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Abstract. This paper is the extension of our research about asvmptotic distribution of the
bootstrap parameter estimator for the AR(1) model. We investigate the asymptotic distribution
of the bootstrap parameter estimator of a second order autoregressive AR(2) model by applying
the delta method. The asymptotic distribution is the crucial property in inference of statistics.
We conclude that the bootstrap parameter estimator of the AR(2) model asymptotically
converges in distribution to the bivariate normal distribution.

1. Introduction
Let the stationary second order autoregressive AR(2) model:

Xi=0 X1+ X o +e, (1)

where ¢ is a white noise process with zero mean and constant variance o2 . Suppose the vector
0— (91, GZ)T is the estimator of the parameter vector 8 = (61, HZ)T of (1) and 6* be the bootstr ap
version of @.

The consistency theories of parameter of autoregressive model have studied in [1,4,5} . while for
the bootstrap version of such topic, see e.g. [2,6-9,11]. For the accuracy of the bootstrapping
method on autoregressive model studied in [3,10]. The asymptotic result for the first order
autoregressive or AR(1) model has been exhibited in [12]. We showed that the bootstrap
parameter estimator for the AR(1) model has limiting that converges in distribution to the
normal distribution. A good result of the bootstrap estimator is then applied to study the
limiting distribution of 6*. Section 2 reviews the asymptotic distribution of estimator of mean
and autocovariance function for the autoregression model. Section 3 describes the bootstrap
and delta method. Section 4 deals with the main result, i.e. the limiting distribution of 8*.
Section 5 briefly describes the conclusions of the paper.

2. Estimator of Mean and Autocovariance for the Autoregressive Model

Let we have the observed values Xy, X5, ..., X, at hand taken from the stationary time series
of an AR(2) model. Then consider the estimators as follows: fi, = X, = % 1 Xb, Au(h) =
% . 'i‘(XH_h X)Xy —X,), and 5, (h) = 7, /7. (0) respectively. These three estimators have
heen showed that are consistent (see, e.g., [4,14]). The following theorem describes the property
of the estimator X, is stated in [4].
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Theorem 2.1 If {X,} is stationary process with mean p and autocovariance function (), then
as n — og,
Var(Xn) = E(Xn—p)* = 0 if(n) =0,

and
oo

nE(X, = p)* = Y ) i i (k)| < oo
j=—oo j=—oc

It is not a loss of generality to assume that gy = 0. Under some conditions (see, e.g., [14]),

n—h

;".Hn(h-') = ; Z X£+JAX1 + OP(]'/n) (2)
t=1

The asymptotic hehaviour of the sequence /1 (%, (h) — vx(h)) depends only on n~? ZZ‘;{‘ Xopn Xy
Note that to study the behavior of (2) we can equivalently study the average

_ 1 <
nlh) = > Z Xion Xy (3)
t=1

Both (2) and (3) are unbiased estimators of E(X;1,X:) = vx(h), under the condition that
px = 0. Their asymptotic distribution then can be derived by applying a central limit theorem
to the averages Y, of the variables ¥, = X, ;,X,. As in [14], the autocovariance function of the
series Y} can be written as

Vi = ka(e)rx (B + D x(9)” + D x(g + h)vx (g — h), (4)
q 4q

where k4(2) = E(e}) — B(E(E%))Z, the fourth cumulant of =;. The following theorem is due
to [14], gives the limiting distribution of /i (5, (k) —~x(h)).

Theorem 2.2 If X, = pu + Ej-i_x Yiei—; holds for an i.i.d. sequence g, with mean zero and
E(g}) < 0o and numbers v¥; with ¥ ;1] < oo, then

ﬁ (':’Tn(h} - n"X(h)) —d N(D| I"’h,h}-

3. Bootstrap and Delta Method

Let Xq, X5, ..., X,, be a random sample of size n from a population with common distribution
F,and let T(Xq, Xo, ..., X, F) be the specified random variable or statistic of interest, possibly
depending upon the unknown distribution F'. Let F), denote the empirical distribution function
of the random sample X7, Xo, ..., Xy, i.e., the distribution putting probability 1/n at each of
the points X1, Xo,..., Xn. A bootstrap sample is defined to be a random sample of size n drawn
from F),, say X* = X[, X35,...,X}. The bootstrap method is to approximate the distribution
of T'(Xq, Xo, ..., X, ) under F by that of T(X;, X; ..... X Fy,) under F,.

