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Abstract. This paper is the generalization of our two previous researches
about asymptotic distribution of the bootstrap parameter estimator for
the AR(1) and AR(2) models. We investigate the asymptotic distribution
of the bootstrap parameter estimator of pth order autoregressive or AR(p)
model by applying the delta method. The asymptotic distribution is the
crucial property in inference of statistics. We conclude that the bootstrap
parameter estimator of the AR(p) model is asymptotically converges in
distribution to the p—variate normal distribution.
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1 Introduction

Consider the following stationary second order autoregressive AR(p) process:
Xi =01 X4 1 +0:Xy o+ + 0, Xy ey, (1)

where €; is a zero mean white noise process with constant variance 2. Let
the vector 8 = (61,0s,...,0,)T is the estimator of the parameter vector
0 = (01,02,...,0,)" of (1) and 6* be the bootstrap version of 6. Studying
of estimation of the unknown parameter involves: (i) what estimator should
be used? (ii) having chosen a particular estimator, is this consistent? (iii) how
accurate is the chosen estimator? (iv) what is the asymptotic behavior of such
estimator? (v) what is the method used in proving the asymptotic properties?

Bootstrap is a general methodology for answering the second and third ques-
tions, while the delta method is one of tools used to answer the last two ques-
tions. Consistency theory is needed to ensure that the estimator is consistent
to the actual parameter as desired, and thereof the asymptotic behavior of such
estimator will be studied.

The consistency theories of parameter of autoregressive model have stud-
ied in [1,3,4], and for bootstrap version of the same topic, see e.g. [5-8,10].
They deal with the bootstrap approximation in various senses (e.g., consistency
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of estimator, simulation results, limiting distribution, applying of Edgeworth
expansions, etc.), and they reported that the bootstrap works usually very well.
The accuracy of the bootstrapping method for autoregressive model studied in
[2,9]. They showed that the parameter estimates of the autoregressive model can
be bootstrapped with accuracy that outperforms the normal approximation. The
asymptotic result for the AR(1) model has been exhibited in [11]. We concluded
that the bootstrap parameter estimator for the AR(1) model converges in distri-
bution to the normal distribution. A good perform of the bootstrap estimator is
applied to study the asymptotic distribution of 8* using the delta method. We
describe the asymptotic distribution of the autocovariance function and investi-
gate the bootstrap limiting distribution of 8*. Section 2 reviews the asymptotic
distribution of estimator of mean and autocovariance function for the autore-
gressive model. Section 3 describes the bootstrap and delta method. Section 4
deals with the main result, i.e. the asymptotic distribution of 0* by applying
the delta method. Section 5 briefly describes the conclusions of the paper.

2 Estimator of Mean and Autocovariance
for the Autoregressive Model

Suppose we have the observed values X1, Xo, ..., X, from the stationary AR(p)
process. Mean and autocovariance are two important statistics in investigating
the consistency properties of the estimator 0= (51, 52, . ,é\p)T for the parame-
ter @ of the AR(p) model. A natural estimators for parameters mean, covariance
and correlation function are

Z 'Yn l Z Xt+h - (Xt X )

and pn(h) = A, /9 (0) respectively. These all three estimators are consistent
(see, e.g. [3,13]). The following theorem describes the property of the estimator
X, is stated in [3].

ﬁn = Yn =

3\'—‘
3

Theorem 1. If {X;} is stationary process with mean p and autocovariance
function y(-), then as n — oo,

Var(X,) = E(X, — u)z —0 ify(n)—0,

and

nE(Yn—u)2—>Z’yh Zfz h)| < 0.

j=—o00 j=—00

It is not a loss of generality to assume that px = 0. Under some conditions
(see, e.g., [13]), the sample autocovariance function can be written as
1 n—h
An(h) = = > Xeen X + Op(1/n). (2)
[
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The asymptotic behavior of the sequence v/n (3,(h) — vx(h)) depends only on
n~! Z;:lh X1 X¢. Note that a change of n — h by n or vice versa, is asymptot-
ically negligible, so that, for simplicity of notation, to study the behavior of (2)
we can equivalently study the average

_ 1<
Tn(h) =~ > XienXo. (3)
t=1

Both (2) and (3) are unbiased estimators of F(X;1,X;) = vx(h), under the con-
dition that px = 0. Their asymptotic distribution then can be derived by apply-
ing a central limit theorem to the averages Y, of the variables Y; = Xein Xy As
n [13], the autocovariance function of the series Y; can be written as

Vi = ka(€)rx (h)? + > vx(9)* + D vx (g + h)vx (g — h), (4)

where k4(e) = E(e}) — 3(E(s%))2, the fourth cumulant of ;. The following
theorem is due to [13] that gives the asymptotic distribution of the sequence

Vi (n(h) = vx (h)).

