PAPER • OPEN ACCESS

Preface

To cite this article: 2020 J. Phys.: Conf. Ser. 1480011001

View the article online for updates and enhancements.

You may also like
Diversity and abundance model according to habitat characteristics of filariasis vector, Mansonia spp. in Banyuasin, South Sumatera, Indonesia
Rini Pratiwi, Chairil Anwar, Salni et al.

- Kinship of the swamp buffalo (bubalus bubalis) in Tanjung Senai, Ogan Ilir, South Sumatra based on morphological characteristics
Yuanita Windusari, Laila Hanum, Arum Setiawan et al.

Community Empowerment at Air Telang Protected Forest Area on Green
Production of Nata de coco and Swamp Water Filtration
M Verawaty, B Lakitan and S Herlinda

PREFACE

The honourable Rector of Universitas Sriwijaya

The honourable Dean of Faculty of Teacher Training and Education of Universitas Sriwijaya
The honourable invited guests, participants and speakers of National Conference on Mathematics Education (NaCoME) 2019.

On behalf of all National Conference on Mathematics Education (NaCoME) 2019 and Workshop on Mathematical Modeling Committees, I would like to express my deepest gratitude for your participation in this event. This year, NaCoME and Workshop on Mathematical Modeling 2019 is themed "Modeling in Mathematics Instruction: The First Step towards Problem Solving".

With the existence of industrial revolution 4.0, teachers are required to become more innovative in conducting instructions, either by utilizing technology, evaluating students’ processes and learning outcomes, especially facilitating students to support their higher order thinking skills. With those frames in mind, students must be fostered to be able to compete globally, therefore, the purpose of holding this event is to increase student achievement and competitive spirit, while increasing the insight of educators, prospective educators, and education personnel to improve the quality of education.

As the chair of this event, I would like to report that we have invited participants from all of South Sumatra Province through collaboration with the Mathematics Education Alumni Association (IKADIKMAT) and Universitas Sriwijaya. The total participants in this event consisting of 131 speakers, 162 non-speaker participants, and 41 workshop participants, come from 11 provinces from all over Indonesia namely from DI Aceh, South Sumatra, Lampung, DKI Jakarta, Banten, West Sumatra, Bengkulu, Jambi, West Java, West Sulawesi, and Nusa Tenggara Timur. The Keynote speakers of this Event are Dr. Tan Liang Soon from the Academy of Singapore Teachers, Prof. Wono Setiabudhi, Professor of mathematics from the Bandung Institute of Technology, and Dr. Yusuf Hartono, Associate Professor of Mathematics Education from Universitas Sriwijaya.

Through blind review session, revision, and editors' considerations, we have selected 86 articles out of 131 submitted papers to be published in Scopus-indexed IOP Conference Proceeding (Journal of Physics: Conference Series). Hopefully, these papers will make a significant contribution to education in Indonesia and throughout the world.

Chair of NaCoME 2019

Dr. Darmawijoyo

PAPER • OPEN ACCESS

Peer review statement

To cite this article: 2020 J. Phys.: Conf. Ser. 1480011002

View the article online for updates and enhancements.

You may also like
A new learning trajectory on the pyramid N F Fuadiah and Z A Sawitri

- Designing creative problem solving-based student worksheet for higher order thinking skills
B Sinta, Y Hartono, Indaryanti et al.
Students' perception of reading and
understanding mathematics textbook L Asri, D Oktalidiasari and Darmawijoyo

Peer review statement

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Table of contents

```
Volume 1480
2020
4 Previous issue Next issue *
National Conference on Mathematics Education (NaCoME) 27-28 November 2019, Kota Palembang, Indonesia
Accepted papers received: 20 February }202
Published online: }13\mathrm{ May 2020
```

Open all abstracts

OPEN ACCESS 012004

Mathematical critical thinking ability of students with realistic mathematics learning innovations with ethnomathematics（PMRE）
Muslimahayati，D Dasari and R Agustiani

＋Open abstract	國 View article	岡 PDF
OPEN ACCESS		
Design of mathematics learning in the grand mosque of palembang		
I Martadinata，Somakim，Darmawijoyo and J Araiku		
＋Open abstract	國 View article	凮 PDF

$\overline{\text { OPEN ACCESS }} 02006$

Statistical reasoning of prospective teachers through blended learning
Rohana and Y L Ningsih
＋Open abstract 國 View article PDF

OPEN ACCESS		012007
Development of proof－based student worksheets in trigonometry		
I Ismerelda and Y Hartono		
＋Open abstract 國 View article	㶡 PDF	
OPEN ACCESS		012008
Learning higher－order thinking skills using problem－based learning model		
N S Tama，N Aisyah，B Santoso and E Kurniadi		
＋Open abstract 國 View article P PDF		
OPEN ACCESS		012009
Students＇characters in solving higher－order thinking skill questions assisted with technology		
A Suci，N Aisyah and Meryansumayeka		
＋Open abstract 國 View article	匃 PDF	

