BIES Q7ER @Le Vi (€L M\UQ /

S S 4 TS e TS T4 ,...\»LL

VW‘% Institute of
§ Mathematical Statistics

thWorld Congressin
Probability and Statistics

july 09-14, 2012
Grand Cevahir Hotel Convention Center, Istanbul - Turkey

Bambang SUPRIHATIN

Has attented the 8. World Congress in Probability and Statistics,
9-14 July 2012- Grand Cevahir Hotel, Istanbul.

=

A

Elvan Ceyhan Mine Caglar
Co-chair of Local Organizing Commilttee Co-chair of Local Organizing Committee
Koc University- Turkey Koc University- Turkey




Delta Method for Deriving the Consistency of Bootstrap Estimator
for Parameter of Autoregressive Model

Bambang Suprihatin, Suryo Guritno, and Sri Haryatmi

Mathematics Department, FMIPA Sriwijaya University
E-mail: bambangs@unsri.ac.id

Abstract. Let {X,,teT} be the first order of autoregressive model and let
Xy Xy,0-- X, be the sample that satisfies such model, i.e. the sample follows the
relation X, =6X, , +&, where {g } is a zero mean white noise process with constant
variance . Let 6 be the estimator for parameter @ . Brockwell and Davis (1991)
showed that é—>p 0 and Jﬁ(@—@)—)d N(O, 02). Meantime, Central Limit
Theorem asserts that the distribution of \/ﬁ()f—,u) converges to Normal distribution

with mean 0 and variance o as n—oo. In bootstrap view, the key of bootstrap
terminology says that the population is to the sample as the sample is to the bootstrap
samples. Therefore, when we want to investigate the consistency of the bootstrap

estimator for sample mean, we investigate the distribution of v/n ()7 —X ) contrast to
Jn ()7 — ,u), where X is bootstrap version of X computed from sample bootstrap
X". Asymptotic theory of the bootstrap sample mean is useful to study the
consistency for many other statistics. Let " be the bootstrap estimator for 6. In this
paper we study the consistency of §" using delta Method. After all, we construct a
measurable map ¢ R —>R" such that Jn (é* —é) =
\/ﬁ(¢(>T*)—¢()T))L>¢;(G) conditionally almost surely, by assuming that
x/ﬁ(i*—)?)%G, where G is a distribution. We also present the Monte Carlo
simulations in regard to yield apparent conclusions.

Keywords: Bootstrap, consistency, autoregressive model, delta method, Monte Carlo
simulations

1. INTRODUCTION
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Studying of estimation of the unknown parameter ¢ involves: (1) what
estimator @ should be used? (2) having choosen to use particular 9 , is this estimator

consistent to the population parameter ¢ ? (3) how accurate is 6 as an estimator of
true parameter @ ? The bootstrap is a general methodology for answering the second
and third questions. Consistency theory is needed to ensure that the estimator is
consistent to the actual parameter as desired.

Consider the parameter € is the population mean. The consistent estimator for
. ~ o 1 . .
6 is the sample mean =X = —z_” . X; - The consistency theory is then extended to
n <=

the consistency of bootstrap estimator for mean. According to the bootstrap

terminology, if we want to investigate the consistency of bootstrap estimator for
mean, we investigate the distribution of n(X—x) and Jn(X*-X). The

consistency of bootstrap under Kolmogorov metric is defined as
sup‘PF (\/ﬁ()?—y)s x)— P- (\/ﬁ()f*—)f)s x)‘ (1)

Bickel and Freedman [1] and Singh [10] showed that (1) converges almost surely to
0 as n— . Meanwhile, Suprihatin, et.el [12] complete the results by giving nice
ilustrations for this case. The consistecy of bootstrap for mean is a worthy tool for
studying the consistency of other statistics. In this paper, we study the consistecy of
bootstrap estimator for parameter of the AR(1) process.

