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A B S T R A C T   

Preparation of Magnetite Humic Acid (MHA) 3:1, 2.5:1, 2:1, and 1.5:1 was successful as evidenced by the 
characterization using FTIR, XRD, VSM, SEM-EDS analysis. The FTIR spectra have a typical absorption at 3425, 
1604, 1396, 1095, 1026, 910, 794, and 540 cm− 1. XRD patterns show diffraction peaks at 2θ = 20.40 ◦, 35.63◦, 
and 63.3◦. MHA 3:1, 2.5:1, 2:1, and 1.5:1 was paramagnetic with magnetization (Ms) at 20.44, 17.04, 15.51, and 
13.82 emu/g, respectively. The surface of MHA is smooth because it is prepared by hydrothermal process. Fe 
atom appear after HA is composited into MHA. The percent mass of Fe atom in MHA were 3:1, 2.5:1, 2:1, 1.5:1, at 
34.5 %, 31.5 %, 27.7 %, and 24.4 %, respectively. The percent mass of Fe atom decreases in line with the VSM 
analysis which decreases the magnetization. The functional groups of HA and MHA are total acidity, carboxyl 
group, and phenolic hydroxyl group. The carboxyl and phenolic hydroxyl groups are iodized and interact with 
Fe2+ and Fe3+ from Fe3O4. However, the carboxyl group is more interactive with Fe3O4 than the phenolic hy-
droxyl group, so the carboxyl group’s reduction is very drastic. pHpzc of HA and MHA 3:1, 2.5:1, 2:1, 1.5:1 at 
8.06, 5.82, 6.08, 4.80, and 4.76, respectively. HA and MHA were better at PSO and Langmuir model in 
adsorption of MB. Maximum adsorption capacity of HA and MHA 3:1, 2.5:1, 2:1, 1.5:1 at 66.225, 102.041, 
161.290, 156.250, 138.889 mg/g, respectively. The highest maximum adsorption capacity is MHA 2.5:1 
(161.290 mg/g). MHA 2.5:1 will be continued with regeneration. MHA regeneration efficiency decreased from 
92.28 % to 58.92 % in the fifth cycle. These results indicate the good recyclability of MHA to remove MB 
supported by FTIR and XRD analysis after adsorption which shows no significant changes.   

Introduction 

In decade, synthetic dyes are increases use in the paper, textile, 
wood, hair, and cotton industries, one of which is methylene blue (MB) 
[1–3]. However, MB produces wastewater containing organic com-
pounds that harm humans and aquatic life [4]. Therefore, this problem 
must be solved, which can reduce or even eliminate MB in waters [5–6]. 
Various methods have been used for removal of methylene blue, 
including photocatalytic [7], electrocoagulation [8], biodegradation 
[9], electrochemical [10], and adsorption [11]. Adsorption was chosen 
because the method is simple, low cost, and many available precursors 
with high adsorption capacity. In adsorption required an effective 
adsorbent for removal MB. Adsorbents of MB have been reported use 
activated bentonite, lignite waste, tea biochar, CuAl-LDH, apple 

pomace, orange peels, and humic acid [2,12–16]. 
Humic acid is a large organic polymer with a random structure with 

total acidity, carboxylic, and phenolic functional groups [17–18]. Humic 
acid is widespread, not only in soil but also found in water [19–20]. In 
addition, humic acid has been reported as an ion exchange, antibody 
responses, reduced capacity, and adsorbent [21–22]. Humic acid has 
been used as an adsorbent of heavy metals (Pb (II) and Cd (II)), 
ammonia, organic nitrogen, crystal violet dye, and malachite green dye 
[23–27]. Humic acid has a large surface area with high surface activity, 
so it can be used as an adsorbent [28]. However, humic acid does not 
have stability to recycle of the adsorbent because its structure collapses. 
To solve this problem thus humic acid should be composited with 
various materials, including lignite, bentonite, cellulose, and magnetite 
[25,29–30]. 
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Magnetite is a mineral rock composed of iron oxide with the chem-
ical formula Fe3O4 [31–33]. Magnetite is a very attractive mineral 
because of its Physico-chemical properties that can be used for various 
applications, i.e., water purification or thermal energy storage [34]. In 
recent decades, magnetite has been of great interest in the development 
of adsorbent materials, because makes it easy to separate the adsorbent 
and adsorbate using an external magnet [35]. Magnetite and humic acid 
will interact because of the high adsorption capacity of magnetite, the 
electrostatic attraction, and the presence of a carboxyl group on the 
surface of the humic acid in combination with ferrous cations [36]. 
Therefore, magnetite and humic are suitable to be composited into 
magnetite humic acid (MHA) and used to adsorption of MB. Composite 
magnetite with humic acid has been reported for removing phosphate 
[37], removing Pb (II) [24], and styryl pyridinium dye [38]. 