Let T be a functional defined as T'( X, Xo, ..., X1 F) = ﬁ(é“- 8), where f is the estimator
for the parameter 8 of a stationary time series AR(2) model. Then, the bootstrap version of T'
is T(X7, X5, ..., X Fy) = \/7_1(5* - 5) where 8" is a bootstrap version of 8 which is obtained
by replacing the sample X, Xo,..., X, by sample bootstrap X7, X3,..., X}. The residuals

T
bootstrapping procedure for the time series data to obtain X7{,X3,..., X was proposed in

[7]. We should examine the distribution of \/ﬁ(éﬁ - 5} contrast to that of \/ﬁ(a —8). By
bootstrapping, we estimate Pp(ﬁ(a— ) < x) by Ppn(ﬁ(é* - E} < x). In this paper, we
propose the delta method for investigate the limiting distribution.

The delta method is useful tool in order to deduce the limit law of ¢(75) — ¢(#) from that of
T — 8, which has been proved through the following theorem, as stated in [13].

[
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Theorem 3.1 Let ¢ : Dy, < RF — R™ be a map defined on a subset of RF
and differentiable at 6.  Let T, be random wvector taking their wvalues in the domain
of ¢. Ifrp(l, —0)—,T fm numbers r, — oo, then r, (¢(1,) — ¢(0)) —4 qD;,(T). Moreover,

O(Tn) = 6(0)) — Gy (rn (T = )| =, 0
By Assuming that gn is a statistic, and q:'a iq a given measurable function. The hootstrap

version for the distribution of ¢ 9,; —¢(f) is (8 — d(0,). The bootstrap method is consistent for
estimating the distribution of the (].lStlll)lltan of Vvn(o(8,) — ¢(f)), as in the following theorem.

Theorem 3.2 Let ¢ : R¥ — R™ is a measurable function. Let 5,; be random

vector _taking their wvalues in the domain of ¢ that converge almost surely to 6.
]f N 9,; - 9) —q T, and \/_ 9,;) —a T rondzr‘wmiiy almost surely, then both /n(¢ 9,;)
0(0)) —a ¢p(T) and /n(¢ Bn) - Hn)) a4 0p(T) conditionally almost surely.

4. Main Result
We now address our main result. The Yule-Walker equation system for the AR(2) model is

1 X7 = XX o1\ _ o XX
1= XeXi1 1 X7 02 P XX o )0

B0 + Ba1

or

T

b171+ 620 = 7.
Dividing both sides by 4 > 0 we obtain

01 +02p1 = m
hpr+0, = .

By the moment method, we obtain the estimator for 8 = (#;, HQ)T as follows:

o~ —1 ~ ~ ~
6 — 91 (1 m pmoy_ 1 PL = pipe -
—( = = S| TS ). (5)

by mo 1 P2 1-pf Pt + p2

The estimator ?}} and ?J; can be described as follows:

5, = 01—0102 _ 2= ZXLXL 10 Xf— a_;Xr:Xt 2)‘ (6)

pl ( Xe} - ?:g XLXL—I}

and
ﬁ%‘i‘ﬁl _ _(Z?:QXEXL—I)z‘FZ XZZL 3 LXL 2

§2= r —_— D
1—'0% ( E;le)z—( o Xy X 1)

The estimator 8 = (51, 52)]“ can be expressed as

Q(Z XLZ‘ Z XLXL—L Z X;Xl_g)
t=1 t=2 t=3
for a measurable map ¢ : R — R? defined as

Olu,v,w) = (¢ (u, v, w), do(u, v, -w}}T,
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where ¢, ¢ : R® = R would be measurable functions defined as

v(u — w) —v? + uw

@1 [u., v, 'U)'} = ﬂ ﬂ.l'l(l @2['!1.‘ v, 'UJ} = ﬁ [8}

It is obvious that the functions ¢; and ¢» are differentiable, with the derivative matrix for
¢1 is

!

