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Abstract.  Given  sample  nXXXX ,,, 21   of size n from an unknown distribution F. 

If all elements of X are distinct, then the number of different possible resamples *X  

with replacement equals 
nn . In general, this number obvious very large in amount. For 

n = 10, think of the number 
1010 , which is an enormous number.   Let 

 **

2

*

1

* ,,,ˆ
nXXXt   be the estimate value of statistic computed from *X , where t  is 

functional. In most cases of practical interest, each distinct *X  (without regard for 

order), gives rise to a distinct *̂ .  Accordingly, we concern only on so-called atoms of 

nonparametric bootstrap.  The number of atoms is far less than .nn  Based on these 

atoms, the nonparametric bootstrap used to estimate a statistic computed from X. This 

paper presents how to find the number of atoms. The implementation of the uses of 

atoms is applied in bootstrapping bias estimate of sample median. Bootstrap version of 

standar error as a measure of accuracy of estimator is considered, as well. The main 

purpose of this paper is to construct a confidence interval for median.  Results from 

Monte Carlo simulation for these cases are also presented. 
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1. INTRODUCTION 

 

A typical problem in applied statistics involves the estimation of the unknown 

parameter  . The two main questions asked are: (1) what estimator ̂  should be used 

or choosen? (2) Having choosen to use particular ̂ , how accurate is it as an estimator 

of   ? The bootstrap is a general methodology for answering the second question. We 

use the standard error and confidence interval as measures of statistical accuracy. This 

paper deal with confidence interval for the population median based on atoms of 

nonparametric bootstrap. We will investigate how to find the number of atoms and 

discuss on finding the bootstrap estimate for standard error of the sample median.   
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The sample median and its estimate of standard error play important role in 

constructing a confidence interval for population median. Main purpose of this paper is 

to construct a confidence interval for population median based on atoms of 

nonparametric bootstrap. For small sample, Maritz and Jarrett [13] gave a good 

approximation for variance of the sample median. However, for larger sample, we 

handle it by using Monte Carlo simulation for producing good approximation of 

boootstrap standard error. The bootstrap is then extended to other measures of statistical 

accuracy such as estimates of bias and confidence interval. Suprihatin et.al (2012a, 

2012b) showed that the bootstrap work well for estimating the statistics mean and 

parameter of autoregressive model respectively. 

We describe algoritms for constructing a confidence interval for population median. 

Section 2 reviews how to find the the number of atoms of nonparametric bootstrap, and 

discuss the implementation of the uses of atoms is applied in bootstrapping bias 

estimate of sample median. Section 3 describes the bootstrap estimate for standard error 

of sample median. Section 4 deal with confidence intervals and explores the results of 

Monte Carlo simulation for bootstrap estimates of standard error and confidence 

interval for median. Section 5, is the last section, briefly describes summary of this 

paper as concluding remarks. 

 

2. THE ATOMS OF NONPARAMETRIC BOOTSTRAP 

 

Let *X  denotes a same-size resample drawn, with replacement, from a given sample 

 nXXXX ,,, 21  , and let  **

2

*

1

* ,,,ˆ
nXXXt   be the estimate value of statistic 

computed from *X , where t  is functional.  In most cases of practical interest, each 

distinct *X  (without regard for order) gives rise to a distinct  *̂ , as Hall [11] has 

elaborated it.  

If the sample X  is of size n, and if all elements of X  are distinct, the number of 

different possible resamples *X  equals .nn  But, if without regard for order, then the 

number of different possible resamples *X  equals the number  nN , of distinct ways of 

placing n indistinguishable objects into n numbered boxes, the boxes being allowed to 

contain any number of objects. Accordingly, we concern only on so-called atoms of 

nonparametric bootstrap. The number of atoms is far less than .nn   
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To derive the number  nN , let im  denote the number of times iX  is repeated in 

*X . The number  nN  equals the number of different ways of choosing the ordered n-

vector  nmmm ,,, 21   such that each 0im  and nmmm n  21 .  We imagine 

that im  as the number of objects in box i.  