Theorem 2. If X; = p+ Z;’;_OO Yiee—; holds for an i.i.d. sequence e, with
mean zero and E(e}) < oo and numbers ; with > Y] < oo, then

\/E (/in(h) — X (h)) —d N(O’ Vh,h)'

3 Bootstrap and Delta Method

Let X1, X5,...,X,, be a random sample of size n from a population with com-
mon distribution F'; and let T'(X1, Xs, ..., X,; F') be the specified random vari-
able or statistic of interest, possibly depending upon the unknown distribution
F. Let F,, denote the empirical distribution function of the random sample
X1, Xo,...,Xp, i.e., the distribution putting probability 1/n at each of the
points X1, Xo,...,X,. A bootstrap sample is defined to be a random sam-
ple of size n drawn from F,, say X* = X{,X5,...,X:. The bootstrap sam-
ple at first bootstrapping is usually denoted by X*'. In general, the boot-
strap sample at Bth bootstrapping is denoted by X*B. The bootstrap data
set X*0 = X0 X3, ..., X% b=1,2,..., B consists of members of the original
data set X1, Xo,..., X, some appearing zero times, some appearing once, some
appearing twice, etc. The bootstrap method is to approximate the distribution
of T(X1, Xs,...,X,; F) under F by that of T(X7, X3,..., X F,,) under F,.
Let a functional T is defined as T(X1, Xo,..., X F) = \/ﬁ(g— 0), where 0
is the estimator for the coefficient 8 of a stationary AR(p) model. The bootstrap
version of T is T( X7, X3,..., X F,) = \/ﬁ(évk - §), where 8 is a bootstrap
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version of 6 computed from sample bootstrap Xi, X5,..., X . The residuals
bootstrapping procedure for the time series data to obtain X7, X3,..., X was
proposed in [6]. In bootstrap view, the key of bootstrap terminology says that the
population is to the sample as the sample is to the bootstrap samples. Therefore,
when we want to investigate the asymptotic distribution of bootstrap estimator
0 , we investigate the distribution of \/ﬁ(évK — 5) contrast to the distribution of
V(6 — 6). Thus, the bootstrap is a device for estimating Pp (\/ﬁ(é\ - 0) <z)

by Pg, (\/ﬁ(f - 5) < z). We propose the delta method in estimating for such
distribution.

The delta method consists of using a Taylor expansion to approximate a
random vector of the form ¢(T},) by the polynomial ¢(8) + ¢'(0)(T;, — 0) + - - -
in T,, — 6. This method is useful to deduce the limit law of ¢(T},) — ¢(0) from
that of T;, — 6, which is guaranteed by the following theorem, as stated in [12].

Theorem 3. Let ¢ : Dy C RF — R™ be a map defined on a subset of R¥ and
differentiable at 0. Let T, be random vector taking their values in the domain of

o. If rp (T, — 0) —q T for numbers r, — oo, then ry, ((b(Tn) — ¢>(9)) —d ¢’:9(T)~
P (S(Th) — B(0)) — ¢y (rn (T — 9))‘ —, 0.

Moreover,

Assume that §n is a statistic, and that ¢ is a given differentiable map. The
bootstrap estimator for the distribution of ¢(6,, — ¢(0) is ¢ (07 — ¢(6,,). If the
bootstrap is consistent for estimating the distribution of \/n(8,, — ), then it is
also consistent for estimating the distribution of \/ﬁ(gb(an) — ¢(0)), as given in
the following theorem. The theorem is due to [12].

Theorem 4 (Delta Method For Bootstrap). Let ¢ : R¥ — R™ be a mea-
surable map defined and continuously differentiable in a neighborhood of 6. Let
0,, be random vector taking their values in the domain of ¢ that converge almost
surely to 0. If \/ﬁ(en — 9) —q T, and \/ﬁ(ﬂn — Gn) —q T conditionally almost
surely, then both v/ (¢(0,,)—$(0)) —a ¢(T) and /n($(0;)—d(0n)) —a ¢o(T)

conditionally almost surely.

