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Abstract. This paper is the extension of our research about asymptotic distribution of the
bootstrap parameter estimator for the AR(1) model. We investigate the asymptotic distribution
of the bootstrap parameter estimator of a second order autoregressive AR(2) model by applying
the delta method. The asymptotic distribution is the crucial property in inference of statistics.
We conclude that the bootstrap parameter estimator of the AR(2) model asymptotically
converges in distribution to the bivariate normal distribution.

1. Introduction
Consider the following stationary second order autoregressive AR(2) process:

Xt = θ1Xt−1 + θ2Xt−2 + εt, (1)

where εt is a zero mean white noise process with constant variance σ2. Let the vector
θ̂ = (θ̂1, θ̂2)

T is the estimator of the parameter vector θ = (θ1, θ2)
T of (1) and θ̂∗ be the

bootstrap version of θ̂. Studying of estimation of the unknown parameter involves: (i) what
estimator should be used? (ii) having chosen a particular estimator, is this consistent? (iii) how
accurate is the chosen estimator? (iv) what is the asymptotic behaviour of such estimator? (v)
what is the method used in proving the asymptotic properties?

Bootstrap is a general methodology for answering the second and third questions, while the
delta method is one of tools used to answer the last two questions. Consistency theory is needed
to ensure that the estimator is consistent to the actual parameter as desired, and thereof the
asymptotic behaviour of such estimator will be studied. The consistency theories of parameter
of autoregressive model have studied in [1, 4, 5], and for bootstrap version of the same topic,
see e.g. [2, 6, 7, 8, 9, 11]. They deal with the bootstrap approximation in various senses
(e.g., consistency of estimator, simulation results, limiting distribution, applying of Edgeworth
expansions, etc.), and they reported that the bootstrap works usually very well. The accuracy
of the bootstrapping method for autoregressive model studied in [3, 10]. They showed that
the parameter estimates of the autoregressive model can be bootstrapped with accuracy that
outperforms the normal approximation. The asymptotic result for the AR(1) model has been
exhibited in [12]. We concluded that the bootstrap parameter estimator for the AR(1) model
converges in distribution to the normal distribution. A good perform of the bootstrap estimator
is applied to study the asymptotic distribution of θ̂∗ using the delta method. We describe the
asymptotic distribution of the autocovariance function and investigate the bootstrap limiting
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distribution of θ̂∗. Section 2 reviews the asymptotic distribution of estimator of mean and
autocovariance function for the autoregression model. Section 3 describes the bootstrap and
delta method. Section 4 deals with the main result, i.e. the asymptotic distribution of θ̂∗ by
applying the delta method. Section 5 briefly describes the conclusions of the paper.

2. Estimator of Mean and Autocovariance for the Autoregressive Model
Suppose we have the observed values X1, X2, . . . , Xn from the stationary AR(2) process. A
natural estimators for parameters mean, covariance and correlation function are µ̂n = Xn =
1
n

∑n
t=1Xt, γ̂n(h) = 1

n

∑n−h
t=1 (Xt+h−Xn)(Xt−Xn), and ρ̂n(h) = γ̂n/γ̂n(0) respectively. These all

three estimators are consistent (see, e.g., [4, 14]). The following theorem describes the property
of the estimator Xn, is stated in [4].

Theorem 2.1 If {Xt} is stationary process with mean µ and autocovariance function γ(·), then
as n→∞,

V ar(Xn) = E(Xn − µ)2 → 0 if γ(n)→ 0,

and

nE(Xn − µ)2 →
∞∑

j=−∞
γ(h) if

∞∑
j=−∞

|γ(h)| <∞.

It is not a loss of generality to assume that µX = 0. Under some conditions (see, e.g., [14]),
the sample autocovariance function can be written as

γ̂n(h) =
1

n

n−h∑
t=1

Xt+hXt +Op(1/n). (2)

The asymptotic behaviour of the sequence
√
n (γ̂n(h)− γX(h)) depends only on n−1

∑n−h
t=1 Xt+hXt.

Note that a change of n−h by n or vice versa, is asymptotically negligible, so that, for simplicity
of notation, to study the behavior of (2) we can equivalently study the average

γ̃n(h) =
1

n

n∑
t=1

Xt+hXt. (3)

Both (2) and (3) are unbiased estimators of E(Xt+hXt) = γX(h), under the condition that
µX = 0. Their asymptotic distribution then can be derived by applying a central limit theorem
to the averages Y n of the variables Yt = Xt+hXt. As in [14], the autocovariance function of the
series Yt can be written as

Vh,h = κ4(ε)γX(h)2 +
∑
g

γX(g)2 +
∑
g

γX(g + h)γX(g − h), (4)

where κ4(ε) = E(ε41) − 3(E(ε21))
2, the fourth cumulant of εt. The following theorem is due to

[14] that gives the asymptotic distribution of the sequence
√
n (γ̂n(h)− γX(h)).

