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Abstract. Let  TtX t ,  be the first order of autoregressive model and let 

nttt XXX ,,,
21
  be the sample that satisfies such model, i.e. the sample follows the 

relation ttt XX   1  where  t  is a zero mean white noise process with constant 

variance 2 . Let ̂  be the estimator for parameter  . Brockwell and Davis (1991) 

showed that  pˆ  and    2,0ˆ  Nn d .  Meantime, Central Limit 

Theorem asserts that the distribution of  Xn  converges to Normal distribution 

with mean 0 and variance 2  as n . In bootstrap view, the key of bootstrap 

terminology says that the population is to the sample as the sample is to the bootstrap 

samples. Therefore, when we want to investigate the consistency of the bootstrap 

estimator for sample mean, we investigate the distribution of  XXn *  contrast to 

 Xn , where *X is bootstrap version of X  computed from sample bootstrap 
*X . Asymptotic theory of the bootstrap sample mean is useful to study the 

consistency for many other statistics. Let *̂  be the bootstrap estimator for ̂ .  In this 

paper we study the consistency of *̂  using delta Method. After all, we construct a 

measurable map mn :  such that   ˆˆ* n
 

= 

      GXXn
X

d  *  conditionally almost surely, by assuming that 

  GXXn d* , where G is a distribution. We also present the Monte Carlo 

simulations  in regard to yield apparent conclusions. 

 

Keywords: Bootstrap, consistency, autoregressive model, delta method, Monte Carlo 

simulations 

 

 

 

 

 

 

 

1. INTRODUCTION 
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Studying of estimation of the unknown parameter   involves: (1) what 

estimator ̂  should be used? (2) having choosen to use particular ̂ , is this estimator 

consistent to the population parameter  ?  (3) how accurate is ̂   as an estimator of  

true parameter  ? The bootstrap is a general methodology for answering the second 

and third questions. Consistency theory is needed to ensure that the estimator is 

consistent to the actual parameter as desired.  

Consider the parameter   is the population mean. The consistent estimator for 

  is the sample mean  


n

i iX
n

X
1

1
̂ . The consistency theory is then extended to 

the consistency of bootstrap estimator for mean.  According to the bootstrap 

terminology, if we want to investigate the consistency of bootstrap estimator for 

mean, we investigate the distribution of   Xn  and  XXn * .  The 

consistency of bootstrap under Kolmogorov metric is defined as  

      .sup * xXXnPxXnP
nFF

x

                            (1)     

Bickel and Freedman [1] and Singh [10] showed that (1) converges almost surely to 

0 as n . Meanwhile, Suprihatin, et.el  [12]  complete the results by giving nice 

ilustrations for this case. The consistecy of bootstrap for mean is a worthy tool for 

studying the consistency of other statistics. In this paper, we study the consistecy of 

bootstrap estimator for parameter of the AR(1) process. 

The consistency of bootstrap estimator for mean is then applied to study the 

consistency of bootstrap estmate for parameter of the AR(1) process using delta 

method. We describe the consistency of bootstrap estimates for mean and parameter 

of the AR(1) process.  Section 2 reviews the consistency of bootstrap estimate for 

mean under Kolmogorov metric. Section 3 deal with the consistency of bootstrap 

estimate for parameter of the AR(1) process using delta method. Section 4 discuss 

the results of Monte Carlo simulations involve bootstrap standard errors and density 

estmation for mean and parameter of the AR(1) process. Section 5, is the last section, 

briefly describes the conclusions of the paper. 

 

 

2. CONSISTENCY OF  BOOTSTRAP ESTIMATOR FOR MEAN 
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Let  nXXX ,,, 21   be a  random sample of size n from a population with 

common distribution F and let  FXXXT n;,,, 21   be the specified random variable 

or statistic of interest, possibly depending upon the unknown distribution F. Let nF  

denote the empirical distribution function of  nXXX ,,, 21  , i.e., the distribution 

putting probability 1/n at each of the points nXXX ,,, 21  . The bootstrap method is 

to approximate the distribution of   FXXXT n;,,, 21   under F by that of 

 nn FXXXT ;,,, **

2

*

1   under nF  whrere  **

2

*

1 ,,, nXXX   denotes a bootstrapping 

random sample of size n from nF .  