4 Main Result

We now address our main result, which is summarized in the following theorem.

Theorem 5. Let 0 = (51, 52, e ,§p)T be the estimator of @ = (01, Oa,..., 0p)T
of the stationary AR(p) process, and 6 — (A{,é\;, .. .,é\;)T would be the boot-
strap version of 6. The sequence of random variables \/ﬁ(é* - é) converges in
distribution to the mormal distribution with mean 0 and covariance matriz as

defined in (11).
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Proof. The model of an AR(p) process is:

Xe =01 X4 1+ 02X o+ +0,Xy_p + ¢4 (5)
The Yule-Walker equation for (5) as follows:

01 Yoo Xe Xy
N n

- 02 Et:?) XtXt—2

M|l = ) ,
é\p Z?:de XtXt—p

with
Z?:l Xt2 Z?:g XiXp1 oo ;”:p X Xt pt1
M Zt:2 X X1 Zt:l th T Zt:p_l XXy pyo
Z?:p XiXipi1 Z?:p,1 Xi—pt2 - 2?21 X2

From the Yule-Walker equation, by applying the moment method we obtain

@ Doy Xi X1
) - S X Xi—o
7l (6)

ép E;ngﬂ»l Xy Xi—p
From (6), the vector of estimator 0= (é\l, 52, e é\p)T can be expressed as a

measurable function ¢ = (¢1, ¢, ..., ¢,)" : RP*1 — RP, with

0; E@(ZXE,Z)QXH,..., > Xtti)
t=1 t=2

t=p+1

For each function ¢; : RP*! — R, i = 1,2,...,p can be described from the
system (6) and be written as ¢; = ¢;(u1, us, ..., upt+1). The function ¢; is dif-
ferentiable and its derivative matrix is

¢/ _ ([ O¢i O¢i . . _O¢i
i — \ Ouy Ous Oupy1 ) °
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By using Theorem 3, we obtain

Vi(6(E T X2 AL X X0) = 005 01 2x(0)

V(L S, X7 —x(0)
ﬁ(% oo X1 Xy — ’YX(1)>

- ¢,(7x(0)-,'7x(1)7~--77x(p)) : +0p(1)
V(S XeepXe = 1x (7))
, a(1S X2 — 45 (0 )
¢}<7x<o>,m1> ,,,,, vx () fl(" ;t—l i~ x(0)
Pa(x (075 (1) 7x () \/ﬁ(; 2imo X1 X — vx(l))
= . . +0p(1)

/ . :
o @x ex o))\ (L0, 4 XepXe = 7x »))

All A12 - Al(erl) \/ﬁ(n Zt:l t ’YX( ))
A21 A22 . A2(p+1) \/’ﬁ(% Z?:Q thlXt — ’yx(l))
: : : . . + OP(1)7

App Apo ... A n .
pl Ap2 p(p+1) \/ﬁ(%zt:pHthpXt—’YX(P))

where A;;,7 = 1,2,...,p,j = 1,2,...,p + 1 are the constants depend on
vx(0),vx(1),...,vx(p). Precisely, for every i = 1,2,...,p, it holds

_ 9¢i

Ay =
J 8Uj

, j=12....p+ 1 (7)
(vx(0),7x (1),...,7x (P))

According Theorem?2, the limiting distribution for (% S X7

T
1 n 1 n .
IS XX A X Xy) s

ST 7x(0)
LN X X 1
m t=2 2tAt—1 ’YX( )
NG ' . —~ .

