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Abstract

Cognitive function includes learning, remembering and using acquired information. Emerging studies indicate the
correlation between microbiota and cognitive function. Higher abundance of a specific gut microbiota, such as Bacte-
roidetes may improve cognitive abilities. However, another study reported different result. These results suggest that
further systematic analysis is required to determine the effect of the gut microbiota abundance on cognitive develop-
ment. The aim of this study is to summarize the abundance of the specific gut microbiota and cognitive development
using meta-analysis. PubMed, ScienceDirect, and Clinical-Key were used as data bases to perform the literature search.
Phylum Bacteroidetes, and family Lactobacillaceae were more abundant in cognitive-behavioral enhancement (CBE),
whereas Firmicutes, Proteobacteria, Actinobacteria, and family Ruminococcaceae were less abundant in CBE. Differ-
ences in gut microbiota abundance are influenced by differences in stage of cognitive dysfunction, intervention, and

strain of gut microbiota.
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Background

Cognitive disorder is a condition of diminished ability
of learning, remembering and using acquired informa-
tion [1]. Cognitive disorders in childhood affect greatly
their behavior and sometimes require special educational
resources [2]. In the elderly, on the other hand, cogni-
tive disorders might increase the risk of dementia [3].
Impaired cognitive development causes diverse behav-
ioral and neuro-psychological characteristics, but the
mechanisms causing such characteristics are not still well
known. Previous studies proposed genetic and epigenetic
influences, such as chromosomal abnormalities, brain
injuries and inflammation, and environmental chemical
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exposure [4, 5]. Moreover, recent studies have proposed
that gastrointestinal impairment may be also associated
with impaired cognitive development [6]. The gastroin-
testinal impairment can be caused by metabolic diseases,
enteric nervous system disorders, and immune disorders
[7].

The central nervous system has bidirectional com-
munication with the gastrointestinal tract. This com-
munication is known as the microbiota—gut—brain axis
[8]. Through such axis, information from gastrointesti-
nal tract affects brain development, including cognitive
development [9]. Although the substance produced by
microbiota and involved in cognitive function has not
yet been clarified, one candidate may be short-chain fatty
acids (SCFAs) [10]. The alteration of the gut microbiota
affects SCFAs production [11]. Complex carbohydrates
such as prebiotic supplementation and dietary fibers
were fermented in the colon by the gut microbiota into
SCFAs such as n-butyrate, acetate and propionate [12].
SCFAs enter the circulation and cross the blood brain
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barrier (BBB) [13]. These SCFAs may enhance the integ-
rity of BBB [14]. Therefore, increased transport of mole-
cules and nutrients from the circulation to the brain, can
trigger its growth and development [15].

The hippocampus play an important role in controlling
cognitive function [16]. The hippocampus is an area of
the brain that consistently maintains its ability to generate
neurons throughout life [17]. Previous studies reported
the functional development of the hippocampus play an
important role in the process of learning and memory
[16, 17]. Cognitive impairment has been widely associated
with neuronal atrophy in the hippocampus [18]. This con-
dition is associated with dysbiosis of the gut microbiota
[18, 19]. A higher abundance of specific gut microbiota,
such as Bacteroidetes may improve cognitive abilities [19].
However, another study reported different results. For
example, Wang et al. showed better cognitive ability in
the group with a lower percentage of Bacteroidetes [20].
Additionally, the differences of gut microbiota between
cognitive-behavioral enhancement (CBE) and non-CBE
were also not determined.

Based on these studies, further systematic analysis is
required to determine the abundance of the gut microbi-
ota on cognitive development. For such purpose, a meta-
analysis was conducted to analyze the abundance of the
specific gut microbiota on cognitive function in rodents
model.

Methods

Present review is reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) 2020 guidelines [21] (Additional file 1).

Eligibility criteria

To be included in present meta-analysis, studies must
meet the following inclusion criteria: (1) using rat/mice/
mouse/Mus musculus/Rattus as the population; (2)
reported outcome on cognitive behavior test; (3) presented
the bacterial information including bacterial taxonomy and
proportion; and (4) used pre-clinical as study design.

