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What did determine the warming trend in
the Indonesian sea?
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Abstract

The Indonesian sea is the only low-latitude pathway connecting two tropical oceans, which plays an important role
in the coupled ocean-atmosphere mode in the Indo-Pacific sector. A small change in the sea surface temperature
(SST) in the Indonesian sea has a significant influence on the precipitation and air-sea heat flux. During the past 33
years, the SST in the Indonesian sea has indicated a warming trend on the average of 0.19 ± 0.04 decade−1, which
is larger than global SST warming trend. Moreover, the warming trend indicates seasonal variations, in which
maximum trend occurred during boreal summer season. Investigation on the potential driver for this warming
trend, namely, the net surface heat flux, resulted in an opposite trend (cooling trend), while the Ekman pumping
and the wind mixing only play a minor role on the SST warming. Here, we proposed the upper layer process
associated with an increasing trend in precipitation and decreasing trend in mixed layer depth (MLD) for the SST
warming within the Indonesian seas. Shoaling of MLD gives a favorable condition for the surface heat flux to warm
the surface ocean. However, shoaling of MLD could not solely explain the total SST warming within the Indonesian
seas. The seasonal dependence in the warming trend, highest during boreal summer, was significantly related to
the Indo-Pacific climate modes, namely the negative Indian Ocean Dipole (IOD) and La Niña events. Higher
warming trend observed in the south of Makassar Strait and in the eastern Indonesian seas, in the vicinity of the
Maluku Sea and the northeastern part of the Banda Sea, was significantly associated with the La Niña event.
Meanwhile, strong warming trend observed in the Karimata Strait and Java Sea, and in the Flores Sea south of
Sulawesi Island seems to be enhanced by the negative IOD event. Our rough quantitative estimate of the possible
mechanism leading to the SST warming suggests that other mechanism might be at work in warming the SST
within the Indonesian seas. Horizontal heat advection associated with an increasing trend of the heat transport
from the Pacific into the Indian Ocean by the Indonesian Throughflow (ITF) might play a role in causing the
warming trend within the Indonesian seas. However, to what extend this heat advection could modulate the SST
warming is still unresolved in the present study. Further study based on realistic model output as well as long-term
observational records is necessary to describe the dynamics underlying the warming trend within the Indonesian
seas.
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Introduction
One important parameter for the dynamics of ocean-
atmosphere interaction is sea surface temperature
(SST). The increasing trend of SST in the tropics
may affect natural modes of tropical ocean-
atmosphere variability, such as the El Niño—Southern
Oscillation (ENSO) and the Indian Ocean Dipole
(IOD) Mode, and their associated climatic impacts
(Deser et al. 2009). Previous study has suggested that
the Indian Ocean warm pool located west of Sumatra
has experienced a significant warming of about 0.7 °C
over a period of 1901–2012 (Roxy et al. 2014). Mean-
while, an increase of about 0.5–1 °C in SST of the In-
dian Ocean from 1960 to 1999 has also been reported
(Alory et al. 2007). Secular warming has also been
observed in the eastern Indonesian sea near the
Timor Island/Savu Sea (Cahyarini et al. 2014). A
weakening of upwelling associated with a slowdown
of wind-driven Ekman pumping has been linked with
this warming trend. Besides, it has also been proposed
that changes in the shallow meridional overturning
circulation may cause the warming trend in the trop-
ical Indian Ocean (Lee 2004; Schoenefeldt and Schott
2006). A prominent warming trend has also been ob-
served in the Pacific warm pool (Wang and Mehta
2008; Weller et al. 2016). The warming of the Pacific
warm pool in recent decades has been suggested to
play an important role in regulating decadal variability
in the Hadley and Walker circulations.
The Indo-Pacific warm pool, including the Indonesian

sea, plays an important role in regulating global climate
variations (De Deckker 2016; Sprintall et al. 2014). Note
that SST changes of O (1 °C) in the warm pool region
may cause a large-scale climate variation. Previous stud-
ies have shown that the variability of SST in the Indo-
nesian region may affect rainfall over the Maritime
Continent (McBride et al. 2003) and Australia (Nicholls
1984). It was suggested that there is also a robust correl-
ation between SST and precipitation over the Maritime
Continent (Dayem et al. 2007). High precipitation rates
over the Maritime Continent are associated with high
SST in the region. They also found that the strength of
the Walker Circulation is related to the precipitation
rates over the Maritime Continent. When the precipita-
tion increases, the surface easterlies over the tropical Pa-
cific Ocean are strengthened and thus leading to a
stronger Walker Circulation.
Given the importance of SST within the Maritime