Calculation of  nN  is a problem in combinatorial. For this purpose, we start with 

sample size n = 2. Meantime, for n = 1 is trivial. Let  21, XXX  , then the atoms are: 

   2111 ,,, XXXX  and   XXX 22 , , and yields   32 N . For sample size n = 3, let 

 321 ,, XXXX  , then the atoms are:  111 ,, XXX ,  211 ,, XXX ,  311 ,, XXX , 

 221 ,, XXX ,  331 ,, XXX ,    322222 ,,,,, XXXXXX ,    333332 ,,,,, XXXXXX  and 

 321 ,, XXX  = X, yields   103 N . Finding the numbers  2N  and  3N  can be 

described as follows. We can check that   311212 N  and 

  101132313 N . Analogy to these calculations, for n = 4, we obtain  

  35114363414 N . For general n, by inductively, we conclude that  
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Fisher and Hall [9] showed that the number of atoms  nN  equals 






 

n

n 12
. This 

formula looks simpler, but difficult in proving. Thus, in order to show that (1) is 

actually the number of atoms  nN , it suffices to show,  by using mathematical 

induction principle, that  
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Not all of the atoms of the bootstrap distribution  *̂  have equal probability mass. 

To compute probabilities, let   nmmmX ,,, 21

*   denotes the resample drawn from X  in 

which iX  out of X on any (with replacement) result in  nmmmX ,,, 21

*    equals the 

multinomial probability 
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Thus, if  nmmm ,,,ˆ
21

*   denotes the value of the statistic *̂  when the resample is 

 nmmmX ,,, 21

*   then 

   .
!!!

!
,,,ˆˆ

21

21

**

n

nn
mmmn

n
XmmmP


                               (2) 

Here is an example of the uses of the atoms of nonparametric bootstrap, which can 

also be found in Lehmann [12]. Let   be the median of distribution F, the bias of the 

sample median is  

  .ˆ   Ebias                                                      (3) 

The counterpart of bias (3) is the bootstrap estimator for bias 

  ,ˆˆ**   Ebias                                                    (4) 

where (3) and (4) follow the bootstrap terminology that says the population is to the 

sample as the sample is to the bootstrap samples. Let us consider the case n = 3, and  

)3()2()1( XXX   denote the order statistics. To obtain the probabilities for the 

corresponding ordered triples   *

)3(

*

)2(

*

)1( XXX  , we must count the number of cases 

with these values. For instance,  
27

3
2

*

)3(1

*

)2(1

*

)1(  XXXXXXP , since this 

probability is the sum of probabilities of the triples    121211 ,,,,, XXXXXX , 

 112 ,, XXX  for  *

)3(

*

)2(

*

)1( ,, XXX . By using (2), we obtain the distribution for atoms

 *

)3(

*

)2(

*

)1( ,, XXX  is  

111 XXX  211 XXX  311 XXX  
221 XXX  321 XXX  

1/27 3/27 3/27 3/27 6/27 

331 XXX  
222 XXX  322 XXX  332 XXX  333 XXX  

3/27 1/27 3/29 3/27 1/27 

 

The median *

)2(X  of  *

)3(

*

)2(

*

)1( ,, XXX  is 1X  for the triples 111 XXX , 211 XXX , and 

311 XXX , and so on. Hence, the distribution of  *

)2(X  is  

     
27

7
,

27

13
,

27

7
3

*

)2(2

*

)2(1

*

)2(  XXPXXPXXP . 

Therefore, the bootstrap estimator for the bias of *

)2(

*ˆ X  is by (4)  

  2

*

)2(

* XXEbias   



B. SUPRIHATIN, S. GURITNO, AND S. HARYATMI 

 

                  = )2()3()2()1(
27

7

27

13

27

7
XXXX   

         










 )2(

)3()1(

227

14
X

XX
. 

 

3. THE BOOTSTRAP ESTIMATE FOR STANDARD ERROR 

Let we have a random sample  nXXXX ,,, 21   from distribution function F 

having a positive derivative f continous in a neighborhood of its median 
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 for all real t be the empirical 

distribution. Define the sample median as  









2

1
infˆ tFt n . Recall that ̂  is the 

 1m th order statistic )1( mX  for n is odd,  12  mn  for positive integers m, and 

 )1()(
2

1ˆ
 mm XX  for n  is even.  

How accurate is  ̂  as an estimator for the actual  ? To answer this question, we 

use two measures of statistical accuracy, i.e. standard error and confidence interval. For 

small sample, Maritz and Jarrett [13] suggested a good approximation for the standard 

error of sample median. Consider the case n = 2m + 1. If )(rf  denotes the pdf of )(rX , 

from David and Nagaraja [2] we have  
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If we let      yyFxxFy  1, , then (6) becomes  

   
 

     



1

02
1

!