We start with definition of consistency. Let F and G  be two distribution functions 

on sample space X. Let  GF,  be a metric on the space of distribution on X. For 

nXXX ,,, 21    i.i.d from F, and a given functional  FXXXT n;,,, 21  , let  

  xFXXXTPxH nFn  ;,,,)( 21  , 

  xFXXXTPxH nnBoot  ;,,,)( **

2

*

1*  . 

We say that the bootstrap is consistent (strongly) under   for T if 

  ..0, saHH Bootn   

Let functional T is defined as     XnFXXXT n;,,, 21   where X  and   

are sample mean and population mean respectively. Bootstrap version of T  is 

   XXnFXXXT nn  ***

2

*

1 ;,,,  , where *X  is boostrapping sample mean. 

Bootstrap method is a device for estimating   xXnPF    by 

  xXXnP
nF * . We will investigate the consistency of bootstrap under 

Kolmogorov metric  which is  defined  as  

  )()(sup, xGxFGFK
x

  =       .sup * xXXnPxXnP
nFF

x

   

We state some theorems and lemma which are needed to show that 

  ..0, saHHK Bootn   taken from Hall [8], Serfling [9] and van der Vaart [13]. 
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Theorem 1 (KHINTCHINE-KOLMOGOROV CONVERGENCE THEOREM) 

Suppose ,, 21 XX are independent with mean 0 such that   n nXvar . Then, 

n nX  a.s., i.e.  


n

i in XS
1

 converges a.s. to 


1n nX . 

 

Kronecker Lemma Suppose  0na  and na . Then n nn aX  implies 

 


n

j nj aX
1

0 .    

Proof.  Set   


n

i iin aXb
1

 and .000  ba  Then,  bbn  and 

 .1 nnnn bbaX  Write  

          


n

j jjj

n

n

j j

n

bba
a

X
a 1 11

11
 =    


n

j jj

n

j jj

n

baba
a 1 11

1
 

                      =    






n

j jj

n

j jj

n

n baba
a

b
1 1

1

1

1
 =      

n

j jj

n

j jj

n

n baba
a

b
1 11 11

1
 

                      =      
n

j jjj

n

n aab
a

b
1 11

1
 .0  bb                                         □   

 

Theorem 2 (POLYA’S THEOREM)  If  FF d

n  , where F is a continuous 

distribution function, then     .0sup  nasxFxFn
x

  

 

Theorem 3 (BERRY-ESSEN)  Let nXXX ,,, 21   be i.i.d. with   ,1 XE  

  2

1 XVar , .
3

1  XEand  Then there exists a universal constant C, not 

depending on n or the distribution of the iX , such that  

 
  .sup

3

3

1

n

XEC
xx

Xn
P

x 





 


















 

 

Theorem 4 (ZYGMUND-MARCINKIEWICZ SLLN) Suppose ,,, 21 XXX  are 

i.i.d. and   pXE  for some 0 < p < 1. Then, 0
/1


p

n

n

S
 a.s. 
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Proof.  This is consequence of the corrolary following Theorem 1 and Kronecker 

lemma, as desired.                            □ 

 

      The consistency of BootH  under Kolmogorov metric have shown by Sigh [10] 

and DasGupta [4]. The crux result is that  XX *  a.s. For detail proof and nice 

simulations the reader could see Suprihatin, et.al [11].  

  

 

3. CONSISTENCY OF BOOTSTRAP ESTIMATE FOR PARAMETER OF 

AR(1) PROCESS USING DELTA METHOD 

 

The delta method consists of using a Taylor expansion to approximate a random 

vector of the form  nT  by the polynomial        nT  in nT . This 

method is useful to deduce the limit law of     nT  from that of nT . This 

method is also valid in bootstrap view, which is given in the following theorem. 

