TDP Name 

𝑝3   TDP Kemang Pintu Besi Kertapati 

𝑝6  TDP Sunan Market 

𝑝7  TDP Abi Kusno Infront of Zikon 12 

𝑝8  TDP Infront of Kader Bangsa Mataram 

𝑝9  TDP Ki Marogan 

𝑝10  TDP Jepang Near Ketua DPR House 

By using the data in Table VI and Table VII, the 

formulation of 𝑝-Median Problem Model is presented in Eq 

(47)-(62). 
TABLE VII 

DISTANCE BETWEEN VILLAGES AND TDP 

𝒅𝒊,𝒋 3 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 

1 1800 1400 2150 2400 3400 4600 

2 400 650 1550 1800 2300 3500 

3 2600 2200 2950 1100 1700 2900 

4 1500 900 450 1000 1900 3100 

5 3000 2250 1550 2800 3100 1900 

6 8600 8150 8250 6800 5900 5500 

Minimize 

Z𝑃−𝑀𝑒𝑑𝑖𝑎𝑛= 1800𝑞1,3 + 1400𝑞1,6 + 2150𝑞1,7+ 2400𝑞1,8 +  

3400𝑞1,9 + 4600𝑞1,10 + 400𝑞2,3 + 650𝑞2,6 + 1550𝑞2,7+  

1800𝑞2,8 + 2300𝑞2,9 + 3500𝑞2,10 + 2600𝑞3,3 + 2200𝑞3,6 +  

2950𝑞3,7+ 1100𝑞3,8 + 1700𝑞3,9 + 2900𝑞3,10 + 1500𝑞4,3 +  

900𝑞4,6 + 450𝑞4,7+ 1000𝑞4,8 + 1900𝑞4,9 + 3100𝑞4,10 +  

3000𝑞5,3 + 2250𝑞5,6 + 1550𝑞5,7+ 2800𝑞5,8 + 3100𝑞5,9 +  

1900𝑞5,10 + 8600𝑞6,3 + 8150𝑞6,6 + 8250𝑞6,7+ 6800𝑞6,8 +  

5900𝑞6,9 + 5500𝑞6,10                                                     (47) 

Subject to 

𝑞1,3 + 𝑞1,6 + 𝑞1,7+ 𝑞1,8 + 𝑞1,9 + 𝑞1,10 = 1                     (48) 

𝑞2,3 + 𝑞2,6 + 𝑞2,7+ 𝑞2,8 + 𝑞2,9 + 𝑞2,10 = 1                        (49) 

𝑞3,3 + 𝑞3,6 + 𝑞3,7+ 𝑞3,8 + 𝑞3,9 + 𝑞3,10 = 1                        (50) 

𝑞4,3 + 𝑞4,6 + 𝑞4,7+ 𝑞4,8 + 𝑞4,9 + 𝑞4,10 = 1                        (51) 

𝑞5,3 + 𝑞5,6 + 𝑞5,7+ 𝑞5,8 + 𝑞5,9 + 𝑞5,10 = 1                        (52) 

𝑞6,3 + 𝑞6,6 + 𝑞6,7+ 𝑞6,8 + 𝑞6,9 + 𝑞6,10 = 1                          (53) 

𝑝3 + 𝑝6 + 𝑝7 + 𝑝8 + 𝑝9 + 𝑝10 =  6                             (54) 

𝑞1,3, 𝑞2,3, 𝑞3,3, 𝑞4,3, 𝑞5,3, 𝑞6,3 ≤ 𝑝3                             (55) 

𝑞1,6, 𝑞2,6, 𝑞3,6, 𝑞4,6, 𝑞5,6, 𝑞6,6 ≤ 𝑝6                             (56) 

𝑞1,7, 𝑞2,7, 𝑞3,7, 𝑞4,7, 𝑞5,7, 𝑞6,7 ≤ 𝑝7                             (57) 

𝑞1,8, 𝑞2,8, 𝑞3,8, 𝑞4,8, 𝑞5,8, 𝑞6,8 ≤ 𝑝8                             (58) 

𝑞1,9, 𝑞2,9, 𝑞3,9, 𝑞4,9, 𝑞5,9, 𝑞6,9 ≤ 𝑝9                             (59) 

𝑞1,10, 𝑞2,10, 𝑞3,10, 𝑞4,10, 𝑞5,10, 𝑞6,10 ≤ 𝑝10                    (60) 

𝑞1,3, 𝑞2,3, 𝑞3,3, 𝑞4,3, 𝑞5,3, 𝑞6,3, 𝑞1,6, 𝑞2,6, 𝑞3,6, 𝑞4,6, 

𝑞5,6, 𝑞6,6, 𝑞1,7, 𝑞2,7, 𝑞3,7, 𝑞4,7, 𝑞5,7, 𝑞6,7, 𝑞1,8, 𝑞2,8, 

𝑞3,8, 𝑞4,8, 𝑞5,8, 𝑞6,8, 𝑞1,9, 𝑞2,9, 𝑞3,9, 𝑞4,9, 𝑞5,9, 𝑞6,9, 

𝑞1,10, 𝑞2,10, 𝑞3,10, 𝑞4,10, 𝑞5,10, 𝑞6,10 ∈ {0,1}                    (61) 

𝑝3,  𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10 ∈ {0,1}                                 (62) 

 

In the next stage, the TDP point solutions obtained from the 

𝑝-Median model are solved by GRA with the following steps. 