In the experiment part, humic acid (HA) was obtained from local soil 
in South Sumatera, Indonesia. Magnetite humic acid (MHA) was pre-
pared in a ratio of 3:1, 2.5:1, 2:1, and 1.5:1 for repeat use of adsorbent. 
Characterization of adsorbent was carried out using FTIR, XRD, VSM, 
and SEM-EDS analysis to indicate the success of material synthesis. The 
functional groups of HA and MHA, namely total acidity, carboxyl group, 
and phenolic hydroxyl group were observed. Adsorption performances 
of HA and MHA were also investigated by pHpzc, kinetics, isotherms, 
and thermodynamics. The adsorbent with the highest adsorption ca-
pacity was continued with the regeneration process for 5 times to see the 
structural stability of the MHA. 

Experimental 

Materials 

Humic Acid (HA) was obtained from local soil in South Sumatera, 
Indonesia. The chemical used, ferric chloride (FeCl3) and ferrous sulfate 
(FeSO4⋅7H2O) were purchased from Merck, hydrogen chloride (HCl) 
was purchased from MallinckrodtAR®, sodium hydroxide (NaOH), 
barium hydroxide (Ba(OH)2), magnesium acetate (Mg(CH3COO)2), and 
ammonia (NH3) were purchased from EMSURE® ACS. Distilled water 
was purchased from PT. Dira Sonita. 

Preparation of magnetite humic acid (MHA) 

Magnetite was prepared follow procedure Ahmad et al. [39] from a 
mixture of FeCl3 (0.018, 0.015, 0.012, 0.009 mol) and FeSO4⋅7H2O 
(0.006 mol) in 9 mL distilled water, respectively. Magnetite solution 
added 3 g of humic acid, then shaken for 4 h.NH3 (3 mL) was added 
slowly, then shaken for 30 min at 75 ◦C. MHA followed the hydrother-
mal process for 4 h at 150 ◦C, filtered and dried. MHA was prepared in a 
ratio of 3:1, 2.5:1, 2:1, and 1.5:1. MHA continued with the hydrothermal 
process for 4 h at 150 ◦C, filtered with Whatman paper (2.5μ m), and 
dried. MHA is made in a ratio 3:1, 2.5:1, 2:1, and 1.5:1. 

Characterization 

UV–Visible Spectrophotometer type Biobase BK-UV 1800 PC was 
used to measure the concentration of MB. Fourier Transfer Infra-Red 
(FTIR) type Shimadzu Prestige-21 was used to analyze the functional 
group. X-ray Diffractometer (XRD) type Rigaku Miniflex-6000 was used 

Fig. 1. Characterization of MHA: (a) FTIR spectra, (b) XRD patterns, and (c) VSM curve.  
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Fig. 2. SEM image (a) HA, (b) MHA 3:1, (c) MHA 2.5:1, (d) MHA 2:1, and (e) MHA 1.5:1.  
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to study the crystal morphology. Vibrating Sample Magnetometer (VSM) 
type OXFORD VSM1.2H was used to measure the magnetization of 
MHA. Scanning Electron Microscope Energy Dispersive Spectrometer 
(SEM-EDS) Quanta 650 OXFORD was used to analyze the surface 
morphology and element of HA and MHA. 

Determination of functional group HA and MHA 

Determination of functional group of HA and MHA was followed 
Santosa et al. [40]. The functional groups of HA and MHA, namely total 
acidity, carboxyl group, and phenolic hydroxyl group were observed. 