Continent, it is therefore imperative to have a firm un-
derstanding on the dynamics of SST warming within the
Indonesian sea. This study, therefore, was designed to
evaluate the pattern and magnitude of warming trend
within the Indonesian sea and to propose possible mech-
anism underlying this warming trend.

The paper is organized as follows. The “Data” section
describes all observational and reanalysis data used in
this study. In the “Observed trend and variability of the
SST” section, we present the observed SST, surface heat
flux, and surface wind variability. Potential drivers for
SST variability within the Indonesian sea are discussed
in the “Potential drivers for the observed SST trend” sec-
tion. The last section is reserved for “Summary and
conclusions”.

Data
The SST data were obtained from the daily
Optimum Interpolated Sea Surface Temperature
(OISST) based on the Advanced Very High Reso-
lution Radiometer (AVHRR) from National Oceano-
graphic and Atmospheric Administration (Banzon
et al. 2016; Reynolds et al. 2007). The data have uni-
form spatial resolution of 0.25° × 0.25°. Data for a
period of January 1982 to December 2014 are used
in this study. Surface heat flux was obtained from
the Objectively Analyzed Air-Sea Fluxes (OAFlux)
Ver. 3 that has uniform horizontal resolution of 1° ×
1° and covers a period of January 1982 to December
2009. The evaporation data from the OAFlux prod-
ucts have been used in previous studies to evaluate
the water cycle (Lee et al. 2019) and the fresh water
flux (Du et al. 2019) in the Maritime Continent.
We used monthly surface winds stress data from the

European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 for a period of January 1982 to Decem-
ber 2014 that have horizontal resolution of 0.25° × 0.25°.
The precipitation data obtained from the CPC Merged
Analyzed of Precipitation (CMAP) were also used in this
study. The data have spatial resolution of 1° × 1° and
cover a period of January 1982–December 2014. Note
that the climatological fields for all parameters were cal-
culated for a period of January 1982–December 2014,
when all datasets are available. Then, the anomaly fields
were defined as the deviation from the climatological
fields.

To investigate the possible relationship between the
mixed layer dynamics and the SST trend, we first col-
lected available CTD, XCTD, and XBT observations
within the Indonesian seas from the World Ocean
Database (WOD) 2018 (https://www.nodc.noaa.gov/
OC5/WOD/pr_wod.html). We selected nearly re-
peated observations within the eastern Indonesian re-
gion, bounded by 5°S–7°S, 124.5°E–126°E. The mixed
layered depth (MLD) is calculated based on the
temperature and salinity profiles of this selected
WOD dataset. In this study, a density criterion with a
density difference of 0.2 kg/m3 from the surface value
is used to define the MLD.
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Results and discussion
Observed trend and variability of the SST
Figure 1 illustrates the SST trend observed within the
Indonesian sea and its surrounding sea from 1982 to
2014, which indicates significant warming trend. A close
examination of the SST trend within the Indonesian sea
reveals that the highest warming trend (> 0.2 °C/decade)
was observed in the eastern parts (Fig. 1a). This warming
trend was highest in the vicinity of Maluku Sea/Molluca

Sea and in the northern part of the Banda Sea as well as
in the Flores Sea and the southern part of Makassar
Strait.
The area-averaged trend within the Indonesian sea

shows a ubiquitous warming trend at a rate of about
0.19° ± 0.04 °C/decade, though there was a short relax-
ation in early 1990s (Fig. 1b). Superposed on this secular
trend is shorter timescale variation. We found that there
were two robust events of warming tendency occurring