N Sari，P Fitriasari and D Octaria
＋Open abstract 国 View article PDF

OPEN ACCESS
Scaffolding in mathematical problem－solving
S Arifin，Zulkardi，R I I Putri，Y Hartono and E Susanti
＋Open abstract \quad 国 View article 幽 PDF

OPEN ACCESS
In－service teachers＇mathematical problem solving skills
C Hiltrimartin，Y Hartono and Indaryanti
＋Open abstract $\quad 012055$
View article PDF

OPEN ACCESS
Mathematics reasoning through inquiry learning model
N Khansa，E Susanti，Indaryanti，N Sari and R H Simarmata
＋Open abstract \quad 葍 View article PDF
OPEN ACCESS
Problem－based learning for measuring representation ability
E D Wahyuni，E Susanti，N Sari and R H Simarmata
＋Open abstract \quad 国 View article DDF

OPEN ACCESS	012058
Students＇mathematical reasoning in inquiry learning model	
G Helviyana，E Susanti，Indaryanti，N Sari and R H Simarmata	
＋Open abstract 国 View article ${ }^{\text {d }}$ PDF	

OPEN ACCESS
Development of student worksheets based on problem－based learning in the algebra topics
B Santoso，A C Coaline，Scristia and J Araiku
＋Open abstract 国 View article PDF
Analysis of student＇s proof construction on matrix determinants
D Sari，Hapizah and Scristia
＋Open abstract \quad 国 View article PDF
OPEN ACCESS 012061

The 6th grade students＇view in understanding mathematics through reading mathematics textbook
A Turidho，Y Maharani and Darmawijoyo
＋Open abstract 國 View article PDF

OPEN ACCESS
012062
Students＇perception of reading and understanding mathematics textbook
LAsri，D Oktalidiasari and Darmawijoyo
＋Open abstract 国 View article PDF
OPEN ACCESS 012063

The effect of students＇mathematics views on how they read math textbook
K A Islamirta，R R Chaniago and Darmawijoyo
＋Open abstract 國 View article PDF
OPEN ACCESS 012064

On how students read mathematics textbook and their view on mathematics
D Oktariani，T I Sari，N W Saputri and Darmawijoyo
＋Open abstract 国 View article 眞 PDF

OPEN ACCESS
The modified branch and bound algorithm and dotted board model for triangular shape items
S Octarina，M Janna，E S Cahyono，P B J Bangun and L Hanum
＋Open abstract 國 View article PDF
OPEN ACCESS
Students＇mathematical modelling skills with the model eliciting activities（MEAs）approach on material number patterns
D Suryanto and Hapizah
＋Open abstract 国 View article DDF

Science

The modified branch and bound algorithm and dotted board model for triangular shape items

To cite this article: S Octarina et al 2020 J. Phys.: Conf. Ser. 1480012065

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

The modified branch and bound algorithm and dotted board model for triangular shape items

S Octarina ${ }^{1 *}$, M Janna ${ }^{1}$, E S Cahyono ${ }^{1}$, P B J Bangun ${ }^{1}$ and L Hanum ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences Universitas Sriwijaya, Palembang, South Sumatra, Indonesia
${ }^{2}$ Department of Biology, Faculty of Mathematics and Natural Sciences Universitas Sriwijaya, Palembang, South Sumatra, Indonesia
*Corresponding author's email: sisca_octarina@unsri.ac.id

Abstract

Cutting Stock Problem (CSP) is a problem of cutting stocks into items with certain cutting rules. This study used the data where the rectangular stocks were cut into triangular shape items with various order sizes. This study used the Modified Branch and Bound Algorithm (MBBA) to determine the optimal cutting pattern then formulated it into a Dotted Board model. Based on the results, it showed that the MBBA produced three optimal cutting patterns, which used 6 times, 8 times, and 4 times respectively to fulfill the consumer demand. Then the cutting patterns were formulated into the Dotted Board model. Minimum trim loss of the three models are $1,774 \mathrm{~cm}^{2}, 1,720 \mathrm{~cm}^{2}$ dan $980 \mathrm{~cm}^{2}$.

1. Introduction

Efficiency in production is very important where currently the available natural resources are less and the market demand is higher. Industry players must strive to overcome these problems in order to compete in a globalization world. One effort to improve production efficiency is by optimizing the use of raw materials, namely minimizing the remaining cutting (trim loss). Many types of raw materials used in industry including wood, paper, glass, steel, marble, and others. The raw material used will be cut according to the specified cutting pattern.