Total acidity 
100 mg of HA and MHA was added to 20 mL saturated solution Ba 

(OH)2 under N2 atmosphere and stirred for 24 h at 25 ◦C, filtered and 
washed. The filtrate and wash water were titrated with HCl (0.5 M) to 
pH 8.4. The total acidity MHA was determined using equation: 

Total acidity (cmol kg− 1) =
(V0 − Vs) × M × 105

W 

where V0 and Vs are the volume of HCl for titrated blank solution and 
sample, respectively; M is the molarity of HCl; W is the mass of HA and 
MHA. 

Carboxyl group 
100 mg HA and MHA were added to 10 mL Mg(CH3COO)2 0.5 M and 

40 mL distilled water under N2 atmosphere and stirred for 24 h at 25 ◦C, 
filtered and washed. The filtrate and wash water were titrated with 
NaOH (0.1 M) to pH 9.8. The carboxyl group MHA was determined using 
equation: 

Carboxyl group (cmol kg− 1) =
(V0 − Vs) × M × 105

W 

where V0 and Vs are the volume of NaOH for titrated blank solution 
and sample, respectively; M is the molarity of NaOH; W is the mass of HA 
and MHA. 

Phenolic hydroxyl group 
The phenolic hydroxyl group was determined using equation: 

Phenolic hydroxyl group
(
cmol kg− 1) = Total acidity − Carboxyl group  

Adsorption experiments 

Adsorption experiments were carried out in a 100 mL volumetric 
flask. Each flask was filled with 20 mL MB and 20 mg of HA and MHA 
3:1, 2.5:1, 2:1, and 1.5:1, respectively. The mixture was shaken using a 
shaker (120 r/min). The effect of adsorption parameters on the 
adsorption process was investigated such as pHpzc with initial pH 
(2–11), contact time (0–180 min), temperature (303–343 K), and initial 
concentration (50–150 mg/L). pH value was adjusted with 0.1 M 
hydrogen chloride and 0.1 M sodium hydroxide. The MHA in the 
volumetric flask was separated from the MB solution using an external 
magnet. The filtrate was analyzed using UV–Visλ = 664 nm. An adsor-
bent with the largest adsorption capacity will be followed by a regen-
eration process. The regeneration process was conducted by adding 20 
mg adsorbents to 30 mg/L of MB 20 mL, shaken for 2 h. After that, the 
desorption of MB in 20 mL distilled water using an ultrasonic device for 
15 min. 

Models for kinetic studies 

The adsorption kinetics were analyzed by pseudo-first-order (PFO) 
and pseudo-second-order (PSO) [39] with the following equation 

Table 1 
EDS of HA and MHA.  

Element HA 
(% 
wt) 

MHA 3:1 (% 
wt) 

MHA 2.5:1 
(%wt) 

MHA 2:1 (% 
wt) 

MHA 1.5:1 
(%wt) 

Fe  –  34.5  31.5  27.7  24.4 
C  55.7  29.8  28.6  34.7  35.4 
O  14.8  31.1  31.5  32.6  32.9  

Table 2 
Total acidity, carboxyl group, and phenolic hydroxyl group of HA and MHA.  

Adsorbent Total acidity 
(cmol/kg) 

Carboxyl group 
(cmol/kg) 

Phenolic Hydroxyl 
group (cmol/kg) 

Ref. 

Humic 
acid 

570–890 150–570 150–400 [50] 

Humic 
acid 

670 296 374 This 
study 

MHA 3:1 287.50 37.33 250.17 This 
study 

MHA 
2.5:1 

317.50 59.33 258.17 This 
study 

MHA 2:1 405 42 363 This 
study 

MHA 
1.5:1 

430 44.67 385.33 This 
study  

Fig. 3. pHpzc of HA and MHA.  

Table 3 
Pseudo-first-order and pseudo-second-order kinetics parameters for the 
adsorption of MB by HA and MHA.  