 

 

Theorem 5 (DELTA METHOD FOR BOOTSTRAP)  Let mk :  be a 

measurable map defined and continously differentiable in a neighborhood of  . Let 

n̂  be random vectors taking their values in the domain of   that converge almost 

surely to  . If   Tn d

n ̂  and   Tn d

n  ˆˆ*  conditionally almost 

surely, then both       Tn d

n  ˆ  and       Tn d

nn   ˆˆ*  

conditionally almost surely.   

  

Let   is the population mean, and then X  is the sample mean. The Kolmogorov  

SLLN asserts that X  a.s. and     2,0  NXn d . The resulting of 

Section 2 shows that    2* ,0 sNXXn d .  Based on the consistency of the 

bootstrap for the sample mean we investigate the consistency of the bootstrap 

estimate for parameter of AR(1) process using delta method.   
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Let },,2,1,{ ntX t    be time series data which satisfies  the AR (1) process, i.e. 

if },,2,1,{ ntX t   follows the equaiton ttt XX   1   where }{ t  be random 

variable sequence of white noise ~ iid  2,0 N . Assume },,2,1,{ ntX t   be 

stationary Gaussian. The process is stationary if 1 . The comprehensive 

discussions for time series can be found in  Wei [14] and  Brockwell and Davis [3]. 

      For the AR(1) process, from Yule-Walker equation we obtain the estimate for   

is 1
ˆˆ    where 1̂  be the lag 1 sample  autocorrelation  







 


n

t t

n

t tt

X

XX

1

2

2 1

1̂ .                                                       (2) 

According to Wei [14] and Brockwell and Davis [3], the estimate of standard error of 

parameter   is  𝑠𝑒  𝜃 = 
n

2ˆ1 
.  Meanwhile, the bootstrap version of standard 

error can be computed as follows.  

1. We choose  B independent bootstrap samples BXXX *2*1* ,,,  , each of size 

n obtained by random sampling with replacement from the original sample X. 

2. We evaluate the bootstrap replication corresponding to each bootstrap sample 

  .,,2,1,)(ˆ ** BbXtb b   

3. Standard error  ̂Fse  is estimated by the sample standard deviation of the B 

replications 

 

𝑠𝑒  = 

 
2/1

1

2
**

1

)(ˆ)(ˆ
























B

b
B

b



, 

    where 
B

b
B

b  1

*

*
)(ˆ

)(ˆ


 .  

In Section 4 we demonstrate results of Monte Carlo simulations consist the two of 

standard errors and give brief comments. From (2) we can see that 

         
 







  


n

t t

n

t ttt

X

XX

1

2

2 11

1
ˆ
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n

t t

n

t tt

n

t t

X

XX

1

2

2 12

2

1 
 

 






 



  


n

t t

n

t tt

n

t nt

X

XXX

1

2

2 1

1

2

22

1 
 







 



n

t t

n

t ttn

n

t t

X
n

X
n

X
n

X
n

1

2

2 1

2

1

2

1

1




 

 

Brockwell and Davis [3] have shown that 1̂  is consistent estimator of  true 

parameter 1  .  Kolmogorov SLLN asserts that  tt

san

t tt XEX
n

 1

.

2 1

1
   . 

Since 1tX  is independent of t , then  ttXE 1  = 0. Hence,  0
1 .

2 1   

san

t ttX
n

 . 

Finally, (2) is approximated by .~
2

22

1

X

X
n

X n







  Thus, for n  we obtain 

1
~ˆ   . We see that 1

~  equals to  2X  for the measurable  map  
x

X
n

x
x

n

2





 . 

Meantime, the bootstrap version of  ̂ , denoted by *̂  can be obtained as follows 

(see, e.g.  Efron dan Tibshirani [6] and Bose [2]): 

1. Define the residuals 1
ˆˆ

 ttt XX   for .,,3,2 nt    

2. A bootstrap sample 
**

2

*

1 ,,, nXXX   is created by sampling 
**

3

*

2 ,,, n 
 
 with 

replacement from the residuals. Letting 1

*

1 XX   as an initial bootstrap 

sample dan **

1

* ˆ
ttt XX    , nt ,,3,2  . 