Fig. 1 a Observed trend in sea surface temperature (SST) anomaly (°C/decade) over the Indonesian seas and its surrounding region during 1982–
2014. Significant values above 95% confidence level are shaded. b Time series of area-averaged SST anomaly over the Indonesian sea (red–°C)
and its corresponding linear trend (black-line–°C/decade) for 1982–2014
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during 1998/1999 and 2010/2011. We hypothesize that
this robust warming events were associated with the La
Niña events that increased precipitation over the Indo-
nesian region (Aldrian and Susanto 2003; Hendrawan
et al. 2019; Lee 2015; Lestari et al. 2018; Supari et al.
2018). This possible relationship will be discussed in de-
tail later in the “Results and discussion section”.
The secular trend shown in Fig. 1 has seasonal depend-

ence. The seasonal trends of SST anomaly over the Indones-
ian sea are shown in Fig. 2 for the boreal spring (MAM),
summer (JJA), autumn (SON), and winter (DJF), respectively.
Summer warming is notably strong in the eastern Indones-
ian seas, with a significant maximum warming trend in the
vicinity of Maluku Sea, Banda Sea, and the southern part of
the Makassar Strait (Fig. 2b). The area-averaged SST within
the Indonesian seas during the summer season is 0.21° ±
0.03°C/decade, slightly higher than that shown in Fig. 1b.
The warming trend in spring exhibit the lowest in

magnitude compared to those observed during other
seasons (Fig. 2a). Only the area of Maluku Sea and the
southern part of Makassar Strait show slightly higher
warming trend compared to other region during this
season. Meanwhile, the pattern of warming trend in au-
tumn shows almost similar with that observed in sum-
mer (Fig. 2b, c). Remarkable warming trends were
observed in the southern part of Makassar Strait, in the

vicinity of Maluku and Halmahera Seas, and in the
northeastern part of Banda Sea. However, the magnitude
of warming trend was slightly lower during autumn than
that during summer. It is notable that the trend in win-
ter season exhibits a slight different pattern compared
with other seasons (Fig. 2d). During winter season, high
warming trends were observed in the Karimata Strait,
the north of Halmahera and the northeastern part of
Banda Sea. Meanwhile, the warming rate in the inner
Indonesian seas was weaker compared to that observed
during other seasons.

Potential drivers for the observed SST trend
It was observed that the Indonesian seas show continu-
ous warming, whereas the warming was very prominent
after mid-1990s. Now, the question is what are the phys-
ical mechanisms underlying the observed SST trend
within the Indonesian sea? We start the analysis by
examining the surface heat flux, namely, the net surface
heat flux, the Ekman pumping, and the wind mixing.
Note that the net surface heat flux is defined as

Qo ¼ QSWR þ QLWR þ QLHF þ QSHF ð1Þ

where QSWR denotes the shortwave radiation, QLWR is
the longwave radiation, QLHF represents the latent heat

Fig. 2 Same as in Fig. 1a except for the boreal a spring, b summer, c autumn, and d winter seasons (°C/decade). Only values above 95%
confidence level are shaded
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flux, and QSHF is the sensible heat flux. Meanwhile, the
Ekman pumping is calculated following (Gill 1983),

wek ¼ 1
ρ
∇� τwind

f

� �
ð2Þ

where ρ indicates the density of sea water, τwind is the
wind stress, and f denotes the Coriolis force. On the
other hand, we also estimate the wind-induced surface
ocean mixing which is proportional to the cubed of the
wind fields U3

� (Ueyama and Monger 2005).
Figure 3 shows the trends of net surface heat flux (Qo),

Ekman pumping and wind induced-mixing. It was
clearly shown that the Qo reveals significant negative
trend over the Maritime Continent, favoring a decrease,
not an increase, in SST (Fig. 3a). The decreasing trend
distributed almost uniformly across the Maritime Con-
tinent with higher negative trends was observed in the
vicinity of Maluku Island and Nusa Tenggara Island
chain. This suggests that Qo is unlikely to cause the ob-
served SST warming trend within the Indonesian seas.
As the monsoonal winds dominate the atmospheric