The consistency of bootstrap estimator for mean is then applied to study the
consistency of bootstrap estmate for parameter of the AR(1) process using delta
method. We describe the consistency of bootstrap estimates for mean and parameter
of the AR(1) process. Section 2 reviews the consistency of bootstrap estimate for
mean under Kolmogorov metric. Section 3 deal with the consistency of bootstrap
estimate for parameter of the AR(1) process using delta method. Section 4 discuss
the results of Monte Carlo simulations involve bootstrap standard errors and density
estmation for mean and parameter of the AR(1) process. Section 5, is the last section,

briefly describes the conclusions of the paper.

2. CONSISTENCY OF BOOTSTRAP ESTIMATOR FOR MEAN
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Let (X, X,,...,X,) be a random sample of size n from a population with
common distribution F and let T(X,, X,,..., X, ;F) be the specified random variable
or statistic of interest, possibly depending upon the unknown distribution F. Let F,
denote the empirical distribution function of (X,,X,,...,X,), i.e., the distribution
putting probability 1/n at each of the points X,, X,,..., X, . The bootstrap method is
to approximate the distribution of  T(X,,X,,...,X;F) under F by that of
T(Xf,x; Xn,Fn) under F, whrere (XI,X;,...,X;) denotes a bootstrapping
random sample of size n from F,.

We start with definition of consistency. Let F and G be two distribution functions

on sample space X. Let p(F,G) be a metric on the space of distribution on X. For

Xy, X,,..., X i.i.d from F, and a given functional T(X,, X,,...,X,;F), let

n

H, (x) = P-(T(X,, X,,..., X,;F)< x),

Heoo(¥) = PAT (X, X5, X F, )< X).
We say that the bootstrap is consistent (strongly) under p for T if
p(H H,. . )—0 as.

Let functional T is defined as T(X,, X,,..., X,; F):\/ﬁ()?—,u) where X and u
are sample mean and population mean respectively. Bootstrap version of T s
T(x;,x;, Xn,Fn) \/H(Y*—Y), where X~ is boostrapping sample mean.
Bootstrap method is a device for estimating PF(\/H(X—,u)S x) by

PFH(\/F(T—)?)s x). We will investigate the consistency of bootstrap under

Kolmogorov metric which is defined as
K(F,G) sup|F(x) G(x)| = sup‘P( X — p1)< x) P. (\/ﬁ(i*—i)s x)‘

We state some theorems and lemma which are needed to show that

K(H,,Hg,,)—0 as. taken from Hall [8], Serfling [9] and van der Vaart [13].
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Theorem 1 (KHINTCHINE-KOLMOGOROV CONVERGENCE THEOREM)

Suppose X;, X,,...are independent with mean 0 such that ) var(X,)<oo. Then,

. n *
Zﬂ X,<o as,le S = Zizlxi convergesas.to » X, .

Kronecker Lemma Suppose a,>0 and a, Too. Then an/an <oo implies
2. X /a,—>0.
Proof. ~ Set b =Y X/a and a=b,=0. Then, b —b <o and

=a (b, —b,_,) Write

1 on 1 1
a_n ,—1X a, Z—l Jb b—l (Z—l J 1anJ—1)
_b+_(z_11 _1111) b+_(2111111 1a1b11)
= b, ——Z] b,.(a;-a;,) »b,~b, =0. O

Theorem 2 (POLYA’S THEOREM) If F —%>F, where F is a continuous

distribution function, then sup| F, (x)— F(x)| — 0 asn — oo,

Theorem 3 (BERRY-ESSEN) Let X,,X,,...,X, be iid. with E(X,)= g,

Var(X,)=o?, and E|X,—u[’ <. Then there exists a universal constant C, not
depending on n or the distribution of the X, , such that

F{M < XJ _o(x) <

(o3

C-EX, - uf
_3—\/—

sup
X

Theorem 4 (ZYGMUND-MARCINKIEWICZ SLLN) Suppose X, X,, X,,... are

i.i.d. and EQX | p)< o for some 0 < p < 1. Then, % —0 a.s.
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Proof. This is consequence of the corrolary following Theorem 1 and Kronecker

lemma, as desired. O

The consistency of Hg,,, under Kolmogorov metric have shown by Sigh [10]

and DasGupta [4]. The crux result is that X~ — X a.s. For detail proof and nice

simulations the reader could see Suprihatin, et.al [11].