!12ˆ dyyyy
m

m
E

mrr  . 



B. SUPRIHATIN, S. GURITNO, AND S. HARYATMI 

 

Maritz and Jarrett [13] estimated  rE ̂  by ,
1 )( j

n

j

r

jrn WXA  
  where  
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Then the value of  ̂Var  is estimated by 
2

12 nnn AAV  . Hence, an estimate for 

standard error of ̂   is  

  𝑠𝑒  ̂  =  nVn / .                                                         (7) 

Meantime, the bootstrap is a tool for answering the accuracy of estimator, which is 

based on computer-intensive, even for handling larger sample. To proceed how the 

bootstrap works, consider n = 3. By using the distribution of  *

)3(

*

)2(

*

)1( ,, XXX  as we 

have discussed in Section 2, we have bootstrap estimator for variance of *

)2(X  is 

           2*

)2(

2*

)2(
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)2( XXEXVar   
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As customary, the bootstrap estimate for standard error of *

)2(X  is square root of 

 *

)2(XVar . But, this calculation is not sufficient for larger n. However, we still can do 

this calculation even for larger n using Monte Carlo simulation. For simulation theory, 

Efron and Tibshirani [8] is a good reference. 

 

4. CONFIDENCE INTERVALS AND MONTE CARLO SIMULATION 

 

 So far, we have discussed the computation of bootstrap standard errors which are 

often used to construct approximate confidence intervals for a statistic of interest  . 

Given an estimate ̂  and an estimated standard error  𝑠𝑒 , the standard   %10021    

confidence interval  for   is 

 eszesz ˆˆ,ˆˆ
1    ,                                              (8) 

where z  is the 100 th percentile point of standard normal distribution. For case   is 

a population median, we use  𝑠𝑒   is Maritz and Jarrett’s approximation of standard error 

for sample median. Consider the sample is  21.2, 22.5, 20.3, 21.4, 22.8, 21.6, 20.5, 21.3, 

21.6. It’s obvious that ̂ = 21.40. Since n = 9, Maritz and Marrett [13] gave the weights 
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1W  = 0.00145, 2W  = 0.02892, 3W  = 0.11447, 4W  = 0.22066, 5W  = 0.26899, and the 

rests can be found using the fact that 1221 ,,,   nmmnn WWWWWW  . Then by (7) 

we obtain an estimate of standard error   𝑠𝑒  ̂  = 0.2903. Hence, using   = 5% we 

obtain the standard 90% confidence interval for   is  88.21,92.20 . DiCiccio and 

Tibshirani [5], and Davison and Hinkley [3] also reported a good bootstrap confidence 

interval.            

  Hall [10], DiCiccio and Efron [4], and Efron and Tibshirani [7] suggested to use 

the number of B  larger than 1000 to construct an confidence interval. Using bootstrap 

sample size of B = 2000, Monte Carlo simulation gives  mean of *̂ = 21.44 compared 

with ̂ = 21.40  and  𝑠𝑒  *̂  =  0.2925, which is closed to 𝑠𝑒  ̂ . Moreover, resulting 

90% bootstrap percentile confidence interval for   is  60.21,27.20 . Again, this result 

also closed to the 90% standard interval.  This results agree to results of Efron [6], and 

Brown and Hall [1].  

 

5. CONCLUDING REMARKS 

 

A number of points arise from the consideration of Section 2, 3, and 4, amongst 

which we note as follows. 

1. For small sample, it is often feasible to calculate a bootstrap estimate exactly, by 

computing all the atoms of the bootstrap samples. Unfortunately, this calculation is 

not sufficient for larger samples. However, we remain handle it by using Monte 

Carlo simulation. 

2. Only using atoms, we obtain a good approximation of standard error and confidence 

interval for statistics of interest. 

3. The largest probability of (2) is reached when each ,1im  in which case *X  is 

identical to X. Hence, the most likely resample to be drawn is the original sample, 

with probability  nnn! . This probability is very small, being only 
4104.9 x  when n 

= 9 and decreases exponentially quickly. Thus, we infer that the probability that one 

or more repeats occur in the B values of *̂  converges to zero as n . 
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