12. Karakterisitik Fisiko-Kimia dan Sensori Bakso Ikan Gabus

by Indah Widiastuti

Submission date: 12-Jun-2023 09:24PM (UTC+0700)

Submission ID: 2114532875

File name: 12._Karakterisitik_Fisiko-Kimia_dan_Sensori_Bakso_Ikan_Gabus.pdf (406.49K)

Word count: 5646

Character count: 32936

FishtecH – Jurnal Teknologi Hasil Perikanan ISSN: 2302-6936 (Print), (Online, http://ejournal.unsri.ac.id/index.php/fishtech) Vol. 5, No. 2: 178-189, November 2016

Karakterisitik Fisiko-Kimia dan Sensori Bakso Ikan Gabus (*Channa striata*) dengan Penambahan Genjer (*Limnocharis flava*)

Physicochemical and Sensory Characteristics of Snakehead (Channa striata) Fish Ball with Yellow Velvetleaf (Limnocharis flava) Addition

Ni Made Pratiwi, Indah Widiastuti*, Ace Baehaki

Jurusan Teknologi Hasil Perikanan Fakultas Pertanian Universitas Sriwijaya, Indralaya, Ogan Ilir 30662 Sumatera Selatan Telp./Fax. (0711) 580934

*Penulis untuk korespondensi: indah_qw@yahoo.com

ABSTRACT

The purposes of this research were investigated the physicochemical and sensory characteristics of snakehead fish ball with yellow velvetleaf addition. The research was conducted on January until March 5216. The research method was used randomized block design (RBD). The treatments were 0%, 5%, 10%, 16 d 15% of yellow velvetleaf addition. The parameters of this research was chemical analysis such as water content, ash content, protein content, lipid content, carbohydrate content, and fiber; physical analysis were elasticity; colour and sensoric analysis (texture, taste, c 50 ur and aroma). The results showed that treatment gave significant effect on ash content, water content, ash content, protein content, and fiber content; lightness and sensoric analysis (taste and colour), but there were no effect to lipid content, carbohydrate content and elasticity, chrome and hue. The concentration of water, ash, protein, and fiber were 63.32%-69.27%, 1.21%-6.44%, 14.69%-20.61%, 0.93%-5.65% respectively. The lightness of this fish ball were 54.23%-6676%. Color sensory analysis of fish ball were 3.28-3.86 and taste were 3.17-3.36. The best treatments were A2 (10% yellow velvetleaf addition).

Keywords: fish ball, physicochemical, snakehead fish, sensory, yellow velvetleaf

ABSTRAK

Penelitian ini bertujuan menentukan karakteristik fisik, kim a sensori bakso ikan gabus (*Channa striata*) dengan penambahan genjer (*Limnocharis flava*). Penelitian ini dilaksanakan pada bulan Januari 2016 san a Maret 2016. Penelitian ini menggunakan rancangan acak kelompok. Perlakuan genjer terdi lari 0%, 5%, 10%, dan 15%. Parameter yang diamati meliputi analisis kimia terdiri dari kadar air, kadar abu, protein, lemak, karbohidrat, dan serat sedangkan untuk analisis fisik terdiri dari kekenyalan rancangan acak kelompok. Perlakuan dalam penelitian berpengaruh nyata terhadap analisis sensoris (tekstur, rasa, warna dan aroma). Perlakuan dalam penelitian berpengaruh nyata terhadap analisis kimia yaitu kadar air, 15 u, protein, dan serat sedangkan analisis fisik yaitu *lightness* dan analisis sensoris (warna dan rasa). Tetapi tidak berpengaruh nyata terhadap kadar lemak, karbohidrat, kekenyalan, chroma, *hue*, tekstur dan aroma. Kadar air bakso yang dihasilkan berkisar antara 63,32%-69,27%, abu berkisar antara 1,21%-6,44%, protein berkisar antara 14,69%-20,61%, serat berkisar antara 0,93%-5,65% dan *lightness* berkisar antara 54,23%-66,76%. Warna yang dihasilkan berkisar antara 3,28-3,86, dan rasa berkisar antara 3,17-3,36. Perlakuan terbaik yaitu A2 (penambahan genjer 10%).

Kata kunci: bakso ikan, fisiko-kimia, genjer, ikan gabus, sensori

PENDAHULUAN

Bakso adalah suatu produk hasil olahan dari daging yang dibentuk bulat dengan berbagai ukuran (Wibowo 2003). Kualitas bakso sangat ditentukan oleh kualitas daging, jenis tepung yang digunakan, dan perbandingan banyaknya daging dan tepung

yang digunakan untuk membuat adonan. Pemakaian jenis bahan tambahan yang digunakan, misalnya garam dan bumbubumbu juga berpengaruh terhadap kualitas bakso segar. Penggunaan daging yang berkualitas tinggi dan tepung yang baik disertai deng 13 perbandingan tepung yang besar dan penggunaan bahan tambahan makanan yang aman serta cara pengolahan yang benar akan dihasilkan produk bakso yang berkualitas baik (Astawan 1989).

Perubahan gaya hidup 11 lingkungan pola mempengaruhi makan banyak masyarakat yang cenderung memilih makanan cepat saji yang lebih banyak mengandung karbohidm protein, lemak tetapi rendah serat. Pola makan yang demikian ternyata dapat memberikan dampak bagi kesehatan, untuk mengkonsumsi makanan berserat dapat mengurangi dampak buruk kesehatan. Salah satu bahan pangan yang mengandung serat adalah 14naman genjer. Menurut Winarno (2002), serat-serat yang terdapat dalam bahan pangan yang tidak tercerna mempunyai sifat positif bagi gizi dan metabolisme.

Kebutuhan serat dalam makanan perlu bagimanus 17 karena serat dapat mencegah penyakit serta dapat menurunkan kadar kolesterol dalam darah. Salah satu bahan makanan yang banyak mengandung serat adalah sayuran. Sayuran merupakan sumber serat yang utama, antioksidan alami, dan banyak mengandung vitamin dan mineral yang berfungsi sebagai zat pengatur. Menurut Nurhadi (2011) sayuran berwarna lebih baik daripada sayuran yang tidak berwarna karena warna pada makanan memiliki fungsional bagi tubuh. Warna pada makanan memiliki khasiat masing-masing tergantung dari pigmen yang membentuk warna tersebut.

Salah satu tumbuhan air yang menga 12 ung serat yaitu genjer (*Limnocharis flava*). Tanaman genjer merupakan tanaman yang tumbuh di rawa atau kolam berlumpur yang banyak airnya misalnya tepi sungai. Hasil analisis serat genjer adalah sebesar 1,31% (Permatasari 2012).

Bakso ikan pada umumnya tidak memiliki kadar serat dan dari segi penampilan seperti pada umumnya. Penambahan genjer pada penelitian ini sebagai sumber serat pada bakso ikan, selain itu juga sebagai pewarna alami pada bakso ikan.