% Z?:p+1 Xi Xy p vx (p)

0 Voo Vo1 - Vop

0 VioVig-—Vip
—d Npt1 I
0 Voo Vi -+ Vi

) s



18 B. Suprihatin et al.

By Theorem 3, if (Z1, Za, ..., Zp+1)T having multivariate normal distribution as

n (8), then
15 X2
A Arz - Ay \/ﬁ( 211 )
Agy Ao ... Ag(pyny \f( D 2Xt 1 Xy —yx (1 )

Ay Ap ... A n
pl Ap2 p(p+1) ﬁ(% diepi1 Xt,pXt — VX (p))

A Arg o Ay Z1
Ag1 Aga oo Ag(py Za
—d . .o . .
Ap1 Apz ... Ap(p+1) Zp+1
0 T12 T12 * " Tip
0 91 722 c Top
~ Np ) . 5
0 2
Tpl TPQ e Tp
with
Tz'2 = VaT(AﬂZl + A Zy+ -+ A i(p+1) p+1)
p+1
= ZA2 Var(Z Z AipAijCov(Zy, Zj)
1<k<j<p+1
p+1
= ZA —1,j—1+2 Z AikAijVie—1,j—1
1<k<j<p+1

Tik = COU(Ai1Z1 +o A A1) Zpr1, Ak Zy A A A1) Zpa1)s

for every ¢ # k, i,k = 1,2,...,p. Thus, according Theorem 3 can be concluded

that
Vi (6-0) =ﬁ<¢(ZX3,..., > X Xa) —¢(7X(0),---,7x(p)))
t=1 t=p+1
0 T12 T12 " " * Tlp
0 91 722 cTop
—d Np ’
0 Tpl Tp2 'rg

Furthermore, analog with the asymptotic distribution for the random vector

vn (5 - 9) , we do the same for the random vector /n (5* - 5), with @ is the

bootstrap version of 0. Let T(Xy,Xs,...,X,; F) be a statistic. Let F, be the
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emphirical distribution function of X7, Xs,..., X, i.e. the distribution taking
probability of 1/n for each X1, Xs,...,X,. Bootstrap sample X7, X5,..., X
can be obtained by using the residuals bootstrap. The function T is defined as
the random variable

~

T(leXQa"'vXn;F) = \/77,(070),

with = (51, 05, ... ﬁp)T is the estimator for the coefficient @ of AR(p) model.
The bootstrap version of T is

T(X{, X5, X5 By) = /(@ —8),

with @ is the bootstrap version of 6 which is computed using bootstrap sam-
ple X7, X5, ..., X} Bootstrap method is a tool for estimating the distribution
Pr (\/77(9z —6;) < x) using distribution Pz (\/5(9;‘ — Qi) < x)

The stationary of an autoregressive process {X;} infer that X; can be
expressed as linear process and the residuals bootstrap yielding the sequence of
i.i.d. {e;}, hence the Theorem 2 can be applied. According Theorem 2, the multi-

T
variate central limit of (% S X Y XX e X;“Xtip)
is

Ei X 7x(0)
i I, X:X;l B vX.<1>
Iy XX, Fx (p)
0\ /Vio Vir - Vi,
VI I I R
—d Np-‘rl 1) . . . . (9)

* * *
0 VP,O Vp,l o

" Vpp

By applying the plug-in principle on the estimator 5, we obtain the bootstrap
~% ~% ~ o~ ~\T

estimator @ . As in the previous process, the estimator 8 = ( 1,605,... ,0;‘,)
can be expressed as a measurable functional ¢ = (¢1, ¢2,. .., gbp)T :RPtL - RP.

Each component of estimator 5;‘,1‘ =1,2,...,p can be expressed as a measurable
function ¢; : RPT! — R,

o :¢i(ZXt*2,ZX;‘X§_1,..., > X;‘Xt*_p>.
t=1 t=2

t=p+1
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The function ¢; for every i = 1,2,...,p can be determined from the system (6)
and be written as ¢; = ¢;(u1,u2, . .., upt+1). The function ¢; is differentiable and
its derivative matrix is

1 _ (00 9¢i . _0¢i
(bi - (81/,1 Ouz Oup41 ) .
By applying Theorems 3 and 4, we obtain

NI I wB I v X:_pX;) B3x(0).... 3x(0))

ﬁ(l Z? 1 *—9x(0
, vty 2 i 1X
= PEx (07x (V). x (1) _ +op(1
\/7( Zt p+1
, X2* I )
2}@(0),%{(1) ,,,,, 7x(v)) \F\?(ZE ! 7l o)
e X7, X7 —Ax (1)
_ 2(7x(0)7vx.(1)7~-7vx(p)) t=2—1 +0,(1)

/
Pp(Ex (0) Ax (1) 7x (1) Vi(E X, X;;pxt* ~Ax ()