Step 1: 

Determining the distance matrix 𝐷 between villages and 

TDP in Kertapati District 

𝐷 = 

[
 
 
 
 
 
1800
400
2600
1500
3000
8600

1400
650
2200
900
2250
8150

2150
1550
2950
450
1550
8250

2400
1800
1100
1000
2800
6800

3400
2300
1700
1900
3100
5900

4600
3500
2900
3100
1900
5500]

 
 
 
 
 

 

Step 2: 

Get the dominating column by comparing each entry in the 

matrix column. We compare each column to the other 

columns. 
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Step 3: 

Compare each column entry with the dominant result, find 

the smallest dominant value, and add up the smallest dominant 

value. Tables VIII and IX show the final calculation results 

from comparing each column with others.  

 
TABLE VIII 

COMPARISON RESULTS OF EACH COLUMN WITH COLUMN 2 

Column 1 3 4 5 6 

2 15300 14400 13100 12800 12550 

 

TABLE IX 

COMPARISON RESULTS OF EACH COLUMN WITH COLUMN 3 

Column 1 2 4 5 6 

3 15050 14400 13600 13300 14100 

 

From Table VIII and IX, the minimum value of the 

comparison between column 2 and the other columns is in 

column 6, 12,550. At the same time, the minimum value of the 

comparison between column 3 and the other columns in 

column 5 is 13,300. So, the selected columns are columns (2, 

6) and (3, 5). We use these two selected columns to compare 

them with the other columns. 

 

Step 4: 

Compare the selected dominant column pair with each 

column and find the optimum value of the comparison, which 

can be seen in Table X-XI. We compare columns (2, 6) to 

columns 1, 3, 4, and 5 and columns (3, 5) to columns 1, 2, 4, 

and 6. 
TABLE X 

COMPARISON RESULTS OF EACH COLUMN WITH COLUMN 2 AND 6 

Column 1 3 4 5 

(2, 6) 12300 11750 11450 12050 
 

TABLE XI 

COMPARISON RESULTS OF EACH COLUMN WITH COLUMN 3 AND 5 

Column 1 2 4 6 

(3, 5) 11.800 11.650 12.700 12.900 

 

Based on Table X, the minimum value is in column 4, so 

columns 2, 6, and 4 are the first pair of the optimal solutions. 

At the same time, from Table XI, the minimum value is in 

column 2, so columns 3, 5, and 2 are the second pair of optimal 

solutions. 

 

Step 5: 

Analyze the results of each step. Based on steps 1 to step 4, 

it is found that the completion of the first pair of columns for 

the first village is 2, 6, 4, and the second pair of columns for 

the second village is 3, 5, 2 with the following explanation: 

1. Solution 2 is the second column matrix, TDP Kemang Pintu 

Besi. 

2. Solution 6 is the sixth column matrix, TDP Jepang Near 

Ketua DPR  House. 

3. Solution 4 is the fourth column matrix, TDP Infront of 

Kader Bangsa Mataram. 

4. Solution 3 is the third column matrix, TDP Abi Kusno 

infront of Zikon 12. 

5. Solution 5 is the fifth column matrix, TDP Ki Marogan. 

6. Solution 2 is the second column matrix, TDP Kemang Pintu 

Besi. 

 

We also solve the 𝑝-Median model by using LINGO 13.0. 

that can be seen in Table XII. 

 
TABLE XII 

OPTIMAL SOLUTIONS OF P-MEDIAN PROBLEM MODEL 

No Village 
Facility Location (TDP) 

LINGO GRA 

1 Ogan Baru 
TDP Sunan 

Market 

TDP Sunan 

Market 

2 Kertapati 
TDP Kemang 

Pintu Besi 

TDP Jepang 

Near Ketua DPR 

House 

3 Kemas Rido 

TDP Infront of 

Kader Bangsa 

Mataram 

TDP Infront of 

Kader Bangsa 

Mataram 

4 Kemang Agung 

TDP Abi Kusno 

Infront of Zikon 

12 

TDP Abi Kusno 

Infront of Zikon 

12 

5 Keramasan 

TDP Abi Kusno 

Infront of Zikon 

12 

TDP Ki 

Marogan 

6 Karya Jaya 

TDP Jepang 

Near Ketua DPR 

House 

TDP Sunan 

Market 

 

Based on Table XII, there are some different solutions 

between LINGO and GRA especially in Kemas Rido village, 

Keramasan village, and Karya Jaya village. By analyzing the 

solution, we figure out the optimal TDP in Figure 1.  

 

 
Fig 1. Optimal TDP in Kertapati District 

 

Map description: 
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From Figure 1, it can be seen TDP Sunan Market will be 

placed in Ogan Baru village, TDP Kemang Pintu Besi will be 

places in Kertapati village, TDP Infront of Kader Bangsa 

Mataram will be placed in Kemas Rido village, and TDP Abi 

Kusno Infront of Zikon 12 will be placed in Kemang Agung 

village. Keramasan Village did not initially have a TDP, so 

TDP Ki Marogan will be placed in this village based on the 

solution. In the beginning, Karya Jaya Village did not have a 

TDP solution either. The LINGO software shows that TDP 

Jepang near Ketua DPR house should be placed in Karya Jaya 

Village, while GRA places TDP Sunan Market in Karya Jaya 

Village. The solutions of the two applications are far different 

from the actual distance. Adding some new TDP in Karya Jaya 

Village is suggested for this study. 

 
V. CONCLUSION 

 

This paper briefly introduced the general model formulation 

for every problem in discrete location problems. We reviewed 

the fundamental models, surveyed some proposed methods 

and types of models, and summarized the study in discrete 

location problems. We implemented the GRA to solve the 

SCP model and find the optimal TDP in Kertapati District. We 

believe that this research will be helpful for readers and 

researchers who are interested in the facility location problem. 

Hopefully, this paper will encourage researchers and 

practitioners of operation research to develop the study. More 

reviews of the facility location problems with heuristics and 

metaheuristic methods are critically important to develop and 

apply in some applications for further analysis.    
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