Kerangka Pemikiran

Selama ini genjer (*Limnocharis flava*) hanya dikenal sebagai sayuran dengan olahan ditumis. Genjer juga bisa diolah ke produk lain, yakni bakso. Genjer bisa diiris tipis-tipis kemudian ditambahkan ke dalam adonan bakso ikan gabus. Olahan ini bertujuan menambahkan serat pada bakso ikan.

Selain protein tinggi yang diperoleh dari ikan gabus sebagai bahan baku utama, bakso yang dikombinasikan dengan genjer memiliki keunggulan dibandingkan dengan bakso ikan pada umumnya yakni seratnya dapat dijadikan alternatif pilihan untuk masyarakat yang tidak mengkonsumsi daging sapi sebagai bahan baku utama pembuatan bakso pada umumnya.

Penelitian ini bertujuan melakukan diversifikasi pada produk olahan perikanan bakso ikan gabus (*Channa striata*) dengan penambahan genjer (*Limnocharis flava*) sebagai sumber serat.

40 BAHAN DAN METODE

Bahan dan Alat

Bahan utama yang digunakan untuk membuat bakso ikan adalah ikan gabus (Channa striata) dan genjer (Limnocharis flava). Sedangkan bahan untuk membuat bakso adala tepung tapioka, garam, bawang putih, lada, dan air es. Bahan kimia yang digunakan untuk analisa yaitu aquadest, asam asetat, natrium bikarbonat, NaOH, CaCO3, H3BO3, HCl, HClO₄, HgO, HNO₃, H₂SO₄, K₂S₂O₄, indikator metil merah, met 46 biru, K2SO4 danpelarut heksana. Peralatan yang digunakan dalam penelitian ini meliputi pisau, kompor gas, panci, baskom, alat penggiling, timbangan analitik, labu ukur, hot plate, spatula, gelas beker,pipet tetes, gelas ukur, corong, labu Kjeldahl, soxhlet, labu lemak, chroma meter, erlenmeyer, texture analyzer.

Metode Penelitian

Penelitian ini menggunakan rancangan acak kelompok (RAK) dengan satu fa 22 pr perlakuan yaitu proporsi ikan gabus yang terdiri dari 3 taraf perlakuan. Masing-masing perlakuan diulang sebanyak 3 kali, dimana ulangan dijadikan sebagai kelompok. Secara rinci perlakuan tersebut adalah sebagai berikut:

Konsentrasi kombinasi ikan gabus : genjer (A) adalah:

 $A_0 = 0$ % dari berat ikan gabus, 300 g ikan gabus : 0 g genjer

 $A_1 = 5$ % dari berat ikan gabus, 300 g ikan gabus:15 g genjer

 $A_2 = 10$ % dari berat ikan gabus, 300 g ikan gabus : 30 g genjer

A₃ = 15 % dari berat ikan gabus, 300 g ikan gabus : 45 g genjer

Cara Kerja

Pembuatan bakso ikan berdasarkan Purukan (2013) yang telah dimodifikasi, yaitu ikan gabus dibuat fillet dan digiling selanjutnya ditambahkan garam sebanyak 2% sambil terus diaduk. daging giling selanjutnya dicampur dengan bumbu-bumbu berupa bawang merah giling dan bawang putih giling masing-masing sebanyak 2%, merica/lada sebanyak 1% dan air es sedikit demi sedikit. Selanjutnya ditambahkan tepung tapioka sebanyak 15%. Genjer yang telah dihaluskan dengan chopped ditambahkan ke dalam adonan sesuai dengan perlakuan (A0= 0 g genjer; A₁= 15 g genjer; A₂= 30 g genjer danA₃= 45 g genjer dalam 300 g ikan gabus giling). Semua bahan dicampur menjadi adonan yang homogen. Adonan dicetak menyerupai bola kecil dengan menggunakan tangan kemudian direbus 2 kali di panci berisi 36 diatas kompor, yaitu perebusan I dengan suhu 40 °C selama ± 5 menit dan perebusan II dengan suhu 90 °C selama ± 15 menit atau sampai bakso mengapung. Pada Tabel 1. dituliskan secara rinci matriks perlakuan yang dilakukan pada penelitian.

Parameter Pengujian

mameter uji yang diamati yaitu analisis kimia meliputi kadar air, abu, protein, lemak, karbohidrat, dan serat kasar. Analisis fisik yaitu uji kekenyalan serta analisis sensoris menggunakan uji kesukaan (hedonik) dengan parameter meliputi meliputi warna, aroma,

rasa, kekenyalan dan kenampakan dengan skala penilaian 1-5 yaitu (1) sangat tidak suka, (2) tidak suka, (3) netral, (4) suka (5) sangat suka. (Rampengan *et al*, 1985)

Tabel 1. Matriks perlakuan yang akan dilakukan pada penelitian dalam (300) g berat daging ikan gabus yang digunakan.

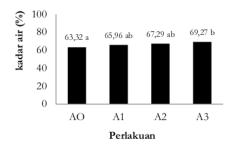
Bahan	A_0	A_1	A_2	A_3
Ikan Gabus (g)	300	300	300	300
Tepung Tapioka (g)	150	150	150	150
Genjer* (g)	0	15	30	45
Garam (g)	6	6	6	6
Air es (mL)	45	45	45	45
Bawang Putih (g)	6	6	6	6
Lada (g)	1,5	1,5	1,5	1,5

Sumber: Purukan (2013) yang dimodifikasi (*)

Analisto Statistik

Data yang diperoleh dianalisis sidik ragam (Anova) guna mengetahui pengaruh perlakuan. Apabila perlakuan berpengaruh nyata maka dilanjutkan dengan analisis uji lanjut Beda Nyata Jujur (BNJ) untuk analisis proksimat dan fisik sedangkan data hasil pengujian sensoris dianalisis dengan Kruskall Walis.

HASIL DAN PEMBAHASAN

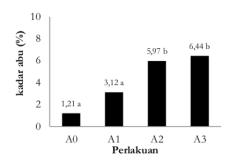

Analisis Kimia Kadar Air

Bakso ikan gabus dengan penambahan genjer rata-rata berkisar antara 63,32% - 69,27%. Kadar air terendah diperoleh pada perlakuan bakso tanpa perlakuan bakso tanpa perlakuan bakso tanpa perlakuan bakso dengan penambahan genjer 15% (A₃) yaitu sebesar 69,27%. Sehubungan dengan 23 u, semakin tinggi kadar genjer yang ditambahkan maka 5 emakin tinggi kadar air yang terdapat pada bakso ikan. Hasil ini tidak melewati batas standar kadar air yang tercantum pada SNI 01-3819-1995 tentang syarat mutu bakso ik 20 yaitu maksimal 80%.

Rerata nilai kadar air bakso dapat dilihat pada Gambar 1.