Theorem 2.2 If Xt = µ +
∑∞

j=−∞ ψjεt−j holds for an i.i.d. sequence εt with mean zero and

E(ε4t ) <∞ and numbers ψj with
∑

j |ψj | <∞, then

√
n (γ̂n(h)− γX(h))→d N(0, Vh,h).



3. Bootstrap and Delta Method
Let X1, X2, . . . , Xn be a random sample of size n from a population with common distribution
F , and let T (X1, X2, . . . , Xn;F ) be the specified random variable or statistic of interest, possibly
depending upon the unknown distribution F . Let Fn denote the empirical distribution function
of the random sample X1, X2, . . . , Xn, i.e., the distribution putting probability 1/n at each of
the points X1, X2, . . . , Xn. A bootstrap sample is defined to be a random sample of size n drawn
from Fn, say X∗ = X∗1 , X

∗
2 , . . . , X

∗
n. The bootstrap method is to approximate the distribution

of T (X1, X2, . . . , Xn;F ) under F by that of T (X∗1 , X
∗
2 , . . . , X

∗
n;Fn) under Fn.

Let a functional T is defined as T (X1, X2, . . . , Xn;F ) =
√
n(θ̂ − θ), where θ̂ is the

estimator for the coefficient θ of a stationary AR(2) model. The bootstrap version of T is

T (X∗1 , X
∗
2 , . . . , X

∗
n;Fn) =

√
n(θ̂

∗
− θ̂), where θ̂

∗
is a bootstrap version of θ̂ computed from

sample bootstrap X∗1 , X
∗
2 , . . . , X

∗
n. The residuals bootstrapping procedure for the time series

data to obtain X∗1 , X
∗
2 , . . . , X

∗
n was proposed in [7]. When we want to investigate the asymptotic

distribution of bootstrap estimator θ̂
∗
, we investigate the distribution of

√
n(θ̂

∗
− θ̂) contrast to

the distribution of
√
n(θ̂−θ). Thus, the bootstrap is a device for estimating PF (

√
n(θ̂−θ) ≤ x)

by PFn(
√
n(θ̂

∗
− θ̂) ≤ x). We propose the delta method in estimating for such distribution.

The delta method is useful to deduce the limit law of φ(Tn)−φ(θ) from that of Tn− θ, which
is guaranteed by the following theorem, as stated in [13].

Theorem 3.1 Let φ : Dφ ⊂ Rk → Rm be a map defined on a subset of Rk

and differentiable at θ. Let Tn be random vector taking their values in the domain
of φ. If rn(Tn − θ)→d T for numbers rn →∞, then rn(φ(Tn)− φ(θ))→d φ

′
θ(T ). Moreover,∣∣∣rn(φ(Tn)− φ(θ))− φ′θ(rn(Tn − θ))

∣∣∣→p 0.

Assume that θ̂n is a statistic, and that φ is a given differentiable map. The bootstrap
estimator for the distribution of φ(θ̂n − φ(θ) is φ(θ̂∗n − φ(θ̂n). If the bootstrap is consistent for

estimating the distribution of
√
n(θ̂n−θ), then it is also consistent for estimating the distribution

of
√
n(φ(θ̂n)− φ(θ)), as given in the following theorem. The theorem is due to [13].

Theorem 3.2 (Delta Method For Bootstrap) Let φ : Rk → Rm be a measurable

map defined and continuously differentiable in a neighborhood of θ. Let θ̂n be random
vector taking their values in the domain of φ that converge almost surely to θ.
If
√
n(θ̂n − θ)→d T, and

√
n(θ̂∗n − θ̂n)→d T conditionally almost surely, then both

√
n(φ(θ̂n)−

φ(θ))→d φ
′
θ(T ) and

√
n(φ(θ̂∗n)− φ(θ̂n))→d φ

′
θ(T ) conditionally almost surely.

4. Main Result
We now address our main result. The Yule-Walker equation system for the AR(2) model is( ∑n

t=1X
2
t

∑n
t=2XtXt−1∑n

t=2XtXt−1
∑n

t=1X
2
t

)(
θ1
θ2

)
=

( ∑n
t=2XtXt−1∑n
t=3XtXt−2

)
,

or

θ1γ0 + θ2γ1 = γ1

θ1γ1 + θ2γ0 = γ2.