The problem of cutting in Optimization in order to optimize raw materials is known as Cutting Stock Problem (CSP). CSP is divided into three parts based on the number of dimensions, namely onedimensional CSP, two-dimensional CSP, and three-dimensional CSP. This study examines twodimensional CSP, wherein cutting only based on the width and length of the raw material.
CSP has been extensively developed by researchers with various problem-solving algorithms starting from generating patterns, formulating models, and solving methods. Research that discussed the pattern generation such as [1] who formulated CSP in a linear program model. The formula introduced by [1] was used to solve one-dimensional CSP. Furthermore, according to [2] two-dimensional CSP can be classified into regular and irregular items. Then [3] completed a two-dimensional CSP by generating patterns using the Modified Branch and Bound algorithm. This method can be used in cutting large quantities but limited only to rectangular items. Whereas [4] made cuts on rectangular-shaped items into triangles of various sizes.

A study of two-dimensional CSP for irregular-shaped items by proposing a model called the Dotted Board [5]. The packing problem and the cutting of raw materials which are also irregular in shape was conducted by [6]. The optimal solution is obtained from several models including the Dotted Board model and the 3-Phase Matheuristic model. Whereas [7] conducted a study on how to design and create
applications for cutting pattern generation in two-dimensional CSP. Furthermore, [8] implemented the Pattern Generation Algorithm on Gilmore and Gomory models in two-dimensional CSP and [9] formulated the Gilmore and Gomory models in two-dimensional multiple stock size cutting stock problem whereas [10] implemented branch and cut method on n-sheet model in solving two dimensional cutting stock problem.

Based on this background, this research looks for cutting patterns for triangular items. Patterns were searched using the Modified Branch and Bound method. Furthermore, the pattern obtained was modeled into the Dotted Board model which in previous studies was used for irregular shaped items. This study uses research data from [4] where the raw materials used were rectangular and then cut into triangles of various sizes. Previously, [4] used the Gilmore and Gomory models, therefore another model will be formed using the Dotted Board model.

2. Literature Review

2.1. Modified Branch and Bound Algorithm (CSP)

Modified Branch and Bound Algorithm (MBBA) is one of the method used to form cutting patterns in CSP. In this research, the rectangular raw material is cut into triangular items.

Figure 1. Triangular
Based on Fig. $1, B C \geq A B$ and $B C \geq A C$ with $B C=l_{i}$ (length of the $i^{\text {th }}$ item), $A D=w_{i}$ (width of the $i^{\text {th }}$ item) and $B D=e_{i}$ where ($i=1,2, \cdots, m$). The length and width were denoted by \mathcal{L} and \mathcal{W} respectively. The steps of MBBA [4]:
Step 1: Arrange lengths, $l_{i}(i=1,2, \cdots, m)$ in decreasing order, ie $l_{1}>l_{2}>\cdots>l_{m}$ where m is number of item. Arrange required widths,
$w_{i}(i=1,2, \cdots, m)$ and lengths $e_{i}(i=1,2, \cdots, m)$ according to the corresponding lengths.
Step 2: For $(i=1,2, \cdots, m)$ and $j=1$ do Steps 3 to 5 .
Step 3: Set $a_{11}=\left\lfloor\frac{L}{l_{1}}\right\rfloor$

$$
\begin{equation*}
a_{i j}=\left\lfloor\frac{L-\sum_{z=1}^{i-1} a_{z j} l_{z}}{l_{i}}\right\rfloor \tag{1}
\end{equation*}
$$

where L is the length of the main sheet. $a_{i j}$ is the number of pieces of the $i^{t h}$ item in the $j^{t h}$ pattern along the length of the main sheet and $\lfloor y\rfloor$ is the greatest integer less than or equal to y.
Step 4: If $a_{i j}>0$, then set $b_{i j}=\left\lfloor\frac{W}{w_{i}}\right\rfloor$
Else set $b_{i j}=0$, where W is the width of the main sheet. $b_{i j}$ is the number of pieces of the $i^{\text {th }}$ item in the $j^{\text {th }}$ pattern in the main sheet.
Step 5: \quad Set $P_{i j}=\left(2 a_{i j}-1\right) b_{i j}$
where $P_{i j}$ is the number of pieces of the $i^{\text {th }}$ item in the $j^{\text {th }}$ pattern in the main sheet.
$P_{i j}= \begin{cases}0 & ; P_{i j} \leq 0 \\ x & ; P_{i j}>0\end{cases}$
Step 6: Cutting loss
(i) Cut loss along the length of the main sheet:

$$
\begin{equation*}
C_{u}=\left(L-\sum_{i=1}^{m} a_{i j} l_{i}\right) W \tag{5}
\end{equation*}
$$