& = (%qﬁ'l(u,n,-w) %qﬁl(u,v‘w) %Ql(u.,v;u;))

. v{u®+v? —2uw) {u—w ) {u®+v? —
- - {uz_vz}z {uz_vz}z uZ—y2 il
and
. B
Plrx (0)x (1)vx(2) =
—x (1) (rx (0 +yx (1) =27 x (01yx(2)) (fmm—u{Z}J(wx{f:}‘ﬂxn}l) —x(1)
(7 {fl}2—'m{l}2)z (vx(0)2 —'m{l}‘} Tx(OF = )

While, the derivative matrix for ¢» is

!

gy = ( %qﬁg(u, v,w) S B by (u, v, w) qz; (1, v, w) )
_ 2uv? —uw—viw  2uv{w—u)
- (uf—v?)? (uZ—vZ)2 u*—vz
and
o =
2(vx (0),vx (1), vx(2) —
29Oy (12=7x (0)% ¢ (2) ¢ (1x(2) 2yx (0)rx (1) (7 (2)—7x (0) ()
(1 (0)2—x (1)2)” (rx (0)2—x(1)2)” O —Ax(Z |-

The next step, we investigate the asymptotic distribution of the random variable 0 =
91, ) the bootstrapped version of 8. For simmplicity of notation, let

—vx (1) (vx(0)% + yx (1)? = 29x(0 )Afx(z)}

_41 =
(x| 0)2 — x| 1}2)
A, = x(0)—x(2)(x( (0)? +x 1)2)‘
(7x(0)2 = yx(1)2)*
Ay = —x (1)

x (0)2 —4x (1)2
B, — 2x(0x(1)’ = 3x(0)*yx(2) — (1) x(2)
(1x(0)2 — yx (1)2)? '
By — 29x(0)yx (1) (yx (2) — 4x(0))
2 = , — ,
(vx(0)2 — 7x(1)2)
Fx(0)
x(0)2 —yx (1)

B; =

By applving Theorem 3.1, we obtain
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\/T_l(‘f)(% Z;le% ?ngz1XL‘%Z?=;;XLQXL)—‘.15(“.?}((“)"?)((1)‘“!)((2)))

V(3 X, X - (0)

A1 Ay A n

(Bi Bi B;) V(230 X1 X —vx(1)) | +0,(1). (9)
\/_% s X2 Xy —7x(2)

According to Theorem 2.2, the multivariate limiting distribution of the random wvector

T
1 i XZ 1 LN 7D ¢ 1 n .
(Z t=1“ 7y La=2 <=1 E;:;; XzXz—z) 18

a2t XF 1x(0)
\/"'_1 % ?:2 Xy X1 - ¥x(1)
n E?:;; Xi X o vx(2)
0 Voo Vor Voo
—q N3 01, o Vii Vig . (10)
0 b0 Ver Voo

In view of Theorem 3.1, if (ZI,ZQ,Z;;)T possesses the multivariate normal distribution as in
(10), then

‘/T_l(% =1 X;I’Z - A,rx(l'l))
A 142 ‘43 T
( Bi By By ) \/_ % t=2 XXy —":rx(])
Vil 5 Yt Xe o Xy — vx(2)

Z 2
Al 1-'12 _43 ) ( ( 0 ) ( LB T12 ) )
o Z: ~ N , ; .
4 ( By By By Zi 2 0 T2 Tf

Hence, by Theorem 3.1 we deduce that
V(8 - 0) =

G2 XA Y X X, S X2 Xa ) — ¢1(vx (0), vx (1), 7x(2))
bo( L XA A L XX, P XX ) — da(vx (0), v (1), vx(2))
0 Tllz T12
(12 %)
where
’r'f = Var(A1Z 4+ Ao Zy + AzZs)
= A{Voo + A3Vi1 + A3Vap + 24145V 1 + 241 43V) 2 + 245 43V 0,
2 Var(B\Z) + ByZy + Bz Zs)
= B0+ B2Viy + B3Vao+ 2B1ByVi 1 + 2B1B3Vo s + 2BoB3Vi o,
e =71 = Cov(dZy + AsZy + A3Zs, BiZy + BeZy + B3Zs).

2}
I

An analogous representation holds for the bootstrapped version (see, e.g [3], [9]). The
residuals bootstrapping procedure used was proposed in [7] as follows. Define the residuals




Sriwijaya International Conference on Basic and Applied Science IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1282 (2019) 012019  doi:10.1088/1742-6596/1282/1/012019

my

= X, — (?}}XH + ngL_Z) . t =23,4...,n. The bootstrap sample X7 6 X7 ... X are

obtained by resampling without replacement from the residuals 25,24,...,2,. Let f‘n be the
empirical distribution of 3, 24,...,&,, puts mass l/n at each of the computed residuals. Now,
the sequence of hootstrap residuals =3,2%,...,2}, be conditionally independent with common
distribution F‘n. It given that X;-‘ = Xj, j = 1,2, as initial bootstrapping sample then we
obtain X; = §1Xﬁ_1 + @X;_z +e7,t=3,4,...,n. Both [3] and [7] proved that the residuals
bootstrapping work well when it is applied to the autoregressive model.