Dividing both sides by γ0 > 0 we obtain

θ1 + θ2ρ1 = ρ1

θ1ρ1 + θ2 = ρ2.

hp
Typewriter
n should in italics



By the moment method, we obtain the estimator for θ = (θ1, θ2)
T as follows:

θ̂ =

(
θ̂1
θ̂2

)
=

(
1 ρ̂1
ρ̂1 1

)−1(
ρ̂1
ρ̂2

)
=

1

1− ρ̂21

(
ρ̂1 − ρ̂1ρ̂2
−ρ̂21 + ρ̂2

)
. (5)

The estimator θ̂1 and θ̂2 can be described as follows:

θ̂1 =
ρ̂1 − ρ̂1ρ̂2

1− ρ̂21
=

∑n
t=2XtXt−1(

∑n
t=1X

2
t −

∑n
t=3XtXt−2)

(
∑n

t=1X
2
t )2 − (

∑n
t=2XtXt−1)

2 , (6)

and

θ̂2 =
ρ̂21 + ρ̂2
1− ρ̂21

=
−(
∑n

t=2XtXt−1)
2 +

∑n
t=1X

2
t

∑n
t=3XtXt−2

(
∑n

t=1X
2
t )2 − (

∑n
t=2XtXt−1)

2 . (7)

The estimator θ̂ = (θ̂1, θ̂2)
T can be expressed as

φ
( n∑
t=1

X2
t ,

n∑
t=2

XtXt−1,

n∑
t=3

XtXt−2

)
for a measurable map φ : R3 → R2 defined as

φ(u, v, w) = (φ1(u, v, w), φ2(u, v, w))T ,

where φ1, φ2 : R3 → R would be measurable functions defined as

φ1(u, v, w) =
v(u− w)

u2 − v2
and φ2(u, v, w) =

−v2 + uw

u2 − v2
. (8)

It is obvious that the functions φ1 and φ2 are differentiable, with the derivative matrix for
φ1 is

φ′1 =
(

∂
∂uφ1(u, v, w) ∂

∂vφ1(u, v, w) ∂
∂wφ1(u, v, w)

)
=

(
−v(u2+v2−2uw)

(u2−v2)2
(u−w)(u2+v2

(u2−v2)2
−v

u2−v2

)
,

and
φ′1(γX(0),γX(1),γX(2)) =(

−γX(1)(γX(0)2+γX(1)2−2γX(0)γX(2))

(γX(0)2−γX(1)2)
2

(γX(0)−γX(2))(γX(0)2+γX(1)2)

(γX(0)2−γX(1)2)
2

−γX(1)
γX(0)2−γX(1)2

)
.

While, the derivative matrix for φ2 is

φ′2 =
(

∂
∂uφ2(u, v, w) ∂

∂vφ2(u, v, w) ∂
∂wφ2(u, v, w)

)
=

(
2uv2−u2w−v2w

(u2−v2)2
2uv(w−u)
(u2−v2)2

u
u2−v2

)
,

and
φ′2(γX(0),γX(1),γX(2)) =(

2γX(0)γX(1)2−γX(0)2γX(2)−γX(1)2γX(2)

(γX(0)2−γX(1)2)
2

2γX(0)γX(1)(γX(2)−γX(0))

(γX(0)2−γX(1)2)
2

γX(0)
γX(0)2−γX(1)2

)
.



The next step, we investigate the asymptotic distribution of the random variable θ̂
∗

=
(θ̂∗1, θ̂

∗
2)T , the bootstrapped version of θ̂. For simplicity of notation, let

A1 =
−γX(1)(γX(0)2 + γX(1)2 − 2γX(0)γX(2))

(γX(0)2 − γX(1)2)2
,

A2 =
(γX(0)− γX(2))(γX(0)2 + γX(1)2)

(γX(0)2 − γX(1)2)2
,

A3 =
−γX(1)

γX(0)2 − γX(1)2
,

B1 =
2γX(0)γX(1)2 − γX(0)2γX(2)− γX(1)2γX(2)

(γX(0)2 − γX(1)2)2
,

B2 =
2γX(0)γX(1)(γX(2)− γX(0))

(γX(0)2 − γX(1)2)2
,

B3 =
γX(0)

γX(0)2 − γX(1)2
.