Kinetic 
Parameter 

Parameter Adsorbent 
HA MHA 

3:1 
MHA 
2.5:1 

MHA 
2:1 

MHA 
1.5:1 

Pseudo First 
Order 

Qeexp (mg/ 
g)  

11.139  22.753  20.902  22.893  22.694 

Qecalc 

(mg/g)  
10.406  16.173  17.002  13.861  16.007 

k1 (min− 1)  0.020  0.033  0.030  0.036  0.020 
R2  0.912  0.983  0.982  0.966  0.974 

Pseudo 
Second 
Order 

Qeexp (mg/ 
g)  

11.139  22.753  20.902  22.893  22.694 

Qecalc 

(mg/g)  
12.788  24.213  22.779  23.981  24.631 

k2 (g/mg. 
min)  

0.002  0.004  0.003  0.005  0.002 

R2  0.980  0.999  0.998  0.999  0.996  
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log(Qe − Qt) = logQe −

(
k1

2.303

)

t(PFO)

1
Qt

=
1

k2Qe
2 +

1
Qe

(PSO)

where Qe and Qt are adsorption capacity at equilibrium and t, 
respectively (mg/g); k1 (min− 1) and k2 (g/mg.min− 1) are the rate con-
stant at PFO and PSO, respectively; t is the adsorption time of MB. 

Models for isotherm studies 

The adsorption isotherms were analyzed by Langmuir and Freund-
lich isotherm model with the following equation 

Ce

Qe
=

Ce

Qm
+

1
QmKL

(LangmuirIsotherm)

logQe = logKF − 1/nlogCe(FreundlichIsotherm)

where Ce (mg/L) and Qe (mg/g) are the concentration of MB and 
adsorption capacity at equilibrium, respectively (mg/g); Qm (mg/g) is 

Fig. 4. Adsorption kinetics for MB 25 mg/L at (a) HA, (b) MHA 3:1, (c) MHA 2.5:1, (d) MHA 2:1, and (e) MHA 1.5:1.  

Table 4 
Langmuir and Freundlich ishotherms parameters for the adsorption of MB by HA and MHA.  

Adsorbent T (K) Langmuir Freundlich 
Qmax kL R2 n kF R2 

HA 303  66.225  0.034 0.9384  1.527  4.866  0.8431 
313  63.291  0.042 0.9224  1.697  6.665  0.8385 
323  62.893  0.046 0.9217  1.702  7.078  0.8433 
333  59.880  0.058 0.919  1.734  8.002  0.9004 
343  60.606  0.057 0.9187  1.622  7.306  0.8628 

MHA 3:1 303  82.645  0.256 0.8083  6.464  41.333  0.4672 
313  88.496  0.251 0.8482  6.075  42.628  0.5139 
323  88.496  0.412 0.8181  6.258  45.740  0.7661 
333  93.458  0.360 0,8013  5.621  44.937  0.7123 
343  102.041  0.389 0.7987  5.056  47.011  0.6939 

MHA 2.5:1 303  161.290  0.043 0.9952  1.831  31.915  0.8219 
313  147.059  0.067 0.9952  2.179  20.635  0.8199 
323  138.889  0.099 0.999  2.552  27.797  0.7108 
333  140.845  0.121 0.9987  2.675  32.063  0.5986 
343  140.845  0.156 0.998  3.058  39.683  0.4659 

MHA 2:1 303  114.943  0.114 0.9778  2.946  27.290  0.8343 
313  126.582  0.152 0.9820  2.899  32.412  0.8285 
323  135.135  0.193 0.9833  2.640  35.530  0.8040 
333  144.928  0.252 0.9909  2.546  39.600  0.8645 
343  156.250  0.257 0.9791  2.353  41.238  0.8020 

MHA 1.5:1 303  128.205  0.080 0.9739  2.538  22.851  0.9749 
313  113.636  0.368 0.9880  5.365  53.654  0.7520 
323  129.870  0.700 0.9972  4.013  60.506  0.7004 
333  138.889  0.393 0.9684  3.784  56.885  0.5117 
343  136.986  0.603 0.9930  3.388  58.385  0.6465  
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the maximum adsorption capacity; KL and KF are the rate constant at 
Langmuir and Freundlich, respectively. 