1 n X2* _ A 0 )
By By ... Bigpen) ﬁ(nthl ¢ =)
Bt Byz o Baeny | | V(2 S0 Xia X7 = 3x (D)
= . oo . . + Op(l)v
By Bys ... B vy oy &
p1 Bp2 p(p+1) ﬁ(% S X X — ’Vx(p)>
where B, 1 = 1,2,...,p,7 = 1,2,...,p + 1 are constants depend on
Fx(0),7x(1),...,9x(p). More precisely, for every i =1,2,...,p,
09, .
szzad) P ]:13233p+1 (10)
Ui 1Ax (0), 3% (1), 3% (9))
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If (Wi, Wa,...,W,1)T having multivariate normal distribution as in (9),
then by Theorem 4, we obtain

Ly )
Bi1 Bia ... Bipy1) \/ﬁ( 2t —x(
Ba1 Bog ... Bapy f( Do X Xy — (1))

By,1 Bys ... B n '* F -7
pl Zp2 p(p+1) \/ﬁ(%Zt:p+1thpXt_7X(p)>

Bi1 Big ... Bipy Wi
By B ... B2(p+1) Wa
—d . o . .
Bp1 Bpa .. Bppy1) Wpt1
0\ (7T
0 TS Ty T
~ Np 5 .p ) (11)
0 T T2 T

where

=Var(BuWi + BiaWa + -+ + Bipy1) Wpi1)

p+1
= ZBQ Var(W)+2 > BixBijCou(Wi, W;)
1<k<j<p+1
p+1
- 232 Vi, a+2 Y. BuBiVii;
1<k<j<p+1

Tip = COU( aWi 4 4 Bipr1)Bpy1, BaWi + - - - 4+ Bipy1) Wps1),

for every i # k, i,k =1,2,...,p. Hence, by Theorem 4 we conclude that

ﬁ(a*_ﬁ) =\/ﬁ(q§(zn:Xt2*,..., znj X;,pX:) —¢(ﬁx(0),...ﬁx(p>))

t=p+1
2% *
0 Ti 7'%2 T
*
0 Top T3™ =+ Top*
—d Np . 9 . . . . 9
* * 2%
0 To1 Tp2 T

completing the proof.

5 Conclusions

We conclude that the bootstrap parameter estimators of the AR(p) model are
asymptotic and converge in distribution to the p—variate normal distribution.



22

B. Suprihatin et al.

References

10.

11.

12.

13.

. Bibi, A., Aknounche, A.: Yule-Walker type estimators in periodic bilinear model:

strong consistency and asymptotic normality. J. Stat. Methods Appl. 19, 1-30
(2010)

. Bose, A.: Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16,

1709-1722 (1988)

. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New

York (1991)

. Brouste, A., Cai, C., Kleptsyna, M.: Asymptotic properties of the MLE for the

autoregressive process coefficients under stationary Gaussian noise. Math. Methods
Statist. 23, 103-115 (2014)

. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall,

New York (1993)

. Freedman, D.A.: On bootstrapping two-stage least-squares estimates in stationary

linear models. Ann. Statist. 12, 827-842 (1984)

. Hardle, W., Horowitz, J., Kreiss, J.P.: Bootstrap methods for time series. Int. Stat.

Rev. 71, 435-459 (2003)

. Politis, D.N.: The impact of bootstrap methods on time series analysis. Stat. Sci.

18, 219-230 (2003)

. Sahinler, S., Topuz, D.: Bootstrap and jackknife resampling algorithms for estima-

tion of regression parameters. J. Appl. Quant. Methods 2, 188-199 (2007)

Singh, K.: On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9, 1187—
1195 (1981)

Suprihatin, B., Guritno, S., Haryatmi, S.: Asymptotic distribution of the bootstrap
parameter estimator for AR(1) process. Model Assist. Statist. Appl. 10, 53-61
(2015)

Van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cam-
bridge (2000)

Van der Vaart, A.W.: Lecture Notes on Time Series. Vrije Universiteit, Amsterdam
(2012)



	Asymtotic Distribution of the Bootstrap Parameter Estimator for the AR(p) Model
	1 Introduction
	2 Estimator of Mean and Autocovariance for the Autoregressive Model
	3 Bootstrap and Delta Method
	4 Main Result
	5 Conclusions
	References