Kadar air pada bakso sangat dipengaruhi oleh senyawa kimia, suhu, konsistensi, dan interaksi dengan komponen penyusun makanan seperti protein, lemak, vitamin, asam-asam lema<mark>6</mark> bebas dar komponen lainnya (Winarno *et al*. 2002).

Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer berpengaruh nyata pada taraf uji 5% terhadap kadar air bakso. Dari hasil uji lanjut Beda Nyata Jujur diperoleh A₀ (tanpa penambahan genjer), berbeda nyata dengan A₃ (penambahan genjer 15%) akan tetapi tidak berbeda nyata dengan A₁ (penambahan genjer 5%) dan A₂ (penambahan genjer 10%).

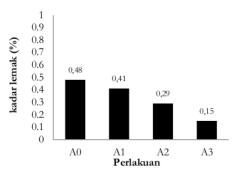

Gambar 1. Kadar air bakso ikan gabus dengan penambahan genjer.

Kadar Abu

Abu adalah zat organik sisa hasil pembakaran suatu bahan organik (Winarno 1997). Selain kandungan mineral daging, kadar abu bakso juga berasal dari bahanbahan kimia yang ditambahkan seperti garam dapur, MSG, zat per 20 wet, dan pemutih.

Rerata nilai kadar abu bakso dapat dilihat pada Gambar 2. Kadar abu pada bakso ikan gabus dengan penambahan genjer rata-rata berkisar antara 1,21%-6,44%. Kadar abu terendah diperoleh pada perlakuan bakso dengan penambahan genjer 15% (A₃) yaitu sebesar 6,44% sedangkan kadar abu tertinggi diperoleh pada perlakuan bakso tanpa penambahan genjer (A₀) yaitu sebesar 1,21%.

Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer berpengaruh nyata pada taraf uji 5% terhadap kadar abu bakso. Menguapnya air akibat proses perebusan menyebabkan kandungan mineral y jg terdapat pada bahan menjadi berubah. Kandungan abu pada ikan gabus bergantung pada habitat hidup ikan tersebut yang berhubungan dengan kandungan mineral yang terdapat dalam tubuh ikan gabus (Tsaniyatul et al. 2013).


Gambar 2. Kadar abu bakso ikan gabus dengan penambahan genjer.

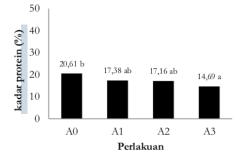
Menurut Sejati (2012) Kadar abu genjer segar sebesar 0,90% berbeda dengan hasil kadar abu genjer segar yang dilakukan oleh Saupi et al. (2009) yaitu sebesar 0,79%. Perbedaan ini disebabkan oleh kondisi habitat dan kandungan mineral di dalam 331ah maupun lumpur yang berbeda. Kandungan dan abu komponennya tergantung pada macam bahan dan cara pengabuannya. Kadar abu genjer segar mengalami perubahan setelah dilakukan perebusan.

Dari hasil uji lanjut Beda Nyata Jujur diperoleh Ao (tanpa penambahan genjer) dan A₁ (penambahan genjer 5%) berbeda nyata dengan A₂ (penambahan genjer 10%) dan perlakuan A₃ (penambahan genjer 15%). Menurut Gaman et al. (1992), terjadi perubahan yang besar terhadap kandungan mineral selama proses pemasakkan, misalnya saja proses perebusan yang menyebabkan larutnya mineral ke dalam air. Mineral dapat dihilangkan dengan pelepasan pemisahan secara fisik. Sejumlah mineral memiliki kelarutan di dalam air. Secara umum, perebusan dalam air menyebabkan hilangnya mineral lebih banyak pada sayuran daripada pengukusan (Miller 1996).

Kadar Lemak

Kadar lemak pada bakso ikan gabus dengan penambahan genjer rata-rata berkisar antara 0,15% - 0,48%. Kadar lemak terendah diperoleh pada perlakuan bakso dengan penambahan genjer 15% (A₃) yaitu sebesar 0,15% sedangkan kadar air tertinggi diperoleh pada perlakuan bakso tanpa penambahan genjer (A₀) yaitu sebesar 0,48%.

Gambar 3. Kadar lemak bakso ikan gabus dengan penambahan genier.


Pada hasil analisis keragaman menun sakan bahwa perlakuan penambahan genjer tidak berpengaruh nyata pada taraf uji 5% terhadap kadar lemak bakso. Menurut Izadi et al. (2012) serat dapat mengikat lemak dan protein, sehingga pada bakso lemak menurun. Akan tetapi, penurunan kadar lemak pada bakso dengan penambahan genjer di setiap perlakuan secara statistik tidak signifikan.

Pengaruh perebusan terhadap kadar air dapat menyebabkan pengerutan daging sehingga air banyak keluar dari daging, selain itu air juga banyak menguap selama perebusan. Kehilangan air dari daging mentah dan daging yang sudah dimasak. Proses pemanasan genjer menyebabkan lemak mencair dan viskositasnya berkurang sehingga memudahkan lemak keluar (Wardana 2012). Hal ini karena ikan gabus, sebagaimana dinyatakan oleh Hadiwiyoto (1993) bahwa kandungan lemak ikan gabus adalah sebesar 2,7 g/100 g bahan. Sedangkan genjer segar juga mengandung lemak namun relatif lebih sedikit yaitu 0,2 g/100 g bahan (Permatasari 2012).

Kadar Protein

Protein sangat diperlukan dalam bahan makanan karena memiliki berbagai macam fungsi seperti sebagai zat pembangun, sebagai enzim, alat pengangkut dan penyimpanan dan sebagai antibodi (Winarno 1997). Protein merupakan komponen terbesar dalam daging. Sumber terbesarnya kadar protein pada bakso adalah daging. Semakin banyak penggunaan daging tanpa lemak menyebabkan kandungan

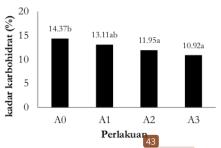
protein bakso menjadi tinggi, sehingga diperoleh bakso dengan tekstu dengan tekstu dengan (Sunarlim, 1992). Rerata nilai kadar protein bakso dapat dilihat pada Gambar 4.

Gambar 4. Kadar protein bakso ikan gabus dengan penambahan genjer.

Kadar protein pada bakso ikan gabus dengan penambahan genjer rata-rata berkisar antara 14,69%-20,61%. Kadar protein terendah diperoleh pada perlakuan bakso dengan penambahan genjer 15% (A₃) yaitu sebesar 14,69% sedangkan kadar air tertinggi diperoleh pada perlakuan bakso tanpa penambahan genjer (A₀) yaitu sebesar 20,61%.