Adsorption thermodynamic 

The thermodynamic equation and the Gibbs free energy were 
determined using equation: 

ln
Qe

Ce
=

ΔS
R

−
ΔH
RT

(Thermodynamicequation)

ΔG◦

= ΔH − TΔS(TheGibbsfreeenergy)

where Ce (mg/L) and Qe (mg/g) are the concentration of MB and 
adsorption capacity at equilibrium, respectively (mg/g); ΔS (J/mol.K) is 
the entropy; ΔG◦ (kJ/mol) is the gibbs free energy. ΔH(kJ/mol) is the 
enthalpy; R (J/mol.K) is the gas constant; T (K) is the temperature. 

Results and discussion 

Characterization of MHA 

FTIR analysis: As illustrated in Fig. 1a, the FTIR spectra of HA and 
MHA 3:1, 2.5:1, 2:1, 1.5:1, respectively. The peak at 3425 cm− 1 is due to 
the phenolic hydroxyl group (OH) [41,42], 1604 cm− 1 is related to C–C 
group stretching vibration of the aromatic ring [43], 1396 cm− 1 as 
bending vibration of the carboxyl group (HCOO–) [44], 1095 cm− 1 as 
stretching vibration C–O–C, 1026, 910, and 540 cm− 1 are stretching 
vibration from C–O [45]. The peaks at 794 cm− 1 and indicate the 
presence of Fe-O [46–47]. 

XRD analysis: Fig. 1b shows the XRD patterns of HA and MHA 3:1, 
2.5:1, 2:1, 1.5:1, respectively. HA and MHA show diffraction peaks at 2θ 
= 20.40 ◦ (002), 35.63◦ (311), and 63.3◦ (440). The diffraction peaks 
that appear are the characteristic peaks of magnetite [36,48]. The 
crystal structure of magnetite is affected after modification with humic 
acid. This is due to the electrostatic interaction of the negatively charged 
carboxylic group of humic acid to the positively charged functional 

Fig. 5. Adsorption ishotherms on (a) HA, (b) MHA 3:1, (c) MHA 2.5:1, (d) MHA 2:1, and (e) MHA 1.5:1.  

Table 5 
The maximum adsorption capacity of different adsorbents for MB.  

Adsorbent Qmax (mg/g) Ref. 

Chitosan Lignin Membrane 76.70 [1] 
Apple Pomace 107.6 [2] 
MIL101-Cr/PANI/Ag 43.29 [4] 
Electrolytic Manganase Anone Slime (EMAS) 70.74 [56] 
Hydrogels 26.04 [57] 
Chitosan/K-carrageenan/acid-activated bentonite 18.80 [12] 
Tea Biochar 105.27 [13] 
ZrO2@Rice Straw-Derived SiO2 13.5 [58] 
Calix[8]arene-Modified PbS 11.90 [59] 
Geothermal silica 108 [60] 
Lignite Waste 120 [16] 
Orange Peels 142.86 [14] 
CuAl-LDHs 58.803 [15] 
HA 66.225 This study 
MHA 3:1 102.041 This study 
MHA 2.5:1 161.290 This study 
MHA 2:1 156.250 This study 
MHA 1.5:1 138.889 This study  

Table 6 
Adsorption thermodynamics of MB by MHA.  

Adsorbent Δ H (kJ/mol) Δ S (J/K.mol) Δ G (kJ/mol) R2 

303 K 313 K 323 K 333 K 343 K 

HA  8.193  0.029  − 0.722  − 1.016  − 1.311  − 1.605  − 1.899  0.996 
MHA 3:1  12.059  0.043  − 0.974  − 1.404  − 1.834  − 2.264  − 2.694  0.946 
MHA 2.5:1  20.517  0.082  − 4.453  − 5.277  − 6.101  − 6.925  − 7.749  0.998 
MHA 2:1  25.297  0.089  − 1.557  − 2.443  − 3.330  − 4.216  − 5.102  0.996 
MHA 1.5:1  31.187  0.124  − 6.472  − 7.715  − 8.958  − 10.201  − 11.443  0.952  
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group of the surface due to protonation under the preparation conditions 
[26]. 