Information sources

Online databases including PubMed, ScienceDirect, and
ClinicalKey were used to perform the literature searched
to identify eligible studies without any year restrictions
until June 1st, 2021. The population (P) of this meta-anal-
ysis was rat or mice performing cognitive-behavioral test,
while the outcome (O) was gut microbiota abundance
measurement.
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Search strategy

The following search terms for the population: (rat OR
mice OR mouse OR Mus musculus OR Rattus) AND
(cognitive OR neurogenesis OR neurocognitive OR
memory OR recognition OR proliferation OR plastic-
ity); these were combined with terms relevant to the
outcomes: (gut microbiota OR enteral microbiome OR
enteral microbiota). Only articles written in English
were selected.

Selection process

After the inclusion criteria were specified, two inde-
pendent reviewers (SS and II) initiated the screening
process. First, the titles and abstracts were screened to
identify eligible studies. Second, SS and II screened the
remaining articles for full-texts detailed assessment.
Third, the group with statistically increased cogni-
tive behavior (P<0.05) based on the cognitive-behav-
ioral test was designated as the CBE group. And then,
for consistency, the included studies were analyzed at
the phylum and family level. Any disagreements on
the eligibility of the studies were resolved with a third
reviewer (NK).

Data items and collection process

The following information were extracted eligible stud-
ies: year of publication, authors, rodent species and
strain, sex, sample size, age of testing, types of cogni-
tive-behavioral test, studies intervention and result of
studies. Data extraction was independently performed
by the two reviewers (SS and II). If any relevant data
were presented in graph, WebPlotDigitizer was used
to convert graphically represented data into numerical
values [22]. The results were verified by a third reviewer
(NK).

Risk of bias assessment

The risk of bias of the included studies was evaluated
using the SYstematic Review Center for Laboratory
Animal Experimentation (SYRCLE)’s Risk of Bias (RoB)
tool [23]. Two of us (SS and II) independently rated the
studies as having “low”, “unclear”, and “high” risk of bias
in six dimensions: sequence generation, baseline char-
acteristics and allocation concealment (selection bias),
random housing and blinding (performance bias), ran-
dom outcome assessment and blinding (detection bias),
incomplete outcome data (attrition bias), selective
outcome reporting (reporting bias), and other sources
of bias (other). Disagreements in scores were resolved
through discussion with a third reviewer (NK).
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Statistical analysis

Effect size used in this meta-analysis was the propor-
tion of percentage (%) of the gut microbiota abundance,
if more than 5 studies were included in the analysis, the
random-effects model were used. Otherwise, the fixed-
effects model would be selected [24]. Forest plots were
used to visualize the result of analysis. Statistical het-
erogeneity was assessed using the I* index. Indeed, all
statistical analyses were carried out using STATA 16.0
(USA).

Results

At initial search, 1637 articles were identified for con-
sideration in the present meta-analysis. After exclusion
of 12 duplicate reports, 1625 abstracts were reviewed.
Twenty-five articles were assessed for eligibility in this
meta-analysis. Exclusion criteria of studies are identi-
fied in Fig. 1. We included 11 papers with a total of 15
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intervention arms showing CBE. Although the degree
of the enhancement varied among groups, we have
defined as CBE when a significant enhancement was
observed by the intervention. In addition, although the
method of invention was different among groups, we
have recruited all data showing CBE with the measure-
ment of microbiota. The characteristics of the included
studies are described in Table 1.

Study risk of bias assessment

The risk of bias of included studies is shown in Fig. 2.
All studies had detected unclear biases related to
sequence generation, random housing, performance
bias, and detection bias [19, 20, 25-32]. One study had
high risk of allocation bias because allocation to the
different groups not adequately concealed, either from
allocation based on date of birth or allocation based on
animal number [33].