Pada Gambar 4 menunjukkan perlakuan penambahan genjer berpengaruh nyata pada taraf uji 5% terhadap kadar protein bakso ikan. Menurut Hadiwiyoto (1993) bahwa kandungan protein ikan gabus adalah sebesar 25,2 g/100 g bahan. Sedangkan genjer juga mengandung protein namun relatif lebih sedikit 2,38 g/100 g bahan (Permatasari 2012). Hal ini diduga semakin tinggi suhu yang perebusan digunakan saat dapat menyebabkan penurunan kadar protein genjer. Hal lain diduga menjadi penyebab penurunan kadar protein yaitu saat pengambilan sampel bakso yang tidak konsisten antara ikan gabus dan sinjer yang sudah tercampur menjadi bakso. Pengolahan bahan pangan sangat mempengaruhi kerusakan yang terjadi pada protein. Semakin tinggi suhu dan semakin lama waktu pengolahan semakin tinggi kerusakan prasin yang terjadi pada bahan pangan akan menyebabkan kerusakan yang cukup besar atau bisa menurunkan nilai gizi protein.

Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer berpengaruh nyata pad 41 araf uji 5% terhadap kadar protein bakso. Hal ini Sesuai dengan pendapat (Buckle et al., 1987) bahwa kadar protein ikan dipengaruhi oleh kadar air dan kadar lemak, dimana terdapat hubungan terbalik antara protein dan 49 ar air pada bagian yang dapat dimakan. Semakin tinggi kadar protein maka akan semakin rendah kadar airnya. Dari hasil uji lanjut Beda Nyata Jujur diperoleh A₀ (tanpa penambahan berbeda nyata dengan A₃ genjer), (penambahan genjer 15%) akan tetapi tidak berbeda nyata dengan A₁ (penambahan genjer 5%) dan A₂ (penambahan genjer 10%).

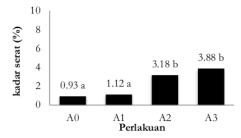

Kandungan gizi seperti protein pada ikan dapat berkurang selama pengolahan. Hal ini dapat terjadi karena selama proses perebusan ikan terendam dalam air sehingga beberapa zat gizi larut air seperti protein ikut terlarut dalam air perebusan. Faktor yang mempengaruhi kehilangan 30t gizi selama proses perebusan adalah luas permukaan bahan, konsentrasi zat terlarut dalam air perebusan dan adanya pengadukan air (Harris dan Karmas, 1989).

Kadar Karbohidrat

2 Kadar karbohidrat ditentukan dengan by difference yaitu hasil pengurangan dari 100% dengan kadar air, kadar protein, kadar lemak dan kadar abu sehingga kadar karbohidrat tergantung pada faktor pengurangannya. Hal ini disebabkan karena karbohidrat sangat berpengaruh pada faktor kandungan zat gizi lainnya (Winarno 1997).

Pada analisis keragaman menunjukkan bahwa perlakuan penambahan genjer 29 pengaruh nyata pada taraf uji 5%. Karbohidrat terdapat dalam jaringan dalam tumbuhan dan hewan serta mikroorganisme dalam berbagai bentuk.

Menurut Permatasari (2012), kadar karbohidrat genjer segar yakni 2,70%. Kadar karbohidrat pada genjer yang mengalami perebusan terjadi penurunan, hal ini diduga karena pada kla 4 plas terkandung amilum yang rendah. Karbohidrat utama yang disimpan pada sebagian besar tumbuhan adalah pati dan selulosa (Almatsier 2006).



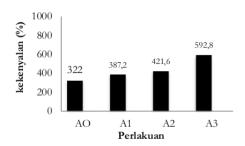
Gambar 5. Kadar karbohidrat bakso ikan gabus dengan penambahan genjer.

Dari hasil uji lanjut Beda Nyata Jujur diperoleh Ao (tanpa penambahan genjer), berbeda nyata dengan A3 (penambahan genjer 15%) akan tetapi tidak berbeda nyata dengan A1 (penambahan genjer 5%) dan A2 (penambahan genjer 10%).Nilai karbohidrat pada genjer yang mengalami perebusan terjadi penurunan, hal ini diduga karena adanya peningkatan kadar air dan komponen lainnya (Nurjanah et al. 2014).

Kadar Serat

Pada umumnya kadar serat dalam tanaman akan mengalami proses penurunan akibat pengolahan panas (Muchtadi, 1993). Serat pada tumbuhan yang sebagian besar berupa selulosa akan terhidrolisis menjadi senyawa-senyawa yang lebih sederhana (Robinson 1995). Rerata nilai serat dapat dilihat pada Gambar 6.

Gambar 6. Kadar serat bakso ikan gabus dengan penambahan genjer.


Kadar serat pada bakso ikan gabus dengan penambahan genjer rata-rata berkisar antara 0,93% - 3,88%. Kadar serat terendah diperoleh pada perlakuan bakso tanpa penambahan genjer (A_0) yaitu sebesar 0.93% sedangkan kadar serat tertinggi diperoleh pada perlakuan bakso dengan penambahan genjer 15% (A_3) yaitu sebesar 3.88%.

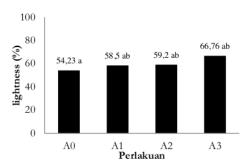
Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer berpengaruh nyata pada taraf uji 5% terhadap kadar serat bakso. Dari hasil uji lanjut Beda Nyata Jujur diperoleh A₀ (tanpa penambahan berbeda nyata dengan genjer), (penambahan genjer 15%) akan tetapi tidak berbeda nyata dengan A1 (penambahan genjer 5%) dan A2 (penambahan genjer 10%). Peningkatan kadar serat diduga karena adanya penurunan kadar air yang terdapat pada daun dan tangkai tidak diikuti dengan penurunan kadar serat sehingga kadar serat pada genjer yang mengalami pengukusan tidak mengalami penurunan (Nurjanah et al. 2014).

Kekenyalan

Sifat kenyal merupakan salah satu sifat fisik produk pangan. Kekenyalan dapat disebut dengan day 47 lastik produk yang berhubungan dengan daya tahan untuk pecah akibat gaya tekan yang diberikan. Daya tahan untuk pecah berhubungan dengan sifat keras dan kenyal. Semakin besar daya tahan untuk pecah suatu produk, maka semakin kenyal dan keras produk yang dihasilka 27 Menurut Soekarto (1990), maka semakin kenyal dan keras terletak pada terjadinya deformasi bentuk atau tidak. Sifat keras tidak menyebabkan deformasi bentuk terhadap produk pangan, sedangkan sifat kenyal menyebabkan deformasi bentuk. Rerata nilai kekenyalan bakso dapat dilihat pada Gambar 7.

Hasil analisis keragaman menunjukkan bahwa perlakuan [22] ambahan genjer pada bakso ikan gabus tidak berpengaruh nyata (p<0,05) terhadap nilai kekenyalan bakso yang dihasilkan. Kekenyalan dipengaruhi oleh kandungan miosin (protein) pada daging ikan gabus. Menurut Koapaha et al. (2011) [32] nyatakan bahwa miosin pada daging ikan memegang peranan penting dalam penggumpalan dan pembentukan gel bila daging ikan diproses sehingga akan menghasilkan stuktur yang kenyal.

