Maspari-Fadly-2021 by Universitas Sriwijaya Unsri **Submission date:** 09-May-2023 10:01AM (UTC+0700) **Submission ID:** 2088183434 File name: Maspari-Fadly-2021.pdf (132.68K) Word count: 1741 **Character count:** 10426 #### MASPARI JOURNAL Juli 2021, 13(2):83-88 # KAJIAN FUNGSI PERENDAMAN RUMPUT LAUT JENIS Kappaphycus alvarezii PADA AIR TAWAR UNTUK MEMINIMALISIR SERANGAN PENYAKIT ICE-ICE # STUDY OF IMMERSION FUNCTIONS OF SEAWEED TYPES Kappaphycus alvarezii IN FRESHWATER TO MINIMIZE ICE-ICE DISEASE ATTACKS #### Muhammad Fadli¹⁾, Riris Aryawati²⁾, dan Fitri Agustriani²⁾ ¹⁾Mahasiswa Jurusan Ilmu Kelautan, Fakultas MIPA, Universitas Sriwijaya Email: Fadli010995@gmail.com ²⁾ Jurusan Ilmu Kelautan, Fakultas MIPA, Universitas Sriwijaya Registrasi: 19 September 2018; Diterima setelah perbaikan: 2 Desember 2018 Disetujui terbit: 19 April 2019 #### ABSTRAK Penyakit *ice-ice* merupakan masalah yang sering dihadapi oleh pembudidaya. Penyakit *ice-ice* dominan menyerang rumput laut jenis *K. alvarezi* yang dibudidayakan dengan gejala awal klinis yang ditimbulkan seperti produksi lendir meningkat, permukaan *thallus* kasar, *thallus* layu, terbentuknya bintik putih, dan pemutihan ujung *thallus*. Konsep dasar dalam penelitian ini adalah menganalisa peran air tawar dengan waktu berbeda selama 3 menit, 5 menit, dan 7 menit untuk melihat laju pertumbuhan dan mencegah penyakit *ice-ice* pada rumput laut *K. alvarezii*. Hasil dari penelitian ini menunjukkan air tawar dengan waktu perendaman 7 menit menghasilkan pertumbuhan lebih baik dan paling sedikit terserang penyakit *ice-ice* dibandingakan dengan perlakuan lainnya. Rumput laut yang direndam air tawar selama 3 menit memiliki pertumbuhan lebih kecil dibandingkan dengan perlakuan dan lebih banyak terserang penyakit *ice-ice*. Pada penelitian ini laju pertumbuhan harian budidaya rumput laut *K. alvarezii* pada perendaman 3 menit, 5 menit, 7 menit dan kontrol menunjukkan hasil yang baik (>2% /hari). #### Kata Kunci: Air tawar, ice-ice, Kappaphycus alvarezii. #### **ABSTRACT** The ice-ice disease is a problem that farmers often face. Ice-ice disease predominantly attacks the cultivated K. alvarezii seaweed with early clinical symptoms such as increased mucus production, rough thallus surface, wilted thallus, formation of white spots, and whitening of the tip of the thallus. The basic concept in this study is to analyze the role of fresh water at different times for 3 minutes, 5 minutes, and 7 minutes to see the growth rate and prevent ice-ice disease in K. alvarezii seaweed. This study showed that fresh water with an immersion time of 7 minutes resulted in better growth and the least amount of ice-ice disease compared to other treatments. Seaweed soaked in fresh water for 3 minutes had a more nominal growth than the treatment and was more susceptible to ice-ice disease. In this study, the daily growth rate of K. alvarezii seaweed cultivation at 3 minutes, 5 minutes, 7 minutes of immersion and control showed promising results (>2% / day). Keywords: Freshwater, ice-ice, Kappaphycus alvarezii. #### 1. PENDAHULUAN Penyakit ice-ice merupakan masalah yang sering dihadapi oleh pembudidaya. Penyakit ice-ice dominan menyerang rumput laut jenis *K. alvarezi* yang dibudidayakan