Records after title and abstract
screening (n = 1600)

Full-text articles excluded

No quantitative data of bacterial
percentage (n = 14)

Fig. 1 Study selection flow
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Fig. 2 Risk of bias assessment using SYRCLE's risk of bias tool. A Risk of bias summary. B Risk of bias graph

Abundance of phylum Bacteroidetes, Firmicutes,
Proteobacteria, and Actinobacteria

Bacteroidetes are highly abundant in the gastrointestinal
tract [34]. Heterogeneity (I*) among studies is 63.34% in
CBE and 69.17% in non-CBE (Fig. 3a). The random effect
model showed the percentage of Bacteroidetes in the
total gut microbiota detected was 33% in mice with CBE
[95% CI 0.19-0.47], higher than non-CBE which was 23%
[95% CI 0.10-0.36].

An analysis of the abundance of Firmicutes showed
heterogeneity between studies (I>=67.21% in CBE and
68.82% in non-CBE). Random effect models showed that
the percentage of Firmicutes in mice with CBE was 61%
[95% CI 0.44—-0.76]. However, the percentage of Firmi-
cutes in mice with non-CBE (Fig. 3b) was 64% [95% CI
0.49-0.79].

Proteobacteria are Gram-negative bacteria that are
highly abundant in the gut and most of their colonization
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A Bacteroidetes
Abund of B in CBE Proportion 95% CI ~ Weight A of in non-CBE Proportion 95% CI ~ Weight
Study (%) Study (%)
Jena et al., 2020 —_— 0.25[-0.17, 0.68] 6.4 Jena et al., 2020 —— 0.08(-0.12, 0.28] 10.57
Lee, Kim and Kim, 2020.a —— 0.23[-0.13, 0.59]  7.79 Lee, Kim and Kim, 2020.a — 0.25[-0.13, 0.63]  6.39
Lee, Kim and Kim, 2020.b —— 0.22[-0.14, 0.58]  7.79 Lee, Kim and Kim, 2020.b —— 0.07[-0.15, 0.29]  9.99
Liu et al., 2020 —— 0.49[ 0.24, 0.74] 10.76 Liu et al., 2020 —— 0.34[ 0.10, 0.58] 9.58
Shi, Wang, et al., 2020 —_—— 0.34[-0.07, 0.76]  6.67 Shi, Wang, et al., 2020 —— 0.12[-0.17, 0.41] 835
Shi, Yu, et al., 2020 ——®————061[ 0.18, 1.04] 6.44 Shi, Yu, et al., 2020 —— 0.14[-0.16, 0.44]  8.07
Wang et al., 2020 —— 0.51[ 0.33, 0.69] 13.14 Wang et al., 2020 —— 0.38[ 0.21, 0.55] 11.30
Wang et al., 2021 —— 0.48[ 0.23, 0.74] 10.76 Wang et al., 2021 —— 071[ 048, 0.94] 9.78
Xin et al., 2021.b - 0.01[-0.09, 0.11] 15.46 Xin et al., 2021 - 0.02[-0.10, 0.15] 12.54
Yang et al., 2018 —a— 0.13[-0.20, 0.47) 8.50 Yang et al., 2018 —a— 0.14[-0.20, 0.48] 7.12
Yang et al., 2020 ——— @ 053[ 0.09, 0.97) 626 Yang et al., 2020 —a— 0.26[-0.12, 0.64] 6.32
Summary (I = 63.34%, p = 0.00) - 0.33[ 0.19, 0.47] Summary (I? = 69.17%, p = 0.00) - 0.23[ 0.10, 0.36]
0 5 1 -5 0 5 1
Bacteroidetes Proportion Bacteroidetes Proportion
B Firmicutes
of F in CBE Proportion 95% CI  Weight Relative A of F in non-CBE Proportion 95% CI  Weight
Study (%) Study (%)
Jena et al., 2020 —— 0.63[ 0.16, 1.10] 6.18 Jena et al., 2020 —— 0.86[ 0.60, 1.12] 10.19
Lee, Kim and Kim, 2020.a —— 0.68[ 0.27, 1.09] 7.21 Lee, Kim and Kim, 2020.a —a— 0.49[0.05, 0.93] 655
Lee, Kim and Kim, 2020.b —— 0.70[ 0.30, 1.10) 7.35 Lee, Kim and Kim, 2020.b —a— 0.65[0.23, 1.07] 6.91
Liu et al., 2020 E 3 0.42[ 0.17, 0.67] 10.56 Liu et al., 2020 —— 0.55[0.29, 0.80] 10.32
Shi, Wang, et al., 2020 —— 0.58[ 0.14, 1.01] 6.80 Shi, Wang, et al., 2020 —— 0.57[0.14, 1.01] 6.65
Shi, Yu, et al., 2020 —— 0.33[-0.08, 0.74] 7.17 Shi, Yu, et al., 2020 —— 0.59[0.16, 1.03]  6.68
Wang et al., 2020 » 0.40[ 0.23, 0.57) 12.25 Wang et al., 2020 . 0.52[ 0.34, 0.70] 12.05
Wang et al., 2021 R 3 0.47[ 0.22, 0.73] 10.47 Wang et al., 2021 —— 0.23[0.02, 0.45] 11.24
Xin et al., 2021.a 0.96[-0.78, 2.70]  0.75 Xin et al., 2021 —— 0.92[0.68, 1.16] 10.69
Xin et al., 2021.b L 095[ 076, 1.14] 11.91  Yangetal. 2018 —— 0.96[0.78, 1.15] 11.96
Yang et al., 2018  § 0.97[ 0.79, 1.14] 12.21 Yang et al., 2020 —a— 0.61[0.18, 1.03] 6.75
Yang et al., 2020 —— 0.34[-0.08, 0.75] 7.14 Summary (I = 68.82%, p = 0.00) > 0.64[0.49, 0.79]
Summary (I = 67.21%, p = 0.00) L 4 0.61[ 0.45, 0.76] : T T )
1 0 1 2 3 Firmicutes Proportion
Firmicutes Proportion
C Proteobacteria
A off ria in CBE Proportion 95% CI  Weight A off in non-CBE Proportion 95% C1  Weight
Study (%) Study (%)
Jena et al., 2020 — 0.03[-0.14, 0.21] 4.49 Jena et al., 2020 —a— 0.03[-0.09, 0.15] 12.17
Lee, Kim and Kim, 2020.a — 0.04[-0.13, 0.21]  4.59 Lee, Kim and Kim, 2020.a —————————=———————0.27[-0.12, 0.66] 1.22
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Fig. 3 Forest plot showing the proportion of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria in gut microbiota, in CBE and
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is linked to infectious diseases [35]. Evidence of het-
erogeneity between studies was not found (I>=0%). The
random effect model showed 3% of Proteobacteria were
present in mice with CBE [95% CI —0.00 to 0.07] while
non-CBE accounted for 5% (Fig. 3c) of the total micro-
biota [95% CI 0.00—0.09].