3. CONSISTENCY OF BOOTSTRAP ESTIMATE FOR PARAMETER OF
AR(1) PROCESS USING DELTA METHOD

The delta method consists of using a Taylor expansion to approximate a random
vector of the form ¢(T,) by the polynomial ¢(8)+#'(@)T, —6)+--- in T, — 6. This
method is useful to deduce the limit law of @(T,)—¢(@) from that of T, —@. This

method is also valid in bootstrap view, which is given in the following theorem.

Theorem 5 (DELTA METHOD FOR BOOTSTRAP) Let ¢:9R* >R"™ be a
measurable map defined and continously differentiable in a neighborhood of 6. Let

én be random vectors taking their values in the domain of ¢ that converge almost
surely to 6. If \/ﬁ(én—e)%T and \/ﬁ(é:—é)—dﬁ conditionally almost
surely, then both \/ﬁ(gi(én)—gs(@))%gzs;(T) and \/ﬁ(qi(é,f)—qﬁ(én))%yﬁ;(ﬂ

conditionally almost surely.

Let u is the population mean, and then X is the sample mean. The Kolmogorov
SLLN asserts that X — x a.s. and \/ﬁ(i—y)—‘UN(o,az). The resulting of

Section 2 shows that +/n(X"— X )—_>N(0,s?). Based on the consistency of the

bootstrap for the sample mean we investigate the consistency of the bootstrap

estimate for parameter of AR(1) process using delta method.
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Let {X,,t=12,...,n} be time series data which satisfies the AR (1) process, i.e.
if {X,,t=12,...,n} follows the equaiton X,=6X,,+¢&, where {¢} be random
variable sequence of white noise ~ iid N(O,az). Assume {X,,t=12,...,n} be
stationary Gaussian. The process is stationary if |49|<1. The comprehensive

discussions for time series can be found in Wei [14] and Brockwell and Davis [3].

For the AR(1) process, from Yule-Walker equation we obtain the estimate for 6

is 0= 0, Where p, be the lag 1 sample autocorrelation

aA Z:=2xt—lxt
P1 T o2
Zt:lxt

According to Wei [14] and Brockwell and Davis [3], the estimate of standard error of

(2)

2
parameter 6 is se(8) = 1-6 .

Meanwhile, the bootstrap version of standard

error can be computed as follows.
1. We choose B independent bootstrap samples X ™, X™,..., X™®, each of size
n obtained by random sampling with replacement from the original sample X.
2. We evaluate the bootstrap replication corresponding to each bootstrap sample
6" (b)=t(x") b=12...B.
3. Standard error se- (6) is estimated by the sample standard deviation of the B

replications

- [Yle-eor
se= |+t :
B-1

B Nk
a 6 (b
where 6 () = % .

In Section 4 we demonstrate results of Monte Carlo simulations consist the two of

standard errors and give brief comments. From (2) we can see that

5, = 21:2 Xt—l(ext—l + gt)

1 Z::l th
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- 92:2 Xia+ 21:2 X186
Zr:l th

_olxe - x2S s
Z::lth
0 <n 2, 1 <
i HZ:le - X? +HZ=2 X, &

1<n
HZ:lxtz

Brockwell and Davis [3] have shown that p, is consistent estimator of true

parameter €= p,. Kolmogorov SLLN asserts that EZizthlgtL>E(thlgt).
o 2

Since X, is independent of ¢, then E(X, &) = 0. Hence, 1Z:_th_lgth.
o 2

>z 0

ox? - x2
Finally, (2) is approximated by ,51:T2n. Thus, for n—oo we obtain
X
R _ ox-2 X2
0 — p,. We see that p, equals to ¢(x2) for the measurable map ¢(x)=—"1—.
X

Meantime, the bootstrap version of @, denoted by & can be obtained as follows
(see, e.g. Efron dan Tibshirani [6] and Bose [2]):

1. Define the residuals & = X, —0X,_, for t=2,3,...,n.

2. A bootstrap sample X;, X,,..., X is created by sampling &,,,,...,&, Wwith

n
replacement from the residuals. Letting X, =X, as an initial bootstrap
sampledan X =6X , +& ,t=2,3...,n.