For $=1,2, \cdots, m$, If $\left(L-\sum_{i=1}^{m} a_{i j} l_{i}\right) \geq w_{i}$ and $W \geq l_{i}$ then set:

$$
\begin{equation*}
A_{i j}=\left\lfloor\frac{L-\sum_{i=1}^{m} a_{i j} l_{i}}{w_{i}}\right\rfloor \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& B_{i j}=\left\{\begin{array}{l}
\left\lfloor\frac{W}{w_{i}}\right\rfloor ; A_{i j}>0 \\
0 \quad ; \text { otherwise }
\end{array}\right. \tag{7}\\
& P_{i j}=\left(2 A_{i j} B_{i j}\right)-1 \tag{8}\\
& \text { Else set : } \\
& A_{i j}=0 \tag{9}\\
& B_{i j}=0 \tag{10}\\
& P_{i j}=P_{i j} \tag{11}\\
& \text { If } A_{i j}>0, \text { then set }: C_{u}=\left(\left(L-\sum_{i=1}^{m} a_{i j} l_{i}\right)-A_{i j} w_{i}\right) B_{i j} l_{i} \tag{12}\\
& C_{v}=\left(\sum_{i=1}^{m} a_{i j} l_{i}\right) \cdot\left(W-B_{i j} l_{i}\right) \tag{13}\\
& C_{t}=\left(\frac{1}{2} l_{i} w_{i}\right) \tag{14}
\end{align*}
$$

where, $A_{i j}$ and $B_{i j}$ are the number of pieces of the $i^{\text {th }}$ item in the $j^{\text {th }}$ pattern along the length and width of the C_{u} rectangle respectively and C_{u} and C_{v} are the total cut loss area along the length and width of the C_{u} rectangle respectively.
(ii) Cut loss along the width of the main sheet: $C_{v}=$

$$
\begin{align*}
& \left(a_{i j} l_{i}\right) \cdot k_{i j} \tag{15}\\
& k_{i j}=W-b_{i j} w_{i} \tag{16}
\end{align*}
$$

If $b_{i j} w_{i}=0$ then set $k_{i j}=0$
For $z \neq i$, If $\left(a_{i j} l_{i}\right) \geq l_{z}$ and $k_{i j} \geq w_{z}$ then set:
$A_{z j}=\left\lfloor\frac{a_{i j} l_{i}}{l_{z}}\right\rfloor$
$B_{i j}=\left\{\begin{array}{l}\left\lfloor\frac{k_{i j}}{w_{z}}\right\rfloor ; A_{z j}>0 \\ 0 \quad ; \text { otherwise }\end{array}\right.$
$P_{z j}=P_{z j}+\left(2 a_{z j}-1\right) b_{z j}$
Else set : $A_{i j}=0$
$B_{i j}=0$
$P_{i j}=P_{i j}$
If $A_{z j}>0$ then set: $C_{u}=\left(a_{i j} l_{i}-A_{z j} l_{z}\right) \cdot B_{z j} w_{z}$
$C_{v}=a_{i j} l_{i} .\left(k_{i j}-B_{z j} w_{z}\right)$
Else $C_{t}=\left(\frac{1}{2} l_{i} w_{i}\right)$
where, $A_{z j}$ and $B_{z j}$ are the number of pieces of the the $i^{\text {th }}$ item in the $j^{\text {th }}$ pattern along the length and width of the C_{v} rectangle respectively and C_{u} and C_{v} are the total cut loss are along the length and width of the C_{v} rectangle respectively.
(iii) Cut loss within the triangular shape items in the main sheet:

If $a_{i j}=0$ then set $C_{t}=\frac{1}{2} e_{i} w_{i}+\frac{1}{2}\left(l_{i}-e_{i}\right) w_{i}$ else set $C_{t}=0$
For $z \neq i$, If $e_{i} \geq l_{z}$ and $\frac{\left(e_{i}-\left(l_{z}-e_{z}\right)\right) w_{i}}{e_{i}} \geq w_{z}$
Then $l_{i}-e_{i} \geq l_{z}$ and $\frac{\left(l_{i}-e_{i}-e_{z}\right) w_{i}}{\left(l_{i}-e_{i}\right)} \geq w_{z}$
set: $E_{z j}=\left\lfloor\frac{e_{i}}{l_{z}}\right\rfloor$
$F_{z j}=\left\{\begin{array}{cc}\left\lfloor\frac{w_{i}}{w_{z}}\right\rfloor & \quad \text { if } E_{z j}>0 \\ 0 & \text {; otherwise }\end{array}\right.$
$P_{z j}=P_{z j}+\left(2 E_{z j}-1\right) F_{z j} b_{i j}$
Else set : $E_{z j}=0$
$F_{z j}=0$