Evidence of heterogeneity of the percentage of Actino-
bacteria between studies was also not found (Z=0%).
Analysis of fixed-effects models on Actinobacteria
showed 1% [95% CI —0.04 to 0.07] in CBE. The percent-
age of Actinobacteria was 2% [95% CI —0.07 to 0.12] in
non-CBE (Fig. 3d).

Abundance of family Bacteroidaceae, Lactobacillaceae, and
Ruminococcaceae

An analysis of the abundance of Bacteroidaceae and Lac-
tobacillaceae showed no heterogeneity between stud-
ies (P=0%, Fig. 4a, c). Analysis of fixed effect models
showed the percentage of the Bacteroidaceae family to
the total microbiota was 5% [95% CI —0.05 to 0.14] in
CBE equal to non-CBE [95% CI —0.10 to 0.20]. These
family are abundant in mammalian gut and associated in
the maintenance of gut health [27, 28]. Fixed effect mod-
els showed the percentage of Lactobacillaceae in CBE
was 2% [95% CI —0.04 to 0.07] and 1% in non-CBE [95%
CI —0.04 to 0.06]. Heterogeneity between studies of the
abundance of Ruminococcaceae was not found in CBE
(?=0%), while 39.33% in non-CBE (Fig. 4b). Ruminococ-
caceae percentage analysis in CBE was 26% from total gut
microbiota and 34% in non-CBE (Fig. 4b).