dengan gejalah awal klinis yang ditimbulkan seperti produksi lendir meningkat, permukaan thallus kasar, thallus layu, terbentuknya bintik putih, dan pemutihan ujung thallus. Serangan penyakit ice-ice yang lebih parah dapat menyebabkan thallus menjadi keropos dan akhirnya thallus terinfeksi menjadi yang patah. penelitian menunjukkan Beberapa bahwa penyebaran penyakit ice-ice disebabkan oleh serangan bakteri patogen (Sarjito et al. 2016). Penelitian ini bertujuan Menganalisa pengaruh lama perendaman air tawar pada rumput laut untuk mencegah penyakit ice-ice. Menganalisa pengaruh lama perendaman air tawar pada rumput laut untuk mencegah penyakit ice-ice. Manfaat dari penelitian ini diharapkan dapat menjadi informasi maupun acuan untuk mengetahui bagaimana cara menghilangkan atau mencegah penyakit ice-ice pada rumput laut dengan menggunakan air tawar, sehingga usaha pembudidayaan rumput laut jadi lebih baik dan terhindar dari penyakit *ice-ice*. #### 2. BAHAN DAN METODE Penelitian ini dilaksanakan pada bulan Januari 2018 di Balai Besar Pengembangan Budidaya Laut (BBPBL) Lampung terletak di Desa Hanura Kecamatan Padang Cermin Kabupaten Pesawaran. Lampung Selatan BBPBL terletak di kawasan Teluk Hurun yang merupakan bagian dari Teluk Lampung. Gambar 3. Peta lokasi penelitian #### Rancangan percobaan Perendaman bibit rumput laut ke dalam air tawar dilakukan selama 3 menit, 5 menit dan 7 menit dan akan dibedakan dengan rumput laut yang tidak direndam air tawar. Setiap perlakuan akan diulang selama 3 kali. Tali ris (25 m) diikat bibit rumput laut sebayak 10 rumpun sehingga akan ada 4 tali ris yang berisi bibit rumput laut dimana 3 tali ris rumput laut akan di rendam air tawar dan 1 tali ris tidak direndam air tawar. Total bibit rumput laut yang akan digunakan sebanyak 40 rumpun rumput laut. Masing-masing bibit dipastikan dalam kondisi baik yaitu warna cerah, tidak terdapat lumut ataupun parasit lainnya, dan tidak terserang penyakit ice-ice #### Metode Longline Budidaya Rumput laut dengan metode rawai panjang (long line) adalah metode budidaya rumput laut yang saat ini paling popular dan banyak di gunakan oleh pembudidaya rumput laut. Selain praktis metode ini mudah di terapkan, tidak membutuhkan biaya yang banyak, mudah dalam pembuatan dan pemeliharaan. Material yang digunakan pada metode ini relatif tahan lama (Hendri, 2017). #### Adaptasi dan Penanaman Bibit Bibit rumput laut *K. alvarezii* yang diberi perlakuan air tawar diadaptasikan terlebih dahulusebelum diberi perlakuan. Adaptasi dilakukan dengan cara mengikat bibit pada tali ris kemudian memasang tali tersebut di petak *longline* dan dibiarkan selama 24 jam. Keesokan harinya bibit pada tiga tali ris diangkat untuk direndam dalam air tawar. #### Pemeliharaan Bibit Rumput Laut Pemeliharaan dilakukan dengan cara pengontrolan ke lokasi budidaya menggunakan perahu untuk membersihkan rumput laut tumbuhan penggangu, sampah yang menempel dan serangan predator. Membersihkan rumput laut dilakukan dengan cara menggoyang-goyangkan agar sedimen yang menempel pada thallus rumput laut terlepas, sehingga tidak menghalangi proses penetrasi sinar matahari untuk pertumbuhan rumput laut. #### Pengamatan Bibit Rumput Laut Pengamatan dilakukan selama 28 hari, dengan selang