$$
\begin{equation*}
P_{z j}=P_{z j} \tag{32}
\end{equation*}
$$

If $E_{z j}>0$ then set : $C_{t}=\left(\frac{1}{2} e_{i} w_{i}-\left(\frac{1}{2} E_{z j} l_{z} w_{z}\right)\right)$ else set $C_{t}=\frac{1}{2} e_{i} w_{i}$
For $z \neq i$, If $\left(l_{i}-e_{i}\right) \geq l_{z}$ and $\frac{\left[\left(l_{i}-e_{i}\right)-e_{z}\right] w_{i}}{l_{i}-e_{i}} \geq w_{z}$
then : $E_{z j}=\left\lfloor\frac{l_{i}-e_{i}}{l_{z}}\right\rfloor$
$\left\{\left|\frac{w_{i}}{}\right| l_{z}\right]$
$F_{z j}= \begin{cases}\left\lfloor\frac{w_{i}}{w_{z}}\right\rfloor & ; \text { if } E_{z j}>0 \\ 0 & ; \text { otherwise }\end{cases}$
$P_{z j}=P_{z j}+\left(2 E_{z j}-1\right) F_{z j} b_{i j}$
Else set : $E_{z j}=0$
$F_{z j}=0$
$P_{z j}=P_{z j}$
If $E_{z j}>0$ then :
$C_{t}=\left[\frac{1}{2}\left(l_{i}-e_{i}\right) w_{i}-\left(\frac{1}{2} E_{z j} l_{z} w_{z}\right)\right]$; else set, $C_{t}=\frac{1}{2}\left(l_{i}-e_{i}\right) w_{i}$
where, $E_{z j}$ and $F_{z j}$ are the number of pieces of the $i^{t h}$ item in the $j^{t h}$ pattern along the length and width of the C_{t} rectangle respectively and C_{t} is the total cut loss area of the triangular shapes.
Step 7: Set $r=m-1$
while $r>0$ do Step 8
Step 8: While $a_{r j}>0$ set $j=j+1$, and do Step 9
Step 9: If $a_{r j} \geq b_{r j}$, then generate a new pattern according to the following conditions:
For $z=1,2, \ldots, r-1$, Set $a_{z j}=a_{z j-1}$ and $b_{z j}=b_{z j-1}$
For $z=r$
Set $a_{z j}=a_{z j-1}-1$
If $a_{z j}>0$, then set $b_{z j}=\left\lfloor\frac{W}{w_{z}}\right\rfloor$, else set $b_{z j}=0$
For $z=r+1, \ldots, m$
Calculate $a_{z j}$ and $b_{z j}$ using Eq (1) and (2)
For $i=1,2, \ldots, m$, Set $p_{i j}=a_{i j} b_{i j}$
Go to Step 5
Else generate a new pattern according to the following conditions ($a_{r j} \leq b_{r j}$):
For $z=1,2, \ldots, r-1$, Set $a_{z j}=a_{z j-1}$ and $b_{z j}=b_{z j-1}$
For $z=r$, Set $a_{z j}=a_{z j-1}$ and $b_{z j}=b_{z j-1}-1$
For $z=r+1, \ldots, m$, Calculate $a_{z j}$ and $b_{z j}$ using Eq (2) and (3)
For $i=1,2, \ldots, m$, Set $p_{i j}=a_{i j} b_{i j}$
Do Step 5
Step 10: Set $r=r-1$
Step 11: STOP.

2.2. Dotted Board Model

The Dotted Board model aims to minimize the use of board length and width by presenting a number of dots on board for each row and column. This method is done as a reference for laying items on a board based on the reference point. According to [6] reference points can only be positioned on the dot of set D that represents the board. The shape of the board used is a rectangular flat shape that has length L and width W. The advantages of the Dotted Board model are convex and non-convex items can be placed on the board in the same way. Items of type t and placed at point $\left(\delta_{t}^{d}\right)$ have three basic restrictions, namely:

- Each piece needs to be positioned entirely inside the board.
- All the pieces need to be positioned.
- The pieces may not overlap.

Inner-fit polygons (IFP) are met if each item that is positioned fully inside the board, while the nofit polygon (NFP) is met if each item does not overlap.The dotted board model for two dimensional Cutting Stock Problem according to [5] can be seen in Model (52).
Objective Function:
Minimize

$$
\begin{equation*}
z=\left(\left(\mathrm{c} \cdot g_{x}+x_{t}^{M}\right) \cdot \delta_{t}^{d}\right) \quad \forall d \in I F P_{t}, \forall t \in T \tag{52}
\end{equation*}
$$