We can see that the estimator 8 = (é}‘ gj}T can be written as

o(DoXP Y XX LY XIXT )
=1 =2 =3
for a measurable map ¢ : R* — R2,

olu,v,w) = (P1(u, v, w), da(u, v, -u;))T,

with ¢, ¢ : R* = R be measurable functions as defined in (8). The function ¢, is differentiable
with derivative matrix

L —
PLEx (0)5x (1.5x(2) =

—?x(l)(%\: {n}2+$x{1}2—2$x(0]$x{2}) (?x{m—Q,\:{m) ("?x {0}24_?/‘{1}2) —Fx (1)
(3x (0275 (1)2)° (Fx (0)2—7x (1) Ax 07 Ax (17

Also, the function ¢2 is differentiable with derivative matrix

¢ =
2Fx (0)3x (1).5x(2) ~

23x (0)Fx(1)2—Fx {0}2%({2}—.;?)({1)2%({2} 2$x{0]$1¢{1)($x{2}—?,{{0}) _ ?X{E} i
(Fx(0)2—7x (1)2)° (3x (0)2—Fx(1)2)° Fx 07 =Fx (1)?

Now, we are ready to investigate the asymptotic distribution of the random vector 9"
(9‘1‘,9*)T bootstrap version of = (91, Hz}T For shake the simplicity, let

—Ax (1) (Fx(0)% + Fx (1)2 — 29x (07 x(2))

Cl - v
(Fx(0)% - Fx(1)2)*
o, - (0x(0)=3x(2)Ex(0)* +x(1)?)
(Fx(0)2 - 3x (1)2)* ‘
_ —7x(1)
C:i - '?X 0}2 _ :;X 1}2‘
Do~ 2x(07x (1) = Ax(0)*3x (2) — 7x(1)*3x (2)
' @x (0) — 3x (1)2)° ‘
Dy = 295 (0)7x (1) (Fx (2) — Fx(0))
2 - o~ v i~ oy 2
(Fx (0)2 = 7x(1)?)
Dy = 7x(0)

Fx(0)2 = Ax (1)

By applying Theorem 3.1, we obtain
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\/”'f_l(fﬁ(,—lL o X Sy X X lEa:;X?—zxf) - 415(;?)((“)“.7)((1)'5&(2)))

V(L3 X - Ax(0)
¢1m{mm{1)m{zn V(A X X —Aax () | +0,(1)
B (0) 7 (1), (2) N .

vn(: e X0 X] —Ax(2)

Vi (4 T XE - Ax(0)
C] CQ (.:'3 mn % * Pl
= (Dl Dy D \/T_l 1 =2 XL—IXL —":fx(l) +0p(1)-
Vi ies X(oXi = Ax(2)
According to Theorem 2.2, the multivariate limiting distribution of random wvariables

T
1 vn 2+ 1 * * .
(E =1 Xi ~EE Xe X o s XX z) 13

lin L=1X:52* iX(n)
Vil | sl Xe Xy | = | Ax(D)
T = VE = r
T XX, 1x(2)
0 o Vo Vi
—rd JV;; 0 . L’;:n L(lfl l/;:z . (].].)
0 5o Vi1 Vo
Meanwhile, by Theorem 3.1, if (W7, Ws, W ;)T posses multivariate normal distribution as in (11),

then
\/ﬁ(l n_ XZ* _ ;;X(U))
Cr Cr Cy V(i X Xy - 4x(1)
Dy Dy Dy " e
\/_ oy XL ZXL *;.FX(Z)

Wi 2

01 CQ C;; r 0 ™ T
- Wy | ~ N ™ T ,
(5o o) e ((5) (% &)

where 72%, 75%, 71, dan 73, are bootstrap version of 77, 72,712 dan 7 respectively. Hence, by
Theorem 3.2, we conclude that

e - 0 24 ==I
w-an((2).(3 3))
5. Conclusions

We conclude that the bootstrap parameter estimator of the second order autoregressive model
is asymptotic, and has limiting distribution to the bivariate normal distribution.
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