waktu sampling setiap 7 hari serta didukung dengan adanya pengamatan yaitu, pengamatan harian dan pengamatan penyakit, bobot rata-rata, dan laju pertumbuhan rumput laut. Pengamatan harian atau setiap hari yaitu mengamati berupa arah angin dan keadaan cuaca, sedangkan pengamatan penyakit, bobot rata-rata, dan laju pertumbuhan rumput laut ini diamati setiap 7 hari sekali. #### Pengamatan Penyakit Rumput laut yang terserang penyakit akan diketahui dengan cara mengangkat tali ris yang telah diikat bibit kemudian hitung jumlah bibit yang terserang penyakit dengan menggunakan rumus Khabata (1980) dalam Astriwana (2010): P = Jumlah sampel yang terinfeksi penyakit X 100% Jumlah seluruh sampel yang diperiksa #### Laju Pertumbuhan Harian (Daily Growth Rate (DGR)) Laju pertumbuhan rumput laut K. alvarezii untuk melihat pertumbuhan harian. Rumus yang digunakan yaitu (Hendri, 2017): $$DGR = \left[\left(\frac{wt}{wo} \right)^{\frac{1}{T}} - 1 \right] \times 100 \%$$ #### Keterangan: DGR = Daily growth rate (Laju pertumbuhan harian rumput laut) (%) Wt = Bobot basah rumput pada akhir penelitian (gram) Wo = Bobot basah rumput laut pada awal penelitian (gram) T = Lama pemeliharaan (hari) ## Laju Pertumbuhan Mingguan (Weekly Growth Rate) Weekly Growth Rate (WGR) adalah laju pertumbuhan mingguan rumput laut K. alvarezii untuk melihat pertumbuhan. Pengukuran dilakukan 1 kali dalam 7 hari selama kurang lebih 27 hari dengan menggunakan rumus yaitu (Hendri et al.2017): $$Wa = \frac{Ti}{\sum s}$$ $$WGR = Wa - Wb$$ #### Keterangan: Wa : berat minggu (gr) (Ti) : berat rata-rata (gr) (s) : jumlah titik penanaman Wb: berat minggu sebelumnya (gr) WGR: laju pertumbuhan mingguan (gr) ## Laju Pertumbuhan Mutlak (Absolute Growth Rate (AGR)) Absulute Growth Rate (AGR) dihitung berdasarkan berat akhir (Wt) dikurangi dengan berat awal (Wo) (Hendri, 2017): $$AGR = Wt - Wo$$ #### Analisa Data Data yang diperoleh dari pertumbuhan rumput laut yang diukur perminggu dan sampling pengamatan dilakukan selama kurang lebih 28 hari, untuk menghitung laju pertumbuhan harian, mingguan dan absolute menggunakan analisis ragam (ANOVA one way). ## 3. HASIL DAN PEMBAHASAN Berat Rata-Rata Mingguan (Weekly Growth Rate) Hasil pengukuran pertumbuhan rumput laut mingguan disajikan pada Tabel 1. Tabel 1. Berat rata-rata mingguan K.alvarezii | Perendaman | Bobot
awal | Berat Rata-rata K. olvarezii (Gram/minggu) | | | | |------------|---------------|--|-------|-------|-------| | | | 1 | 2 | 3 | 4 | | 3 mnt | 100 | 146.9 | 201.8 | 252.6 | 216.1 | | 5 mnt | 100 | 147.8 | 204.8 | 253.7 | 300.7 | | 7 mnt | 100 | 148.7 | 208.5 | 271.8 | 337.7 | | Kontrol | 100 | 144.4 | 200.7 | 233.1 | 256.6 | Rumput laut dengan perendaman selama 7 menit memiliki bobot ratarata yang lebih baik dari perlakuan lainnya, perendaman selama 7 menit lebih sedikit terserang penyakit *ice-ice*, dari 10 sempel hanya 2 sempel yang terserang penyakit dan 0 sempel mengalami pematahan. ## Laju pertumbuhan Harian (Daily Growth Rate) Hasil pengukuran pertumbuhan rumput laut mingguan disajikan pada Tabel 2. Tabel 2. Berat Rata-Rata Harian | Perendaman | Bobot awal
(gr) | Bobot akhit
(gr) | Absolute Growth