3. Finally, after centering the bootstrap time series 
**

2

*

1 ,,, nXXX   i.e. 
*

iX  is 

replaced by 
** XX i   where  


n

t tX
n

X
1

** 1
. Using the plug-in principle, we 
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obtain the bootstrap estimator  *

1

* ˆˆ  







 


n

t t

n

t tt

X

XX

1

2*

2

**

1
 computed from the 

sample **

2

*

1 ,,, nXXX   .  

 

Analog with the previous discussion, we obtain the bootstrap version for 

counterpart of  1
~ , that is measurable map  .~

2*

2*2*

*

1

X

X
n

X n







   Thus, according to 

Theorem 5 we conclude that *

1
~  converges to 1

~  conditionally almost surely. 

Furthermore,   Tn d 1

*

1
~~   and for n  we obtain   Tn d 1

*

1
ˆˆ   

where T is a normal distribution with zero mean and variance 2

24    with 2  and 

4  are second and fourth moments repectively. 

 

4. RESULTS OF MONTE CARLO SIMULATIONS 

 

The simulation is conducted using S-Pus and the sample is the 20 time series 

data of  exchange rate of US dollar compared to Indonesian rupiah. Data is taken 

from authorized website of  Bank Indonesia, i.e. http://www.bi.go.id and presented in 

Table 1 below. 

 

 Table 1  Exchange Rate of US Dollar compared to Indonesian Rupiah for January 

2008 to August 2009 

 
Month(Year) Jan(08) Feb(08) Mar(08) Apr(08) Mayi(08) Jun(08) Jul(08) 

Rate 9417 9269 9153 9245 9278 9357 9261 

Month(Year) Aug(08) Sep(08) Oct(08) Nov(08) Des(08) Jan(09) Feb(09) 

Rate 9126 9209 9603 10854 12285 11005 11759 

Month(Year) Mar(09) Apr(09) May(09) Jun(09) Jul(09) Aug(09) NA 

Rate 12083 11678 10708 10314 10306 9939 NA 

 

   

Suprihatin, et. al. [12] has identified that the time series data satisfies the AR(1) 

procces, such that the data follows the equation 

http://www.bi.go.id/
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,20,,3,2,1   tXX ttt   

where t ~ i.i.d.  2,0 N . The simulation yields the estimator for parameter   is ̂  

=  -0,448 with standard error 0,1999.  To produce a good approximation, Efron and 

Tibshirani [6] and Davison and Hinkley [5] suggest to use resamples at least 50. 

Bootstrap version of standard errror using bootstrap samples of size B = 25, 50, 100, 

200, 500 and 1000 yielding as presented in Table 2. 

 

Table 2  Estimates for Standard Errors of *̂  for Various B  

 
B 

25 50 100 200 500 1000 

 *
ˆ ̂F

se  0,2003 0,1971 0,1957 0,1928 0,1912 1,1904 

 

      From Table 2 we can see that the values of bootstrap standard errors decrease in 

term of size of B increase and closed to the value of  0,1999 (actual standard error). 

These results show that the bootstrap gives a good estimate. Meantime, the histogram 

and density estimate of *̂  are presented in Figure 1. From Figure 1 we can see that 

the resulting histogram close related to the normal density. Of course, this result 

agree to the result of Freedman [7] and Bose [2]. 
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Figure 1  Histogram and Density Estimate of Bootstrap Estimator *̂  
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5. CONCLUSIONS 

 

A number of points arise from the study of Section 2, 3, and 4, amongst which 

we state as follows. 

1. Since  X  a.s. and XX *  a.s., according to the bootstrap terminology, 

we conclude that *X  is a consistent estimator for  . 

2. Consider an AR(1) process ttt XX   1  with Yule-Walker estimator ̂  = 

1̂  is a consistent estimator for  true parameter 1  .  By using the delta 

method we have shown that *

1
~  is also a consistent estimator for 1

~   where 

1
~ˆ     for n . Moreover, we obtain that   Tn d 1

*

1
~~   and for 

n  the crux result is that   Tn d 1

*

1
ˆˆ   where T is a normal 

distribution. 

3. Resulting of Monte Carlo simulations show that the bootstrap estimators are 

good approximations, as represented by their standard errors and plot of 

densities estimation. 
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