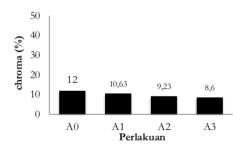
Gambar 7. Kekenyalan bakso ikan gabus dengan penambahan genjer.


Faktor lain yang berpengaruh terhadap nilai kekenyalan bakso yaitu kandungan pati dan serat dari tepung tapioka dan genjer seperti yang dijelaskan Puspitasari et al. (2008) bahwa serat dapat menghalangi pembentukan gel protein pati menjadi tidak maksimal.

Lightness

Nilai *lightness* merupakan tingkatan warna berdasarkan pencampuran dengan unsur warna putih sebagai unsur warna yang memunculkan kesan terang atau gelap. Nilai koreksi warna *lightness* berkisar 0% untuk warna yang paling gelap (hitam) dan 100% untuk warna paling terang (putih). Hasil pengukuran *lightness* menunjukkan nilai terendah terdapat pada perlakuan A₀ (bakso ikan gabus dengan penambahan genjer) dengan nilai sebesar 54,23%, sedangkan nilai *lightness* yang tertinggi terdapat pada perlakuan A₃ (bakso dengan penambahan genjer 15%) dengan nilai sebesar 66,76%. Rerata nilai *lightne* 39) akso dapat dilihat pada Gambar 8.

Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer berpengaruh nyata (p<0,05 21 erhadap nilai bakso ikan gabus *lightness* yang dihasilkan. Dari hasil uji lanjut Beda Nyata Jujur (lampiran 11) diperoleh diperoleh A₀ (tanpa penambahan genjer) berbeda nyata dengan A₃ (penambahan genjer 15%) akan tetapi tidak berbeda nyata dengan A₁ (penambahan genjer 5%) dan A₂ (penambahan genjer 10%).


Hal ini diduga karena warna pada genjer setiap perlakuan semakin hijau dibandingkan tanpa perlakuan penambahan genjer, sehingga pada saat pengadonan dapat membuat adonan bakso semakin hijau. Warna hijau diduga disebabkan genjer memliki zat 45 rofil yang merupakan pigmen hijau yang dapat ditemukan pada batang, akar, daun, buah dan biji dalam jumlah yang terbatas (Inanc 2011).

Gambar 8. Lightness bakso ikan gabus dengan penambahan genjer.

Chroma

Chroma adalah tingkatan warna berdasarkan ketajamannya berfungsi untuk mendefinisikan warna suatu produk cenderung murni atau cenderung kotor (gray). Chroma mengikuti persentase yang berkisar dari 0% sampai 100% sebagai warna paling tajam (Santoso 2013).

Gambar 9. *Chroma* bakso ikan gabus dengan penambahan genjer.

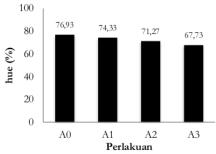
Nilai rata-rata *chroma* bakso ikan gabus dengan penambahan genjer antara 8,6% hingga 12%. Nilai rata-rata *chroma* terendah diperoleh pada bakso dengan perlakuan penambahan genjer (A₃) yaitu 8,6%, sedangkan nilai *chroma* tertinggi diperoleh pada bakso dengan gerlakuan A₀ (tanpa penambahan genjer) dengan nilai sebesar 12%. Hasil analisis keragaman menunjukkan bahwa perlakuan penambahan genjer

berpengaruh tidak nyata (p<0,05) terhadap nilai *chroma* bakso yang dihasilkan. Hal ini disebabkan warna bakso cenderung murni 25 ng diduga berasal dari warna hijau genjer. Akan tetapi, kandungannya akanmenurun bila dimasak. Proses pemanasan saat memasak dapat merusak hampir semua kandungan klorofilnya (Prasetyo 2012).

Hue

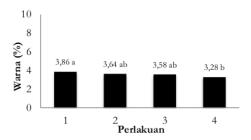
Nilai *bue* adalah karakteristik warna berdasarkan cahaya yang dipantulkan oleh objek yang merupakan nilai keseluruhan yang didominasi pada suatu produk atau warna produk.

Rata-rata nilai *bue* pada bakso genjer berkisar antara 67,73° hingga 76,93° sehingga digolongkan ke dalam criteria warna *yellow red* (YR) berdasarkan panjang gelombang. Rerata nilai *bue* terendah terdapat pada perlakuan A₃ (penambahan genjer 15%) dengan nilai 59 besar 67,73°, sedangkan nilai *bue* yang tertinggi terdapat pada perlakua A₀ (tanpa perlakuan penambahan genjer) dengan nilai sebesar 76,93°.


Hasil analisis keragaman menunju 22 an bahwa perlakuan penambahan genjer tidak berpengaruh nyata (p<0,05) tehadap nilai hue bakso yang dihasilkan. Nilai hue yang diperoleh pada semua perlakuan memiliki kriteria warna yellow red (YR). Warna hijau kusam pada bakso genjerini disebabkan karena klorofil telah berubah struktur kimianya, panas menyebabkan klorofil mudah melepaskan kandungan magnesiumnya. Magnesium tersebut digantikan oleh hydrogen dari asam alami pada tumbuhan (Gross 1991).

Analisis Sensoris

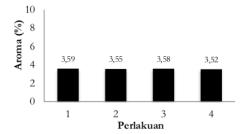
Hasil pengukuran analisis sensoris bakso genjer adalah sebagai berikut:


Warna

Berdasarkan hasil uji sensoris terhadap warna pada bakso ikan gabus dengan penambahan genjer didapatkan hasil seperti yang tertan pada Gambar 4.8. Dari hasil tersebut tingkat kesukaan panelis terhadap nilai warna rata-rata berkisar antara 3,28 (suka) hingga 3,86 (suka). Nilai warna terendah diperoleh pada perlakuan penambahan genjer 15% (A_3) , sedangkan nilai warna tertinggi diperoleh pada perlakuan A_0 tanpa penambahan genjer. Formulasi bakso ikan gabus dengan penambahan genjer menghasilkan warna hijau. Warna hijau tersebut disebabkan oleh genjer yang berwarna hijau.

Gambar 10. Hue bakso ikan gabus dengan penambahan genjer.

Hasil uji Kruskall Wallis menunjukkan bahwa penambahan konsentrasi genjer yang berbeda pada bakso ikan memberikan pengaruh pada warna biskuit yang dihasilkan. Berdasarkan histogram warna bakso secara sensoris penambahan genjer berpengaruh pada warna bakso genjer yang dilakukan analisa secara sensoris.

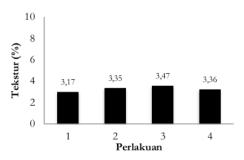


Gambar 11. Warna bakso ikan gabus dengan penambahan genjer

Berdasarkan uji *Kruskall wallis* didapat nilai (n > x²) tabel. Hal ini menunjukkan bahwa A_0 (tanpa penambahan genjer) berbeda nyata terhadap perlakuan A_1 (penambahan genjer 5%) akan tetapi tidak berbeda nyata dengan A_1 (penambahan genjer 5%) dan A_2 (penambahan genjer 10%).