Subject to:

$$
\begin{align*}
\left(c . g_{x}+x_{t}^{M}\right) \cdot \delta_{t}^{d} & \leq z \quad \forall d \in I F P_{t}, \forall t \in T ; \tag{52.a}\\
\sum_{d \in I F P_{t}} \delta_{t}^{d} & =q_{t} \quad \forall t \in T ; \tag{52.b}\\
\delta_{u}^{e}+\delta_{t}^{d} & \leq 1 \quad \forall e \in N F P_{t, u}^{d}, \forall t, u \in T, \forall d \in I F P_{t} \tag{52.c}\\
\delta_{t}^{d} & \in\{0,1\} \forall d \in I F P_{t}, \forall t \in T ; \tag{52.d}\\
z & \geq 0 \tag{52.e}
\end{align*}
$$

where
$\delta_{t}^{d}=\left\{\begin{array}{cc}1 & \text { if the reference point of a piece of type } t \text { is positioned on dot } d \\ 0 & \text { otherwise. }\end{array}\right.$
where z is objective function, c is board column, r is board row, g_{x} is grid resolution in x axis, x_{t}^{M} is horizontal distance from the reference point to the end of item, δ_{t}^{d} is binary decision variable, q_{t} is numbers of item type t that should be positioned, d, e are type of point on board, t, u are type of item, $I F P$ is inner fit polygon and $N F P$ is nofit polygon.

3. Method

The steps in this study are as follows:
a. Describe the data which includes the length and width of the product along with the demand.
b. Implement a Modified Branch and Bound Algorithm to form cutting pattern in a two-dimensional CSP by

- Define the used variable such as length of item $\left(\boldsymbol{l}_{\boldsymbol{i}}\right)$, one side of the item $\left(\boldsymbol{e}_{\boldsymbol{i}}\right)$, length of raw material (\boldsymbol{L}) and width of raw material (\boldsymbol{W}).
- Form the cutting pattern using Modified Branch and Bound Algorithm in accordance with predetermined variables by sorting the length $\left(\boldsymbol{l}_{\boldsymbol{i}}\right)$, forming the cutting pattern and counting the cut loss along the length, width and in the form of a triangle on the main sheet.
c. Formulate the Dotted Board Model by defining the used variable, formulating the objective function that minimizes the used of the board and a set of constraints that ensured all of the demand is fulfilled.
d. Analyze the final solution.

4. Result and Discussion

This study used the data of rectangular marble slabs with a size of $50 \mathrm{~cm} \times 15 \mathrm{~cm}$, then the material was cut into triangle items according to the order size in Table 1. The Modified Branch and Bound Algorithm (MBBA) is implemented in Two Dimensional CSP for triangular shape items. The objective function of MBBA is to determine cutting patterns, maximize the number of items ordered according to consumer demand and minimize the use of stock.

Table 1. The size of items and the number of demands.

Item	1	2	3	4
$B C(c m)$	40	25	8	4
$A D(c m)$	13	12	5	2
$B D(c m)$	30	24	2	2
Demand $\left(d_{1}\right)$ (pieces)	6	30	125	500

Based on MBBA, there are 3 optimum cutting patterns, as shown in Table 2. This research assumed that the rotation of items are not allowed. The optimum pattens from MBBA were put in Dotted Board
as shown in Figure 2, 3 and 4 respectively. The Dotted Board model for each cutting pattern can be seen in Model (54), (55) and (56).

Table 2. Optimum cutting pattern.

Cutting	Optimum Patterns				
Item	14	17	20	Demand	Surplus
1	1	0	0	6	
2	1	3	0	30	0
3	0	0	33	125	7
4	59	48	8	500	270
Cut loss $\left(\mathrm{cm}^{2}\right)$	104	108	58	-	-
Number of usage	6	8	4	-	-