circulation over the Maritime Continent, seasonal up-
welling/downwelling plays significant role on the sea-
sonal variation of SST within the Indonesian sea
(Gordon and Susanto 2003). The southeasterly (north-
westerly) winds observed during the southeast (north-
west) monsoon seasons in JJA (DJF) are favorable for the
upwelling (downwelling) within the Indonesian seas. We
then examined whether the Ekman pumping plays a role
in the SST warming within the Indonesian sea (Fig. 3b).
It is shown that there were significant positive trends
(upwelling favorable) in the northeastern Banda and Ma-
luku Seas, in the southern part of Java and Flores Seas,
and in the southern part of Makassar Strait co-located
with the highest warming trend in SST. This positive
trend of the Ekman pumping leads to cooling of the
SST. Meanwhile, negative trends (downwelling favor-
able) were observed only in the area south of Kalimantan
(northern part of Java Sea and Karimata Strait) and
south of Java. Since the Ekman pumping shows opposite
trend to the SST warming, in particular, in the area with
the highest warming trend, we may then suggest that the
Ekman pumping may play a minor role on the warming
trend of SST within the Indonesian sea.
Figure 3c shows that the wind induced-mixing is dom-

inated by a positive trend within the Indonesian sea, ex-
cept in the Makassar Strait and Maluku Sea, which
indicates a negative trend. The positive trend in wind-
induced mixing means that there is an increase in mix-
ing activities leading to cooling of SST, while negative
trend indicates a weakening in mixing that leads to SST
warming. Therefore, we may suggest that the wind-
induced mixing only play a minor role on the SST

warming within the Indonesian sea, in particular in the
Makassar Strait and Maluku Sea where the highest
warming trend was observed. These observations suggest
that other mechanisms are at work beyond the simple
one-dimensional thermodynamic effect of net surface
flux and ocean mixing on the SST variations. Thus, what
is a possible physical mechanism underlying the SST
warming trend within the Indonesian sea?
In this study, we propose a mechanism, i.e., upper

layer processes, that may cause the warming trend
within the Indonesian seas. This warming trend could be
related to the change in the precipitation and thus the
MLD. Figure 4a shows trends in precipitation over the
Maritime Continent, which shows increasing trends
within the Indonesian Seas, though only a small area has
significant value above 95% confidence level. The area-
averaged trend of the enhanced precipitation is about
0.2 ± 0.06 mm day−1/decade. We noted that the highest
positive precipitation trends were observed over the
land. However, the area of SST warming still shows posi-
tive precipitation trend, namely, in the southern
Makassar Strait and in the vicinity of the Maluku and
Halmahera seas (see Fig. 1a).
We also calculated the MLD change based on the ob-

served density profiles obtained from the WOD 2018
(Fig. 4c). Note that the density profiles were calculated
based on 659 available observations during the period of
1982–2019 within the Indonesian seas (Fig. 4b). The re-
sult shows that the MLD within the Indonesian Sea
clearly indicates a shoaling trend at a rate of – 1.3 ± 0.4
m/decade. It should be noted that the location of MLD
shoaling trend is collocated with the area of positive
trend in precipitation. We may propose that shoaling of
mixed layer depth associated with increasing trend in
precipitation give a favorable condition for surface heat
flux to warm the ocean. We then roughly estimated the
contribution of shoaling MLD to the warming trend
within the Indonesian seas using a very simple one-
dimensional heat budget calculation. The averaged heat
flux over the Indonesian region in the early observation
was Qo = 92.5 W m−2 and the MLD was ho = 25.1 m.
The averaged trend of heat flux (Fig. 3a) was Qt = –
11.73 W m−2 decade−1. From the mixed layer heat
budget, we have

∂T
∂t

¼ Qo þ Qtt
ρoCp ho þ httð Þ
þ Advection þ Diffussionð Þ: ð1Þ

where T is the mixed layer temperature, ρo is the density
of seawater, Cp is heat capacity, and Qo and ho are the
surface heat flux and MLD at the first year of calcula-
tion, respectively. Meanwhile, Qt and ht are the surface
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Fig. 3 Observed trend in a net surface heat flux (W m−2 decade−1) during 1982–2009, b Ekman pumping (× 10−5 m s−1 decade−1), and c wind
induced-mixing (m−3 s−3 decade−1) during 1982–2014. Significant values above 95% confidence level are shaded
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heat flux and MLD trends, respectively. Then, at t = 0
we may define:

∂T
∂t

¼ Qo

ρoCpho
þ Advectionþ Diffusionð Þ: ð2Þ

Thus, we may estimate the role of MLD by combining
Eq. (1) and (2) as

Qo

ρoCpho
¼ Qo þ Qtt

ρoCp ho þ httð Þ ; ð3Þ

Equation (3) can be simplified as

ht ¼ Qt

Qo
ho: ð4Þ

Based on Eq. (4), we may suggest that in order to have
SST warming trend at a rate of 0.19 °C/decade, the
MLD must be shoaling at a rate of about – 3.17 m/dec-
ade. Considering the observed shoaling of MLD was at a
rate of – 1.3 ± 0.4 m/decade, we might suggest that
MLD shoaling only could not solely explain the SST
warming within the Indonesian seas. Our result, though,
remained an open question on what other mechanisms
play a role in warming the SST within the Indonesian
seas.

The Indonesian sea is located in the region of Indo-
nesian Throughflow (ITF), which is considered to play
an important role for the heat budget of the Pacific and
Indian Oceans. Previous studies have proposed an in-
creasing trend of the ITF transport associated with an
increase in precipitation over the Maritime Continent
(Hu and Sprintall 2017). They suggested that the in-
crease in precipitation over the Maritime Continent
freshened the Indonesian seas thus reinforce the ITF’s
volume transport leading to an increase of heat transport
from Pacific to the Indian Ocean. Enhanced heat trans-
port from the Pacific to the Indian Ocean by the ITF has
also been proposed in earlier study (Lee et al. 2015).
However, to what extent does the heat advection associ-
ated with an increased ITF could modulate the SST
within the Indonesian seas at longer time scale is remain
an open question. Considering the important role of
SST variability within the Indonesian seas to the regional
as well as global climate variations, our study may sug-
gest a call for urgent direct and long oceanic observa-
tions within the Indonesian seas.

Role of large-scale climate variability
As discussed in the earlier section, the highest warming
trend occurred during summer season (Fig. 2b). We
noted that the summer season is associated with dry

Fig. 4 a Observed trend in precipitation over the period of 1982–2013 (mm day−1/decade). b Location of available observed CTD, XCTD, and XBT
data from WOD 2018, and c averaged vertical density profiles derived from temperature and salinity data of selected WOD 2018 data
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condition (low precipitation) in Indonesia. The question
then arises why the highest warming occurred during
low precipitation season. Previous study has shown that
the La Niña events significantly enhanced precipitation
over the Maritime Continent during summer season
(Aldrian and Susanto 2003; Hendrawan et al. 2019; Les-
tari et al. 2018; Supari et al. 2018). Hence, it is natural to
ask how well such modes of climate variability correlate
with the observed spatial structure in the SST trend.
Figure 5 shows the normalized JJA DMI and Niño3.4

indices. The DMI has a clear positive trend in 1982–
2014 of 0.02 ± 0.08 °C decade−1 indicating a trend to-
ward a positive IOD event (Fig. 5a). Meanwhile, the
Niño3.4 index has a negative trend – 0.07 ± 0.05 °C dec-
ade−1 showing that the La Niña events occurred more
frequently in later period (Fig. 5b). Both the positive
IOD and El Niño events cause SST cooling in the east-
ern tropical Indian Ocean as well as within the Indones-
ian sea. The positive IOD event is associated with
anomalously strong upwelling along the southern coasts
of Java and Sumatra, while during El Niño conditions,
the western Pacific is cooler than normal, and the hori-
zontal advection of this colder water may contribute to
cooling in the Indonesian sea.
Figure 6 displays the corresponding partial correlation

coefficients between JJA SST and the DMI (Fig. 6a) and
Niño3.4 (Fig. 6b). Note that, the time series are all de-
trended prior to the partial correlation analysis. As for
the DMI, the SST anomalies exhibit significant negative
correlation in the southern coast of Java and Sumatra, in
the Karimata Strait and Java Sea, and in the Flores Sea

south of Sulawesi Island (Fig. 6a). However, there was
no significant correlation between SST and DMI in the
eastern Indonesian seas, in particular in the Maluku and
Banda Seas where the highest warming trend were ob-
served. This negative correlation indicates that the posi-
tive (negative) IOD caused cooling (warming) of SST in
the upper mentioned regions.
On the other hand, the partial correlation between the