Aroma

Berdasarkan hasil uji sensoris terhadap aroma bakso genjer didapatkan hasil seperti yang tertera pada Gambar 4.13. Dari hasil tersebut tingkat kesukaan panelis terhadap nilai aroma rata-rata berkisar 31 htara 3,52 (suka) hingga 3,59 (suka). Nilai aroma terendah diperoleh pada perlal 31 n penambahan genjer 15% (A₃), sedangkan nilai aroma tertinggi diperoleh pada perlakuan genjer10% (A₂).

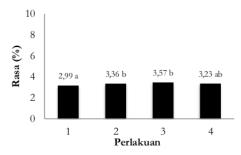


Gambar 12. Aroma bakso ikan gabus dengan penambahan genjer.

Hasil uji *Kruskall wallis* menunjukkan bahwa penambahan konsentrasi genjer yang berbeda pada bakso genjer memberikan pengaruh pada aroma bakso yang dihasilkan. Berdasarkan histogram aroma bakso secara sensoris penambahan genjer berpengaruh pada aroma bakso yang dihasilkan secara analisa sensoris. Berdasarkan uji *Kruskall wallis* (didapat nilai (n<x²) tabel. Hal ini menunjukkan bahwa A₀, A₁, A₂, dan A₃, tidak melakukan uji lanjut perbandingan.

Tekstur

Berdasarkan hasil uji sensoris terhadap Berdasarkan hasil uji sensoris terhadap tekstur pada bakso ikan gabus dengan penambahan genjer didapatkan hasil seperti yang tertera pada Gambar 4.14. Dari hasil tersebut tingkat kesukaan panelis terhadap nilai tekstur rata-rata berkisar antara 2,99 (suka) hingga 3,47 (suka). Nilai tekstur terendah diperoleh pada perlakuan penambahan genjer 0% (A₀) sedangkan nilai tekstur tertinggi diperoleh pada perlakuan dengan penambahan genjer 10% (A₂).


Gambar 13. Tekstur bakso ikan gabus dengan penambahan genjer.

Penambahan genjer pada bakso didapatkan hasil yang disukai oleh paneli 26 al ini dikarenakan semakin banyak genjer yang ditambahkan maka bakso yang dihasilkan semakin lembut. Hal ini sesuai dengan pengujian kekerasan dengan menggunakan 26t texture analyzer yang didapatkan hasil semakin banyak konsentrasi genjer yang ditambahkan pada bakso maka semakin lembut juga bakso yang dihasilkan.

Hasil uji *Kruskall wallis* menunjukkan bahwa pe si mbahan konsentrasi genjer yang berbeda pada bakso ikan gabus dengan penambahan genjer memberikan pengaruh pada tekstur bakso yang dihasilkan. Berdasarkan histogram tekstur bakso secara sensoris penambahan genjer mempengaruhi tekstur bakso yang dihasilkan. Berdasarkan uji *Kruskall wallis* didapat nilai (n < x^2) tabel. Hal ini menunjukkan bahwa A_0 , A_1 , A_2 , dan A_3 , tidak melakukan uji lanjut perbandingan.

Rasa

Berdasarkan hasil uji sensoris terhadap rasa pada bakso ikan gabus dengan penambahan genjer didapatkan hasil seperti yang tert54 pada Gambar 14. Dari hasil tersebut tingkat kesukaan panelis terhadap nilai rasa rata-rata berkisar antara 3,17 (suka) hingga 355 (suka). Nilai rasa terendah diperoleh pada perlakuan tanpa penambahan genjer 0% (A₀) sedangkan nilai rasa tertinggi diperoleh pada perlakuan A₂ dengan penambahan genjer.

Gambar 14. Rasa bakso ikan gabus dengan penambahan genjer

Hasil uji Kruskall wallis menunjukkan bahwa penambahan konsentrasi genjer yang berbeda pada bakso ikan gabus memberikan pengaruh pada rasa bakso yang dihasilkan. Berdasarkan histogram rasa bakso secara sensoris penambahan genjer mempengaruhi rasa bakso yang dihasilkan.

Berdasarkan uji *Kruskall wallis* didapat nilai $(n>x^2)$ tabel. Hal ini menunjukkan bahwa A_0 (tanpa penambahan genjer) dan A_1 (penambahan genjer 5%) tidak berbeda nyata. Sedangkan A_0 (tanpa penambahan genjer), A_2 (penambahan genjer 10%) dan A_3 (penambahann genjer 15%) berbeda nyata.

KESIMPULAN

- 1. Penambahan genjer dalam pembuatan bakso ikan dapat mempengaruhi karakteristik bakso yang dihasilkan terutama nilai gizi, karakteristik fisik dan sensoris bakso yang di
- 2. Penambahan genjer berpengaruh nyata terhadap analisis kimia yaitu kadar air, kadar abu, protein, karbohidrat dan serat 15 langkan analisis sensoris yaitu warna dan rasa. Tetapi tidak berpengaruh nyata terhadap kadar lemak, aroma, tekstur, dan penampakan.
- Penambahan genjer dapat meningkatkan kadar serat pada bakso ikan gabus.
- 4. Hasil uji organoleptik pada bakso dengan penambahan genjer 0%, 5%, 10%, dan 15%, menunjukkan bahwa penambahan genjer memberikan pengaruh terhadap warna.
- Dari hasil uji sensoris menunjukkan ratarata penelis menyukai karakteristik aroma dan rasa bakso dengan perlakuan

penambahan genjer 10%, warna dan penampakan tanpa perlakuan genjer dan tekstur dengan penambahan genjer 15%.

DAFTAR PUSTAKA

- Almatsier S. 2006. *Prinsip Dasar Ilmu Gizi*. Jakarta: Gramedia Pustaka Utama.
- Astawan M, Wahyuni M, Santoso J, dan Sarifah J. 1996. Pemanfaatan ikan gurame (Osphronemous gouramy Lac.) dalam pembuatan gel ikan. Buletin Teknologi dan Industri Pangan.
- Badan Standarisasi Nasional. 1995. *Bakso Ikan. SNI 01-3819-1995.* Badan Standarisasi Nasional. Jakarta.
- Buckle KA, Edwards RA, Fleet GH, and Wootton M. 1987. Food Science. Penerjemah Hari Purnomo dan Adiono dalam Ilmu Pangan. Jakarta: UI Press.
- Gaman PM dan Sherrington KB. 1992. Pengantar Ilmu Pangan, Nutrisi dan Mikrobiologi. Yogykarta: UGMPress.
- Gross J. 1991. Pigments in Vegetable, Chlorophylls and Caratenoids. Van Nostrand Reinhold. New York.
- Hadiwiyoto S. 1993. *Teknologi Pengolahan Hasil Perikanan*. Yogyakarta: Liberty.
- Harris RS dan Karmas E. 1989. Evaluasi Gizi pada Pengolahan Bahan Pangan. Bandung: ITB Press.
- Inanc AL. 2011. Chloropyll: Structural properties, healt benefits and its occurrence in virgin olive oils. *Academic Food Journal* 9.
- Izadi Z, Nasirpour A, Izadi M, dan Izadi T. 2012. Reducing blood cholesterol by a healty diet. *International Food Research*.
- Miller AL. 1996. Antioxidant flavonoid structural usage alternative medical. *Jurnal Flavonoid*.
- Koapaha T, Langi T, dan Lalujan E. 2011. Penggunaan pati sagu modifikasi fosfat terhadap sifat organoleptik sosis ikan patin (*Pangasius hypophtalmus*). [Skripsi]. Manado: Fakultas Pertanian. Universitas Sam Ratulangi.
- Muchtadi D, Palupi NS, dan Astawan M. 1993. *Metabolisme Zat Gizi*. Bogor: Pustaka Sinar Harapan.