Minimize

```
\(z=40 \delta_{1}^{656}+39 \delta_{2}^{639}+2 \delta_{4}^{45}+8 \delta_{4}^{74}+2 \delta_{4}^{40}+8 \delta_{4}^{70}+12 \delta_{4}^{96}+18 \delta_{4}^{100}+2 \delta_{4}^{36}+4 \delta_{4}^{68}+8 \delta_{4}^{132}+8 \delta_{4}^{128}+20 \delta_{4}^{163}+\)
\(12 \delta_{4}^{193}+14 \delta_{4}^{227}+16 \delta_{4}^{257}+18 \delta_{4}^{291}+20 \delta_{4}^{321}+22 \delta_{4}^{365}+24 \delta_{4}^{395}+26 \delta_{4}^{429}+28 \delta_{4}^{459}+30 \delta_{4}^{493}+32 \delta_{4}^{523}+34\)
\(\delta_{4}^{557}+36 \delta_{4}^{587}+38 \delta_{4}^{611}+40 \delta_{4}^{641}+41 \delta_{4}^{668}+41 \delta_{4}^{664}+41 \delta_{4}^{660}+86 \delta_{4}^{702}+86 \delta_{4}^{698}+86 \delta_{4}^{694}+43 \delta_{4}^{690}+\)
\(45 \delta_{4}^{736}+90 \delta_{4}^{732}+90 \delta_{4}^{728}+90 \delta_{4}^{724}+94 \delta_{4}^{766}+94 \delta_{4}^{762}+94 \delta_{4}^{758}+47 \delta_{4}^{754}+98 \delta_{4}^{788}+49 \delta_{4}^{792}\)
subject to
\(\delta_{1}^{656}=1\)
\(\delta_{2}^{639}=1\)
\(\delta_{4}^{45}+\delta_{4}^{74}+\delta_{4}^{40}+\delta_{4}^{70}+\delta_{4}^{96}+\delta_{4}^{100}+\delta_{4}^{36}+\delta_{4}^{68}+\delta_{4}^{132}+\delta_{4}^{128}+\delta_{4}^{163}+\delta_{4}^{193}+\delta_{4}^{227}+\)
\(\delta_{4}^{257}+\delta_{4}^{291}+\delta_{4}^{321}+\delta_{4}^{365}+\delta_{4}^{395}+\delta_{4}^{429}+\delta_{4}^{459}+\delta_{4}^{493}+\delta_{4}^{523}+\delta_{4}^{557}+\delta_{4}^{587}+\delta_{4}^{611}+\)
\(\delta_{4}^{641}+\delta_{4}^{668}+\delta_{4}^{664}+\delta_{4}^{660}+\delta_{4}^{702}+\delta_{4}^{698}+\delta_{4}^{694}+\delta_{4}^{690}+\delta_{4}^{736}+\delta_{4}^{732}+\delta_{4}^{728}+\delta_{4}^{724}+\)
\(\delta_{4}^{766}+\delta_{4}^{762}+\delta_{4}^{758}+\delta_{4}^{754}+\delta_{4}^{788}+\delta_{4}^{792}=43\)
\(\delta_{u}^{e}+\delta_{t}^{d} \leq 1\)
\(\delta_{t}^{d} \in\{0,1\}\)
\(z \geq 0\)
```

The Model (54) shows that the minimum trim loss is $1.774 \mathrm{~cm}^{2}$.

Figure 2. The dotted board of first cutting pattern.

01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
Figure 3. The dotted board of second cutting pattern.

Minimize

$$
\begin{align*}
& z=25 \delta_{2}^{401}+25 \delta_{2}^{454}+50 \delta_{2}^{801}+4 \delta_{4}^{78}+6 \delta_{4}^{112}+8 \delta_{4}^{142}+10 \delta_{4}^{176}+12 \delta_{4}^{206}+14 \delta_{4}^{240}+16 \delta_{4}^{270} \\
& +18 \delta_{4}^{304}+20 \delta_{4}^{334}+22 \delta_{4}^{368}+24 \delta_{4}^{398}+26 \delta_{4}^{432}+28 \delta_{4}^{462}+30 \delta_{4}^{496}+96 \delta_{4}^{526}+34 \delta_{4}^{560}+108 \\
& \delta_{4}^{590}+38 \delta_{4}^{624}+120 \delta_{4}^{654}+42 \delta_{4}^{688}+132 \delta_{4}^{718}+92 \delta_{4}^{752}+34 \delta_{4}^{556}+38 \delta_{4}^{620}+42 \delta_{4}^{684}+92 \delta_{4}^{748} \\
& +36 \delta_{4}^{586}+120 \delta_{4}^{650}+132 \delta_{4}^{714}+42 \delta_{4}^{680}+46 \delta_{4}^{744}+44 \delta_{4}^{710}+48 \delta_{4}^{774}+46 \delta_{4}^{742} \\
& \text { Subject to } \tag{55}\\
& \delta_{2}^{401}+\delta_{2}^{454}+\delta_{2}^{801}=3 \\
& \delta_{4}^{78}+\delta_{4}^{112}+\delta_{4}^{142}+\delta_{4}^{176}+\delta_{4}^{206}+\delta_{4}^{240}+\delta_{4}^{270}+\delta_{4}^{304}+\delta_{4}^{334}+\delta_{4}^{368}+\delta_{4}^{398}+ \\
& \delta_{4}^{432}+\delta_{4}^{462}+\delta_{4}^{496}+\delta_{4}^{526}+\delta_{4}^{560}+\delta_{4}^{590}+\delta_{4}^{624}+\delta_{4}^{654}+\delta_{4}^{688}+\delta_{4}^{718}+ \\
& \delta_{4}^{752}+\delta_{4}^{556}+\delta_{4}^{620}+\delta_{4}^{684}+\delta_{4}^{748}+\delta_{4}^{586}+\delta_{4}^{650}+\delta_{4}^{714}+\delta_{4}^{680}+\delta_{4}^{744}+ \\
& \delta_{4}^{710}+\delta_{4}^{774}+\delta_{4}^{742}=34 \\
& \delta_{u}^{e}+\delta_{t}^{d} \leq 1 \\
& \delta_{t}^{d} \in\{0,1\} \\
& z \quad \geq 0 \text {, The minimum trim loss of Model (55) is } 1.720 \mathrm{~cm}^{2} \text {. }
\end{align*}
$$