VSM analysis: As illustrated in Fig. 1c, the VSM curve of MHA 3:1, 
2.5:1, 2:1, 1.5:1, respectively magnetization at 20.44, 17.04, 15.51, and 
13.82 emu/g. The magnetization (Ms) of MHA is strong to separation 
from MB by a magnet [40]. 

SEM-EDS analysis: Fig. 2 shows the SEM Image of HA and MHA 3:1, 
2.5:1, 2:1, 1.5:1, respectively. HA and MHA have an irregular structure, 
the morphology of MHA is smoother than HA. The surface of MHA is 
smooth because it is prepared by hydrothermal process. 

Analysis in Table 1 shows the Fe, C, and O atom percentages in HA 
and MHA. Fe atom appear after HA is composited into MHA. The percent 
mass of Fe atom in MHA were 3:1, 2.5:1, 2:1, 1.5:1, at 34.5 %, 31.5 %, 
27.7 %, and 24.4 %, respectively. The percent mass of Fe atom decreases 
in line with the VSM analysis which decreases the magnetization. The 
percent mass of C atom decreased while the O atom increased, Fe-O 
bonds affect this to happen. Fe-O bonds in MHA were supported by 
FTIR analysis, a new peak appeared at 794 cm− 1. Therefore, the prep-
aration of MHA has been a success. 

Functional group of HA and MHA 

The total acidity and carboxyl group of MHA 3:1, 2.5:1, 2:1, 1.5:1 
was a drastic decrease from HA. The total acidity of MHA 3:1, 2.5:1, 2:1, 
1.5:1 was decreased from 670 cmol/kg to 287.5, 317.50, 405, and 430 

cmol/kg, respectively. The carboxyl group of MHA 3:1, 2.5:1, 2:1, 1.5:1 
was decreased from 296 cmol/kg to 37.5, 59.33, 42, 44.67 cmol/kg, 
respectively. It is due to the preparation of MHA carried out under 
alkaline conditions (addition of NH3). The carboxyl and phenolic hy-
droxyl groups are iodized and interact with Fe2+ and Fe3+ from Fe3O4 
[49]. However, the carboxyl group is interacts more with Fe3O4 than the 
phenolic hydroxyl group, so the carboxyl group’s reduction is very 
drastic. The total acidity, carboxyl group, and phenolic hydroxyl group 
as reported in Table 2. 

Effect of point of zero charge pH (pHpzc) 

pH is an important factor during the adsorption process. One of the 
appropriate methods is the point of zero charge, pHpzc [51]. Therefore, 
the effect of pH was investigated with pHpzc whose results are in Fig. 3. 
The meeting point between the initial and final pH shows no movement 
of H+ ions, which means that this meeting point is that pHpzc, HA and 
MHA are in neutral conditions. According to Fig. 3, pHpzc of HA and 
MHA 3:1, 2.5:1, 2:1, 1.5:1 at 8.06, 5.82, 6.08, 4.80, and 4.76, respec-
tively. HA and MHA are positively charged at pH lower than pHpzc and 
negatively charged at pH higher than pHpzc. 

Adsorption kinetics 

Adsorption kinetics describes the transfer of substances in the 
adsorption process and the factors that affect the adsorption rate [52]. 
PFO and PSO kinetic models were used to study the adsorption behavior 
of MB in HA and MHA. The adsorption kinetics of HA and MHA 3:1, 
2.5:1, 2:1, 1.5:1 shown in Table 3. The five adsorbents were better at 
PSO in adsorption of MB, as evidenced by the correlation coefficient (R2) 
PSO > PFO. PSO means that the adsorption process is chemisorption 
[53]. Chemisorption means that increase in the initial concentration of 
MB will also increase the adsorbed concentration, as shown in Fig. 4. 