(%/day) | |------------|--------------------|---------------------|----------------------------| | 3 mnt | 100 | 216.1 | 2.7 | | 5 mmt | 100 | 300.7 | 4 | | 7 mnt | 100 | 337.7 | 4.4 | | Kontrol | 100 | 256.6 | 3.4 | Pertumbuhan harian pada penelitian ini dikatagorikan karena baik pada laut pertumbuhan rumput diperoleh memenuhi syarat untuk budidaya rumput laut. Pertumbuhan yang baik terjadi perendaman selama 7 menit dengan 4.4% dan pertumbuhan harian yang terendah terjadi pada perendaman selama 3 menit dengan 2.7%. Syahlun (2013) dalam Hendri (2017) mengatakan laju pertumbuhan yang baik bagi budidaya rumput laut minimal 2%. Pada penelitian ini laju pertumbuhan harian budidaya rumput laut *K. alvarezii* pada perendaman 3 menit, 5 menit, 7 menit dan kontrol menunjukan hasil yang baik (>2% /hari). ## Laju Pertumbuhan Mutlak (Absolute Growth Rate) Hasil pertumbuhan mutlak *(AGR) K. alvarezii* disajikan pada Tabel 3. Tabel 3. Laju pertumbuhan mutlak (AGR) | Perendaman | Bobot
awal | Bobot
akhir | Absolute
Growth | |------------|---------------|----------------|--------------------| | 3 mnt | 100 | 216.1 | 116.1 | | 5 mnt | 100 | 300.7 | 200.7 | | 7 mnt | 100 | 337.7 | 237.7 | | Kontol | 100 | 256.6 | 156.6 | Pada penelitian ini bobot akhir tertinggi terdapat pada perendaman 7 menit dengan bobot 337.7 gram dan bobot akhir terendah terdapat pada perendaman 3 menit dengan bobot 216.1 gram. Laju pertumbuhan mutlak (Absolute Growt Rate) tertinggi terdapat pada perendamam selama 7 menit dengan 237.7 gram dan terendah pada perendaman 3 menit dengan 116.1 gram. Pertumbuhan rumput laut dengan perendaman selama 7 menit mengalami kenaikan bobot yang sangat baik dibandingkan dengan perendaman selama 3 menit, 5 menit, dan kontrol. Kenaikan bobot tersebut diduga karena faktor nutrien dan arus. #### 4. KESIMPULAN Berdasarkan hasil pengukuran selama penelitian dan analisis data pertumbuhan *K. alvarezii* maka dapat disimpulkan sebagai berikut: - Perendaman air tawar selama 7 menit lebih banyak mencegah penyakit ice-ice dibandingkan dengan perendaman 3 menit, 5 menit dan tanpa perendaman (kontrol). - 2. Perendaman air tawar mampu meningkatkan bobot pada rumput laut jenis *K. alvarezii.* Semakin lama waktu perendaman semakin baik laju pertumbuhan. #### **DAFTAR PUSTAKA** Abadi. 2016. *Laporan akhir budidaya* rumput laut. BBPBL: Lampung Sarjito, Anggun PS, Slamet BP. 2016. Pengaruh konsentrasi konsorsium > bakteri k4, k5 dan k6 terhadap tingkat kesehatan rumput laut (Eucheuma cottonii). Journal of Aquaculture Management and Technology. 5(1):146-154. - Hendri M. 2017. *Untung Berlipat Dari Budidaya Rumput Laut Tanaman Multi Manfaat*. Inderalaya. - Astriwana. 2010. Peran perendaman dengan air tawar dalam menekan penyakit pada budidaya rumput laut *Kappaphycus alvarezii* di Perairan Semak Daun Kepulauan Seribu Jakarta [Skripsi]. Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor: Bogor. - Hendri M, Rozirwan, Apri R. 2017. Optimization of Cultivated Seaweed Land Gracilaria sp Using Vertikultur System. International Journal of Marine Science. 7(43):411-422. ### Maspari-Fadly-2021 **ORIGINALITY REPORT** 14% SIMILARITY INDEX 12% INTERNET SOURCES 8% PUBLICATIONS 2% STUDENT PAPERS MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED) 2% Internet Source Exclude quotes On Exclude matches < 1% Exclude bibliography