Figure 4. The dotted board of third cutting pattern.

```
Minimize \(z=8 \delta_{3}^{129}+20 \delta_{3}^{166}+24 \delta_{3}^{203}+14 \delta_{3}^{240}+16 \delta_{3}^{257}+36 \delta_{3}^{294}+40 \delta_{3}^{331}+22 \delta_{3}^{368}+\)
\(24 \delta_{3}^{385}+52 \delta_{3}^{422}+56 \delta_{3}^{459}+30 \delta_{3}^{496}+32 \delta_{3}^{513}+68 \delta_{3}^{550}+72 \delta_{3}^{587}+38 \delta_{3}^{624}+40 \delta_{3}^{641}+\)
\(84 \delta_{3}^{678}+88 \delta_{3}^{715}+46 \delta_{3}^{752}+48 \delta_{3}^{769}+100 \delta_{3}^{806}+2 \delta_{4}^{38}+4 \delta_{4}^{42}+4 \delta_{4}^{46}+4 \delta_{4}^{76}+8 \delta_{4}^{80}\)
Subject to
\(\delta_{3}^{129}+\delta_{3}^{166}+\delta_{3}^{203}+\delta_{3}^{240}+\delta_{3}^{257}+\delta_{3}^{294}+\delta_{3}^{331}+\delta_{3}^{368}+\delta_{3}^{385}+\delta_{3}^{422}+\delta_{3}^{459}+\delta_{3}^{496}+\delta_{3}^{513}+\)
\(\delta_{3}^{550}+\delta_{3}^{587}+\delta_{3}^{624}+\delta_{3}^{641}+\delta_{3}^{678}+\delta_{3}^{715}+\delta_{3}^{752}+\delta_{3}^{769}+\delta_{3}^{806}=22\)
    \(\delta_{4}^{38}+\delta_{4}^{42}+\delta_{4}^{46}+\delta_{4}^{76}+\delta_{4}^{80}=5\)
    \(\delta_{u}^{e}+\delta_{t}^{d} \leq 1\)
    \(\delta_{t}^{d} \quad \in\{0,1\}\)
    \(z \quad \geq 0\), the minimum trim loss of \(\operatorname{Model}(56)\) is \(980 \mathrm{~cm}^{2}\).
```


5. Conclusion

Based on the results, it can be concluded that the Dotted Board Model is formed based on the cutting pattern obtained from the Modified Branch and Bound Algorithm (MBBA), which are three optimal patterns that meet each limit on demand. For item 1 requests are fulfilled using the first 6 cutting patterns. Item 2 request is fulfilled using 6 times the first pattern and 8 times the second pattern. Item 3 requests are fulfilled using 4 times the third pattern. And item 4 requests are fulfilled using the first 6 times, 8 times the second pattern, and 4 times the third pattern. Minimum trim loss of the three models are $1,774 \mathrm{~cm}^{2}, 1,720 \mathrm{~cm}^{2}$ dan $980 \mathrm{~cm}^{2}$.

6. References

[1] Gilmore P C and Ralph G 1963 Oper. Res. 9489
[2] S M A Suliman 2006 INT J PROD ECON. 99177
[3] W N P Rodrigo, W B Daundasekera, and A A I Perera 2012 IJMTT 354
[4] W N P Rodrigo, W B Daundasekera, and A A I Perera 2013 JMCS 3750
[5] Franklina M B T, Maria A C, Cristina R, Jose F O, and A M Gomes 2013 INT J PROD ECON. 145478
[6] Luiz H C, Maria A C, and Franklina M B T 2016 Brazilian Operations Research Society 36447
[7] Sisca O, Putra B J B and Samuel H 2017 Online: https://www.rgnpublications.com/journals/index.php/jims/article/view/1024
[8] Sisca O, Mutia R Puta B J B 2018 Conf. Ser.: Mater. Sci. Eng. 3001
[9] Sisca O, Vinny A, and Evi Y 2019 J. Phys.: Conf. Ser. 12821
[10] Putra B J B, Sisca O, and Ari P P 2019 J. Phys.: Conf. Ser. 12821
[11] Der S C, Robert G B, and Yu D 2010 Applied Integer Programming Modeling and Solution (New Jersey:John Wiley \& Sons)

SRIWIJAYA UNIVERSITY

THIS IS TO CERTIFY THAT SISCA OCTARINA

Has participated in
National Conference on Mathematics Education (NACoME)
"Modeling in Mathematics Instruction: The First Step Towards Problem Solving " held by Mathematics Education Faculty of Teacher Training and Education Sriwijaya University, November 27, 2019, Palembang, Indonesia.

As a Presenter