Adsorption isotherms 

The adsorption isotherms describe the relationship between the 
adsorbent surface and the amount of adsorbate in the solution [54]. The 
Langmuir and Freundlich isotherm model were used to study the 
adsorption behavior of MB in HA and MHA. Adsorption isotherms of HA 
and MHA 3:1, 2.5:1, 2:1, 1.5:1 shown in Table 4. The adsorbents were 
better in the Langmuir model, as evidenced by the correlation coefficient 
(R2) Langmuir > Freundlich. This shows the characteristics adsorption 
of MB by HA and MHA homogeneous (monolayer) and an increase in the 
initial concentration of MB will also increase the adsorbed concentration 
[55], as in Fig. 5. Maximum adsorption capacity of HA and MHA 3:1, 

Fig. 6. Regeneration of MHA 2.5:1.  

Fig. 7. FTIR spectra (a) and XRD patterns (b) of MHA 2.5:1 before and after adsorption.  
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2.5:1, 2:1, 1.5:1 at 66.225, 102.041, 161.290, 156.250, 138.889 mg/g, 
respectively. The highest maximum adsorption capacity is MHA 2.5:1. 
This adsorbent will be continued with regeneration. The comparison 
adsorption capacity of HA and MHA in adsorption of MB with other 
adsorbents is displayed in Table 5. 

Adsorption thermodynamics 

Adsorption thermodynamics describes the spontaneity and heat 
changes adsorption of MB by HA and MHA [61]. Adsorption thermo-
dynamics are calculated and contained in Table 6. A negative Δ G value 
describes the spontaneity adsorption of MB by HA and MHA [62–63]. Δ 
G higher at the greater temperature. This proves that adsorption of MB 
by HA and MHA is more efficient at high temperatures. A positive value 
of Δ H indicates the endothermic adsorption of MB by HA and MHA. A 
positive value of Δ S indicates randomness at the solid–liquid interface 
during the adsorption process [64–65]. 

Regeneration of MHA 

MHA 2.5:1 as adsorbent with the highest maximum adsorption ca-
pacity was followed by the regeneration process. Regeneration is very 
important for industry because adsorbents can be reused [66]. More-
over, MHA is easily separated with methylene blue solution using a 
magnet [67]. Fig. 6 shows regeneration of MHA 2.5:1 in MB adsorp-
tion–desorption cycles. MHA regeneration efficiency decreased from 
92.28 % to 58.92 % in the fifth cycle. These results indicate the good 
recyclability of MHA to remove MB. The good recyclability of MHA 
indicates that MHA has good stability supported by FTIR spectra and 
XRD patterns after adsorption which shows no significant changes as in 
Fig. 7. The diffraction peaks at 2θ = 20.40 ◦ (002), 35.63◦ (311), and 
63.3◦ (440) can still be observed. The peak at 3425 cm− 1, 1604 cm− 1, 
1396, 1095 cm− 1, 1026 cm− 1, 910 cm− 1, 794 cm− 1 and 540 cm− 1 can 
still be observed.. 

Conclusion 

Preparation of Magnetite Humic Acid (MHA) 3:1, 2.5:1, 2:1, and 
1.5:1 was successful as evidenced by the characterization using FTIR, 
XRD, VSM, and SEM-EDS Analysis. The functional groups of MHA are 
total acidity, carboxyl group, and phenolic hydroxyl group. The 
carboxyl, and phenolic hydroxyl groups are iodized and interact with 
Fe2+ and Fe3+ from Fe3O4. However, the carboxyl group is interacts 
more with Fe3O4 than the phenolic hydroxyl group, so the carboxyl 
group’s reduction is very drastic. pHpzc of HA and MHA 3:1, 2.5:1, 2:1, 
1.5:1 at 8.06, 5.82, 6.08, 4.80, and 4.76, respectively. HA and MHA were 
better at PSO and Langmuir model in adsorption of MB. Maximum 
adsorption capacity of HA and MHA 3:1, 2.5:1, 2:1, 1.5:1 at 66.225, 
102.041, 161.290, 156.250, 138.889 mg/g, respectively. The highest 
maximum adsorption capacity is MHA 2.5:1 (161.290 mg/g). MHA 
2.5:1 will be continued with regeneration. MHA regeneration efficiency 
decreased from 92.28 % to 58.92 % in the fifth cycle. These results 
indicate the good recyclability and of MHA to remove MB supported by 
FTIR and XRD analysis after adsorption which shows no significant 
changes. 
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