By applying Theorem 3.1, we obtain

√
n

(
φ
(

1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− φ(γX(0), γX(1), γX(2))

)

(
A1 A2 A3

B1 B2 B3

)
√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)
+ op(1). (9)

According to Theorem 2.2, the multivariate limiting distribution of the random vector(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2XtXt−1,

1
n

∑n
t=3XtXt−2

)T
is

√
n

  1
n

∑n
t=1X

2
t

1
n

∑n
t=2XtXt−1

1
n

∑n
t=3XtXt−2

−
 γX(0)

γX(1)
γX(2)

 

→d N3

  0
0
0

 ,

 V0,0 V0,1 V0,2
V1,0 V1,1 V1,2
V2,0 V2,1 V2,2

  . (10)

In view of Theorem 3.1, if (Z1, Z2, Z3)
T possesses the multivariate normal distribution as in

(10), then

(
A1 A2 A3

B1 B2 B3

)
√
n
(

1
n

∑n
t=1X

2
t − γX(0)

)
√
n
(

1
n

∑n
t=2Xt−1Xt − γX(1)

)
√
n
(

1
n

∑n
t=3Xt−2Xt − γX(2)

)


→d

(
A1 A2 A3

B1 B2 B3

) Z1

Z2

Z3

 ∼ N2

( (
0
0

)
,

(
τ21 τ12
τ21 τ22

) )
.



Hence, by Theorem 3.1 we deduce that

√
n(θ̂ − θ) =

√
n

 φ1

(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− φ1(γX(0), γX(1), γX(2))

φ2

(
1
n

∑n
t=1X

2
t ,

1
n

∑n
t=2Xt−1Xt,

1
n

∑n
t=3Xt−2Xt

)
− φ2(γX(0), γX(1), γX(2))


→d N2

( (
0
0

)
,

(
τ21 τ12
τ21 τ22

) )
,

where

τ21 = V ar(A1Z1 +A2Z2 +A3Z3)

= A2
1V0,0 +A2

2V1,1 +A2
3V2,2 + 2A1A2V0,1 + 2A1A3V0,2 + 2A2A3V1,2,

τ22 = V ar(B1Z1 +B2Z2 +B3Z3)

= B2
1V0,0 +B2

2V1,1 +B2
3V2,2 + 2B1B2V0,1 + 2B1B3V0,2 + 2B2B3V1,2,

τ12 = τ21 = Cov(A1Z1 +A2Z2 +A3Z3, B1Z1 +B2Z2 +B3Z3).

An analogous representation holds for the bootstrapped version (see, e.g [3], [9]). The
residuals bootstrapping procedure used was proposed in [7] as follows. Define the residuals

ε̂t = Xt −
(
θ̂1Xt−1 + θ̂2Xt−2

)
, t = 3, 4, . . . , n. The bootstrap sample X∗1 , X

∗
2 , . . . , X

∗
n are

obtained by resampling without replacement from the residuals ε̂3, ε̂4, . . . , ε̂n. Let F̂n be the
empirical distribution of ε̂3, ε̂4, . . . , ε̂n, puts mass 1/n at each of the computed residuals. Now,
the sequence of bootstrap residuals ε∗3, ε

∗
4, . . . , ε

∗
n be conditionally independent with common

distribution F̂n. Given X∗j = Xj , j = 1, 2, as initial bootstrap sample, and we obtain

X∗t = θ̂1Xt−1 + θ̂2Xt−2 + ε∗t , t = 3, 4, . . . , n. Both [3] and [7] proved that the residuals
bootstrapping work well when it is applied to the autoregressive model.

We can see that the estimator θ̂
∗

= (θ̂∗1, θ̂
∗
2)T can be written as

φ
( n∑
t=1

X2∗
t ,

n∑
t=2

X∗tX
∗
t−1,

n∑
t=3

X∗tX
∗
t−2

)
for a measurable map φ : R3 → R2,

φ(u, v, w) = (φ1(u, v, w), φ2(u, v, w))T ,

with φ1, φ2 : R3 → R be measurable functions as defined in (8). The function φ1 is differentiable
with derivative matrix
φ′1(γ̂X(0),γ̂X(1),γ̂X(2)) =(

−γ̂X(1)(γ̂X(0)2+γ̂X(1)2−2γ̂X(0)γ̂X(2))

(γ̂X(0)2−γ̂X(1)2)
2

(γ̂X(0)−γ̂X(2))(γ̂X(0)2+γ̂X(1)2)

(γ̂X(0)2−γ̂X(1)2)
2

−γ̂X(1)
γ̂X(0)2−γ̂X(1)2

)
.

Also, the function φ2 is differentiable with derivative matrix
φ′2(γ̂X(0),γ̂X(1),γ̂X(2)) =(

2γ̂X(0)γ̂X(1)2−γ̂X(0)2γ̂X(2)−γ̂X(1)2γ̂X(2)

(γ̂X(0)2−γ̂X(1)2)
2

2γ̂X(0)γ̂X(1)(γ̂X(2)−γ̂X(0))

(γ̂X(0)2−γ̂X(1)2)
2

γ̂X(0)
γ̂X(0)2−γ̂X(1)2

)
.



