Noble-free oxygen reduction reaction catalyst supported on Sengon wood (Paraserianthes falcataria L.) derived reduced graphene oxide for fuel cell application. Artikel

Wulandhari Sudarsono, - and Wai Yin Wong, - and Kee Shyuan Loh, - and Edy Herianto Majlan, - and Nirwan Syarif, - and Kuan-Ying Kok, - and Rozan Mohamad Yunus, - and Kean Long Lim, - (2019) Noble-free oxygen reduction reaction catalyst supported on Sengon wood (Paraserianthes falcataria L.) derived reduced graphene oxide for fuel cell application. Artikel. International Journal of Energy Research. pp. 1-14. ISSN 1099-114X

[thumbnail of pdf] Other (pdf)
Noble-free oxygen reduction reaction catalyst supported on !!!!!!!!!!!!!!!!.pdf

Download (4MB)

Abstract

Reduced graphene oxide (RGO) has progressed as one of key emerging carbon for catalyst support material. As an alternative to the conventional RGO precursor, bio-mass Sengon wood was converted into RGO for use as a noble metal free catalyst support in oxygen reduction reaction (ORR). This work intends to reveal the applicability of Sengon wood-derived RGO in anchoring/doping iron and nitrogen particles onto its surface and to study its ORR performance in a half-cell environment. Thin sheet layer and highly defective (ID /IG) was gradually obtained at elevated pyrolysis temperature of Sengon wood graphene oxide (GO) at range 700 ? C to 900 ? C. As prepared RGO was further doped into catalyst (Fe/N/RGO) through the same pyrolysis procedure at a selected temperature after mixing the GO powder with iron chloride and different nitrogen precursors (urea, choline chloride, and polyaniline) at a fixed ratio. The ORR activity reached a current density up to 2.43 mA/cm 2 , which in conjunction with smooth multilayer sheet morphology and high graphitic-N content as the active sites. Stability analysis indicated an 85% current efficiency and only 0.03-V reduction in onset potential on methanol resistant test for Fe/ChoCl/RGO catalyst. This study revealed that Sengon wood-derived RGO successfully supported Fe-N-C catalyst which showed comparable oxygen reduction activity to Pt/C.

Item Type: Article
Subjects: #3 Repository of Lecturer Academic Credit Systems (TPAK) > Articles Access for TPAK (Not Open Sources)
Divisions: 08-Faculty of Mathematics and Natural Science > 47201-Chemistry (S1)
Depositing User: Dr Nirwan Syarif
Date Deposited: 20 Jun 2023 02:15
Last Modified: 20 Jun 2023 02:15
URI: http://repository.unsri.ac.id/id/eprint/108844

Actions (login required)

View Item View Item