- Muchtadi D. 2001. Sayuran Sebagai Sumber Serat Pangan untuk Mencegah Timbulnya Penyakit Degeneratif. Bogor: IPB Press.
- Nurhadi B. 2011. Manfaat yang terkandung dalam warna warni makanan. [Skripsi]. Bandung: Fakultas Teknologi Industri Pertanian Universitas Padjadjaran.
- Nurjanah, Joceob MA, Nugraha R, Permatasari M, Sejati TKA. 2014. Komposisi kimia, aktivitas antioksidan, vitamin C dan mineral tanaman genjer (*Limnocharis flava*) akibat pengukusan. Jurnal Inovasi dan Kewirausahaan.
- Palupi NS. 2007. Pengaruh Pengolahan Terhadap Nilai Gizi Pangan. Modul E-Learning ENBP. Bogor: Departemen Ilmu dan Teknologi Pangan. IPB.
- Pandisurya C. 1983. Pengaruh jenis daging dan penambahan tepung terhadap mutu bakso. [Skripsi]. Bogor: Institut Pertanian Bogor
- Permatasari M. 2012. Perubahan aktivitas antioksidan tanaman genjer (*Limnocharis* flava) akibat pengukusan. [Skripsi]. Bogor: Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor.
- Prasetyo SS, Sanjaya H, dan Yanuar Y. 2012.

 Pengaruh Rasio Massa daun Suji/Pelarut
 Temperatur dan Jenis Pelarut pada Estraksi
 Klorofil Daun Suji Secara Batch dengan
 Pengontakan Dispersi. Lembaga
 Pengabdian Kepada Masyarakat.
 Universitas Katholik Prahayangan.
- Purukan OPM. 2013. Pengaruh penambahan bubur wortel dan tepung tapioka terhadap sifat fisiko kimia dan sensoris bakso ikan gabus. [Skripsi]. Manado: Teknologi Pertanian, Universitas Sam Ratulangi.
- Puspitasari DSP, Datti N, dan Edahwati T. 2008. Ekstraksi Pektin dari Ampas Nanas. Surabaya: UPN Press.
- Ranakusuma. 1982. *Diabetes Melitus*. Jakarta: UI Press.
- Robinson T. 1995. Kandungan Organik Tumbuhan Tinggi. Terjemahan: Kosasih Padmawinata. Bandung: ITB Press.
- Rusyidi R. 2010. Analisis mikroskopis komponen bioaktif tanaman genjer (*Limnocharis flava*) dari Kelurahan Situ Gede Bogor. [Skripsi]. Bogor: Fakultas

- Perikanan dan Ilmu Kelautan, Insitut Pertanian Bogor.
- Santoso L, Puspita Sari N, dan Hubaidah S. 2012. Pengaruh penambahan tepung kepala udang dalam pakan terhadap pigmentasi ikan koi (*Cyprinuscarpio*) jenis kohaku. *Jurnal Rekayasa dan Teknologi Budidaya Perairan*.
- Soekarto. 1990. Penilaian Organoleptik Untuk Industri Pangan dan Hasil Pertanian. Jakarta: Bhatara Aksara.
- Sunarlim R. 1992. Karakteristik Mutu Bakso Sapi dan Pengaruh Penambahan Natrium Klorida Tripolipospat Terhadap Perbaikan Mutu Disertasi. Bogor: Program Pascasarjana, Institut Pertanian Bogor.
- Sejati TKA. 2012. Perubahan komposisi kimia, vitamin C dan mineral pada pengukusan genjer (*Limnocharis flava*). [Skripsi]. Bogor: Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor.

- Tsaniyatul SMS, Titik DS, dan Eddy S. 2013. Pengaruh suhu pengukusan terhadap kandungan gizi dan organoleptik abon ikan gabus. *Student Jurnal. Teknologi Hasil Perikanan. Universitas Brawijaya.*
- Wardana VW. 2012. Struktur jaringan daun dan batang genjer (*Limnocharis flava*) serta perubahan kandungan mineral melalui pengukusan. [Skripsi]. Bogor: Fakultas Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor.
- Wibowo. 2003. *Pembuatan Bakso Ikan dan Daging*. Jakarta: Penebar Swadaya.
- Winarno FG. 1997. *Kimia Pangan dan Gizi*. Jakarta: Gramedia Pustaka Utama.
- Winarno FG. 2002. *Kimia Pangan dan Gizi*. Jakarta: PT Gramedia Pustaka Utama.
- Winarno FG dan S Koswara. 2002. Telur: Komposisi Penanganan dan Pengolahannya. Bogor: M-Brio Press.

12. Karakterisitik Fisiko-Kimia dan Sensori Bakso Ikan Gabus

ORIGINALITY REPORT

12% SIMILARITY INDEX **INTERNET SOURCES PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** Rofi'ul Kifayah, Basori Basori. "Garut **1** % (Marantha Arundinaceae L.) Starch-Based Cookies with Rice Bran and Whole Wheat Flour as a Source of Fiber", Nabatia, 2015 **Publication** Submitted to Universitas Sultan Ageng % Tirtayasa Student Paper Submitted to UIN Walisongo Student Paper repository.umsu.ac.id Internet Source eprints.ulm.ac.id Internet Source ojs.stiperkutim.ac.id Internet Source ejournal.uniska-kediri.ac.id Internet Source

8	Submitted to Higher Education Commission Pakistan Student Paper	<1%
9	www.timesindonesia.co.id Internet Source	<1%
10	Syarifah Norhayati, Melati Melati, Jumsurizal Jumsurizal. "PENGARUH PENAMBAHAN TANAMAN BERUAS LAUT (Scaevola taccada) DALAM PEMBUATAN BIOPLASTIK DARI Kappaphycus alvarezii", Marinade, 2021 Publication	<1%
11	Dico Pranata, Andi Noor Asikin, Irman Irawan, Indrati Kusumaningrum, Bagus Fajar Pamungkas. "Karakteristik Fisikokimia dan Tingkat Penerimaan Konsumen Siomai Udang Metapenaeus monoceros dengan Penambahan Kappaphycus alvarezii", Jurnal Pengolahan Hasil Perikanan Indonesia, 2022	<1%
12	Submitted to Konsorsium PTS Indonesia - Small Campus II Student Paper	<1%
13	jurnal.unived.ac.id Internet Source	<1%
14	materismkpembelajaran.blogspot.com Internet Source	<1%