3. Finally, after centering the bootstrap time series X,,X;,..., X, i.e. X; is

n

replaced by X; — X~ where X~ :%Z:_le. Using the plug-in principle, we
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n * *
A o X4 X
obtain the bootstrap estimator 6" = p; =% computed from the
X
-1t

sample X;,X;,..., X, .

Analog with the previous discussion, we obtain the bootstrap version for

ox” -2 x:

counterpart of p,, that is measurable map p, =———1——. Thus, according to

*.

X

Theorem 5 we conclude that p, converges to p, conditionally almost surely.

Furthermore, vn(3; — 5,)—=—>T and for n—co we obtain +/n(p; — p,)—>T
where T is a normal distribution with zero mean and variance o, —a; with «, and

«a, are second and fourth moments repectively.

4. RESULTS OF MONTE CARLO SIMULATIONS

The simulation is conducted using S-Pus and the sample is the 20 time series
data of exchange rate of US dollar compared to Indonesian rupiah. Data is taken
from authorized website of Bank Indonesia, i.e. http://www.bi.go.id and presented in
Table 1 below.

Table 1 Exchange Rate of US Dollar compared to Indonesian Rupiah for January

2008 to August 2009
Month(Year) | Jan(08) Feb(08) | Mar(08) Apr(08) Mayi(08) Jun(08) Jul(08)
Rate 9417 9269 9153 9245 9278 9357 9261
Month(Year) | Aug(08) | Sep(08) Oct(08) Nov(08) Des(08) Jan(09) Feb(09)
Rate 9126 9209 9603 10854 12285 11005 11759
Month(Year) | Mar(09) | Apr(09) | May(09) Jun(09) Jul(09) Aug(09) NA
Rate 12083 11678 10708 10314 10306 9939 NA

Suprihatin, et. al. [12] has identified that the time series data satisfies the AR(1)

procces, such that the data follows the equation
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X=X, +¢&,1=23,...,20,
where &, ~ i.i.d. N(O, 0'2). The simulation yields the estimator for parameter @ is 6

= -0,448 with standard error 0,1999. To produce a good approximation, Efron and
Tibshirani [6] and Davison and Hinkley [5] suggest to use resamples at least 50.
Bootstrap version of standard errror using bootstrap samples of size B = 25, 50, 100,
200, 500 and 1000 yielding as presented in Table 2.

Table 2 Estimates for Standard Errors of " for Various B

B

25

50

100

200

500

1000

A

se. (49

)

0,2003

0,1971

0,1957

0,1928

0,1912

1,1904

From Table 2 we can see that the values of bootstrap standard errors decrease in
term of size of B increase and closed to the value of 0,1999 (actual standard error).

These results show that the bootstrap gives a good estimate. Meantime, the histogram

and density estimate of @" are presented in Figure 1. From Figure 1 we can see that
the resulting histogram close related to the normal density. Of course, this result

agree to the result of Freedman [7] and Bose [2].
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Figure 1 Histogram and Density Estimate of Bootstrap Estimator 6"
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5. CONCLUSIONS

A number of points arise from the study of Section 2, 3, and 4, amongst which

we state as follows.
1. Since X — ux as.and X — X a.s., according to the bootstrap terminology,
we conclude that X~ is a consistent estimator for .
2. Consider an AR(1) process X, = &X,_, +&, with Yule-Walker estimator 6 =
0, 1s a consistent estimator for true parameter 6= p,. By using the delta
method we have shown that p, is also a consistent estimator for 5, where
6 — p, for n—oo. Moreover, we obtain that \/ﬁ(ﬁl —51)—d>T and for

n—oo the crux result is that n(p; —p,)—%—>T where T is a normal

distribution.
3. Resulting of Monte Carlo simulations show that the bootstrap estimators are
good approximations, as represented by their standard errors and plot of

densities estimation.
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