Now, we are ready to investigate the asymptotic distribution of the random vector θ̂
∗

=
(θ̂∗1, θ̂

∗
2)T , bootstrap version of θ̂ = (θ̂1, θ̂2)

T . For shake the simplicity, let

C1 =
−γ̂X(1)(γ̂X(0)2 + γ̂X(1)2 − 2γ̂X(0)γ̂X(2))

(γ̂X(0)2 − γ̂X(1)2)2
,

C2 =
(γ̂X(0)− γ̂X(2))(γ̂X(0)2 + γ̂X(1)2)

(γ̂X(0)2 − γ̂X(1)2)2
,

C3 =
−γ̂X(1)

γ̂X(0)2 − γ̂X(1)2
,

D1 =
2γ̂X(0)γ̂X(1)2 − γ̂X(0)2γ̂X(2)− γ̂X(1)2γ̂X(2)

(γ̂X(0)2 − γ̂X(1)2)2
,

D2 =
2γ̂X(0)γ̂X(1)(γ̂X(2)− γ̂X(0))

(γ̂X(0)2 − γ̂X(1)2)2
,

D3 =
γ̂X(0)

γ̂X(0)2 − γ̂X(1)2
.

By applying Theorem 3.1, we obtain

√
n

(
φ
(

1
n

∑n
t=1X

2∗
t ,

1
n

∑n
t=2X

∗
t−1X

∗
t ,

1
n

∑n
t=3X

∗
t−2X

∗
t

)
− φ(γ̂X(0), γ̂X(1), γ̂X(2))

)

=

(
φ′1(γ̂X(0),γ̂X(1),γ̂X(2))

φ′2(γ̂X(0),γ̂X(1),γ̂X(2))

)
√
n
(

1
n

∑n
t=1X

2∗
t − γ̂X(0)

)
√
n
(

1
n

∑n
t=2X

∗
t−1X

∗
t − γ̂X(1)

)
√
n
(

1
n

∑n
t=3X

∗
t−2X

∗
t − γ̂X(2)

)
+ op(1)

=

(
C1 C2 C3

D1 D2 D3

)
√
n
(

1
n

∑n
t=1X

2∗
t − γ̂X(0)

)
√
n
(

1
n

∑n
t=2X

∗
t−1X

∗
t − γ̂X(1)

)
√
n
(

1
n

∑n
t=3X

∗
t−2X

∗
t − γ̂X(2)

)
+ op(1).

According to Theorem 2.2, the multivariate limiting distribution of random variables(
1
n

∑n
t=1X

2∗
t ,

1
n

∑n
t=2X

∗
tX
∗
t−1,

1
n

∑n
t=3X

∗
tX
∗
t−2

)T
is

√
n

  1
n

∑n
t=1X

2∗
t

1
n

∑n
t=2X

∗
tX
∗
t−1

1
n

∑n
t=3X

∗
tX
∗
t−2

−
 γ̂X(0)

γ̂X(1)
γ̂X(2)

 

→d N3

  0
0
0

 ,

 V ∗0,0 V ∗0,1 V ∗0,2
V ∗1,0 V ∗1,1 V ∗1,2
V ∗2,0 V ∗2,1 V ∗2,2

  . (11)

Meanwhile, by Theorem 3.1, if (W1,W2,W3)
T posses multivariate normal distribution as in (11),

then

(
C1 C2 C3

D1 D2 D3

)
√
n
(

1
n

∑n
t=1X

2∗
t − γ̂X(0)

)
√
n
(

1
n

∑n
t=2X

∗
t−1X

∗
t − γ̂X(1)

)
√
n
(

1
n

∑n
t=3X

∗
t−2X

∗
t − γ̂X(2)

)




→d

(
C1 C2 C3

D1 D2 D3

) W1

W2

W3

 ∼ N2

( (
0
0

)
,

(
τ2∗1 τ∗12
τ∗21 τ2∗2

) )
,

where τ2∗1 , τ2∗2 , τ∗12 dan τ∗21 are bootstrap version of τ21 , τ
2
2 , τ12 dan τ21 respectively. Hence, by

Theorem 3.2, we conclude that

√
n(θ̂

∗
− θ̂)→d N2

( (
0
0

)
,

(
τ2∗1 τ∗12
τ∗21 τ2∗2

) )
.

5. Conclusions
We conclude that the bootstrap parameter estimator of the AR(2) process is asymptotic and
converge in distribution to the bivariate normal distribution.
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