15	repository.unwidha.ac.id Internet Source	<1%
16	www.ejournal.upnjatim.ac.id Internet Source	<1%
17	100makalah.blogspot.com Internet Source	<1%
18	Adi Saputrayadi, Marianah Marianah. "KAJIAN MUTU STIK KENTANG (Solanum tuberrasum L.) DENGAN LAMA PERENDAMAN DALAM NATRIUM BISULFIT", Jurnal Agrotek UMMat, 2018 Publication	<1%
19	Meiheski R. Rara, Teltje Koapaha, Dekie Rawung. "SIFAT FISIK DAN ORGANOLEPTIK MIE DARI TEPUNG TALAS (Colocasia esculenta) DAN TERIGU DENGAN PENAMBAHAN SARI BAYAM MERAH (Amaranthus blitum)", Jurnal Teknologi Pertanian (Agricultural Technology Journal, 2020 Publication	<1%
20	Liska Gaga, Muh Tahir, Zainudin Antuli. "PENGARUH LAMA PEMASAKAN TERHADAP KARAKTERISTIK FISIKOKIMIA ABON IKAN GABUS (Channa striata) DENGAN SUBSTITUSI JANTUNG PISANG", Jambura Journal of Food Technology, 2022	<1%

21	Truly M. Hutagalung, A. Yelnetty, M. Tamasoleng, J.H.W. Ponto. "PENGGUNAAN ENZIM RENNET DAN BAKTERI Lactobacillus plantarum YN 1.3 TERHADAP SIFAT SENSORIS KEJU", ZOOTEC, 2017 Publication	<1%
22	ejournal.uniks.ac.id Internet Source	<1%
23	repository.radenintan.ac.id Internet Source	<1%
24	storage.googleapis.com Internet Source	<1%
25	journal.unpar.ac.id Internet Source	<1%
26	jurnal.usu.ac.id Internet Source	<1%
27	pustaka.unpad.ac.id Internet Source	<1%
28	engkil.blogspot.com Internet Source	<1%
29	anthosusantho.wordpress.com Internet Source	<1%
30	ojs.borneo.ac.id Internet Source	<1%

31	Asmawati Asmawati, Adi Saputrayadi, Marianah Marianah. "Kajian Lama Pemasakan terhadap beberapa Komponen Mutu Ikan Lele Presto", Agrikan: Jurnal Agribisnis Perikanan, 2019	<1%
32	Teltje Koapaha, Teneke Langi, Lana E. Lalujan. "PENGGUNAAN PATI SAGU MODIFIKASI FOSFAT TERHADAP SIFAT ORGANOLEPTIK SOSIS IKAN PATIN (Pangasius hypophtalmus)", EUGENIA, 2011 Publication	<1%
33	benkagoenk.blogspot.com Internet Source	<1%
34	dimazio-news.blogspot.com Internet Source	<1%
35	eprints.poltekkesjogja.ac.id Internet Source	<1%
36	de.scribd.com Internet Source	<1%
37	jurnal.umrah.ac.id Internet Source	<1%
38	jurnal.ustjogja.ac.id Internet Source	<1%
39	Yohanes Barry Kaligis, Ch. L Kaunang, D A Kaligis, Rustandi "PERTUMBUHAN	<1%

VEGETATIF BROWN MIDRIB (BMR) SORGUM PADA TINGKAT NAUNGAN BERBEDA DAN KEPADATAN POPULASI", ZOOTEC, 2016

Publication

40	bpptk.lipi.go.id Internet Source	<1%
41	ojs.uniska-bjm.ac.id Internet Source	<1%
42	repository.poltekeskupang.ac.id Internet Source	<1%
43	repository.unibos.ac.id Internet Source	<1%
44	Mariati Edam. "FORTIFIKASI TEPUNG TULANG IKAN TERHADAP KARAKTERISTIK FISIKO-KIMIA BAKSO IKAN", Jurnal Penelitian Teknologi Industri, 2018	<1%
45	Radho Al Kausar, Septiani Pratama Putri Surya, Helen Tata Eriantika, Aprilia Bela Santika et al. "Penyuluhan zat pewarna alami makanan dan minuman", JOURNAL OF Public Health Concerns, 2022	<1%
46	eprints.stiperdharmawacana.ac.id Internet Source	<1%

journals.ums.ac.id

ojs.uajy.ac.id
Internet Source

<1%

Hasnidar, Andi Tamsil, Andi Muhammad Akram, Taufik Hidayat. "Analisis Kimia Ikan Sapu-sapu (Pterygoplichthys pardalis Castelnau 1855) dari Danau Tempe Sulawesi Selatan, Indonesia", Jurnal Pengolahan Hasil Perikanan Indonesia, 2021

<1%

- Publication
- Putu Lakustini Cahyaningrum. "ANALISIS PROKSIMAT SERBUK INSTAN KOMBINASI RIMPANG TEMULAWAK (Curcuma Xanthorrhiza Roxb.) DAN DAUN ANTING-ANTING (Acalypha indica L.)", Widya Kesehatan, 2020

<1%

Reni Lobo, Joko Santoso, Bustami Ibrahim.
"Characterization of Tuna Jerky with the
Addition of Seaweed (Eucheuma cottonii)
Flour", Jurnal Pengolahan Hasil Perikanan
Indonesia. 2019

<1%

Publication

Publication

S R Putri, Gemala Anjani, Hartanti Sandi Wijayanti, Nuryanto. " Freshwater Clams () as an Potential Local Mineral Sources in Weaning

<1%

Food to Overcome Stunting in Grobogan, Central Java, Indonesia ", IOP Conference Series: Earth and Environmental Science, 2018

Publication

53	ejurnal.litbang.pertanian.go.id Internet Source	<1%
54	eprints.undip.ac.id Internet Source	<1%
55	journal.unhas.ac.id Internet Source	<1%
56	online-journal.unja.ac.id Internet Source	<1%
57	teknologitip.blogspot.com Internet Source	<1%
58	Ahmad Talib, Marlena T. "Karakteristik organoleptik dan kimia produk empek-empek ikan cakalang", Agrikan: Jurnal Agribisnis Perikanan, 2015	<1%
59	Leni Anggraini, Andriani Andriani. "Kualitas kimia dan organoleptik nugget ikan gabus melalui penambahan tepung kacang merah", Jurnal SAGO Gizi dan Kesehatan, 2021	<1%

Exclude quotes Off Exclude matches < 5 words

Exclude bibliography On