JJA SST with Niño3.4 index revealed significant negative
correlations in the north of the Papua and the Maluku
Sea regions, in the northeastern Banda Sea, and in the
southern part of Makassar Strait collocated with the
highest warming trend (Fig. 6b). Again, this out of phase
correlation between the SST and Nino3.4 index suggests
the cooling (warming) SST trend observed within the
Indonesian seas was induced by El Niño (La Niña)
events. A closer examination on the correlation maps
and the SST trends, it was found that La Niña event
contributed to the warming trend in the south of
Makassar Strait as well as in the eastern Indonesian seas,
in the vicinity of Maluku Strait and in the northeastern
part of the Banda Sea (Figs. 1a and 6b).

Summary and conclusions
In this study, we have examined the warming trend in
SST within the Indonesian sea using available observa-
tional data. Our analysis reveals that during the past 33
years (1982–2014), the SST in the Indonesian sea experi-
enced a warming trend on the average of 0.19 ± 0.04 °C/
decade, which is larger than global SST warming trend
of 0.07 °C/decade (Wang and Mehta 2008). It was noted

Fig. 5 Normalized a Dipole Mode Index, and b Niño3.4 index during JJA season
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that the eastern Indonesian sea regions (i.e., in the vicin-
ity of Maluku Sea, the northeastern part of Banda Sea,
and the southern part of Makassar Strait) experienced
stronger warming trend compared to the other regions
within the Indonesian seas (Fig. 1a). Moreover, the
warming trend indicates seasonal dependence, in which
maximum trend occurred during boreal summer (Fig.
2b), while the minimum trend was observed during bor-
eal winter (Fig. 2d).
Investigation on the driving mechanism of this SST

warming trend revealed that the net surface heat flux
revealed a cooling trend (Fig. 3a), while the Ekman
pumping and wind mixing also only play a minor role
to the warming trend in the SST (Fig. 3b, c). It sug-
gests that other mechanisms may contribute to the
warming trend within the Indonesian seas. In this
study, we proposed a mechanism, in which the upper
layer processes are responsible for the warming trend

within the Indonesian seas. We found an increasing
trend in precipitation over the Indonesian regions as
previously suggested (Hu and Sprintall 2017). The in-
crease in precipitation has caused a gradual decrease
in the MLD. We suggest that shoaling of MLD gives
a favorable condition for the surface heat flux to
warm the surface ocean. This proposed mechanism,
however, also could not solely explain the warming
trend within the Indonesian region. In addition, we
also suggest that the highest warming trend observed
in summer was significantly correlated with the large-
scale climate modes in the Indo-Pacific sector,
namely, the negative IOD and La Niña events. Partial
correlation analysis revealed that negative IOD event
contributed to the warming trend observed in the
Karimata Strait Strait and Java Sea, and in the Flores
Sea south of Sulawesi Island (Figs. 1a and 6a, b).
Meanwhile, observed warming trend in the eastern

Fig. 6 Partial correlation coefficient between JJA SST and a Dipole Mode Index, and b Niño3.4 index. Values above 95% confidence level
are shaded
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Indonesian seas and in the southern part of Makassar
Strait was significantly induced by the La Niña events.
Our rough quantitative estimate on the mechanism

causing a warming trend within the Indonesian seas sug-
gests that there are other mechanisms responsible for
this warming trend. One potential driver is heat advec-
tion associated with the heat transport by the ITF. It was
suggested that there was an increasing trend of heat
transport from the Pacific into the Indian Ocean by the
ITF (Hu and Sprintall 2017; Lee et al. 2015). However,
to what extend does this heat advection induce warming
trend within the Indonesian seas is still unresolved in
the present study. A complex topography and high tidal
mixing within the Indonesian seas make it difficult to es-
timate the warming trend based on the model outputs
as they may not reproduce a correct SST within the
Indonesian seas. Therefore, we may suggest a call for ur-
gent direct and long oceanic observations within the
Indonesian seas for a better understanding of the SST
variability in hotspot of the climate study.
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