Discussion
The balance of the gut microbiota plays an important
role in cognitive function [36]. Previous articles have
reviewed the role of gut microbiota in cognitive devel-
opment in humans [37, 38]. Animal research is required
to further investigate the role of bacteria in modulating
gut-brain interactions. However, to our knowledge, there
is no article performing meta-analysis study to deter-
mine the abundance of the gut microbiota on cognitive
function in rodent. In this regard, this study is the first
systematic review with meta-analysis investigating the
abundance of intestinal microbiota in rodents with CBE.
Phylum Bacteroidetes and family Lactobacillaceae are
more abundant in CBE. Bacteroidetes and Lactobacil-
laceae increased in the prebiotic intervention group [19,
27, 28, 31]. Prebiotics fermentation by Bacteroidetes
plays an essential role in the formation of SCFAs, which
may affect the permeability of the gut and BBB [13, 39].
Furthermore, Bacteroidetes have been shown to generate
acetate and propionate, which can protect neurons from
oxidative damage [13]. Thus, structural and functional
plasticity of the hippocampus may be in part impaired
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by the reduction in the percentage of Bacteroidetes [40].
In addition, Bacteroidetes also modulate the expres-
sion of BDNF, syntaxin, and drebrin in the hippocampus
[41], indicating that the microbial modulation may affect
behavior and cognitive performances [42]. Similarly,
the Lactobacillaceae family produces butyrate, which
engages in anti-inflammatory reactions and subsequently
maintains the gut barrier [43, 44]. Based on a number of
research, the presence of Lactobacillaceae would alter the
expression of BDNF and the proBDNF proteins [45, 46].
Consequently, the Bacteroidetes and Lactobacillaceae
can be regarded as a beneficial strain on brain develop-
ment and plasticity.

CBE has been particularly linked to a decline in Fir-
micutes, Proteobacteria, Actinobacteria, and family
Ruminococcaceae. A higher level of Firmicutes has con-
sistently been observed in patients with mild cognitive
impairment [47]. An increase in some bacteria belong-
ing to phylum Firmicutes, including Ruminococcaceae,
Enterococcaceae, and Streptococcaceae, have been cor-
related with cognitive dysfunction [47, 48]. The phylum
Firmicutes has been implicated in the pathogenesis of
neurodegenerative diseases [49]. Firmicutes promote
an alteration in neuroactive metabolite production and
modify host neurotransmitter circuitry [50]. Alteration in
neurotransmitter profiles, such as glutamate, dopamine,
and GABA have been implicated to the onset of neuro-
degenerative diseases [51]. These findings suggest that
Firmicutes species may contribute to neuropathogenesis
[52].

Probiotics administration can dominate certain micro-
biota [53]. The abundance of ileal microbes in CBE group
accounts for up to 90% of the phylum Firmicutes of the
total sequence due to administration of Lactobacillus
johnsonii BS15 [32]. Lactobacillus johnsonii BS15 has
also been identified as a possible psychobiotic, as it has
been shown to avoid memory dysfunction in rats caused
by psychological stress by modulating the gut environ-
ment [54]. Despite having a neuroprotective effect, Fir-
micutes abundance was found to be increased [32]. These
findings suggests that the abundance of gut microbiota
on cognitive function is also affected by the specific
strains of bacteria.

Regarding other phyla, Proteobacteria and Actinobac-
teria were found to be less abundant in CBE. Proteobac-
teria at the phylum level were reported to be increase
due to the administration of antibiotics followed by a
decrease in the abundance of Bacteroidetes [33]. The
phylum of Actinobacteria was reported to be decreased
in mice supplemented with curdlan prebiotic [30]. How-
ever, Proteobacteria shown to be increase in curdlan
supplemented mice [30]. The discrepancies in the find-
ings could be caused by various animal strains, the age
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Fig. 4 Forest plot of percentage of family Bacteroidaceae, Ruminococcaceae, and Lactobacillaceae in CBE and non-CBE

of the animal, or analytical methods [30, 33]. It is notice-
able that neurotoxins produced by Proteobacteria associ-
ate with the production of pro-inflammatory cytokines
and elevate as cognitive impairment develops [47]. Fur-
thermore, Coriobacteriaceae bacteria from the Actino-
bacteria phylum were discovered to be more prevalent
in mice with cognitive decline [55]. In ICR mice fed a
diet low in DHA, decreased acetate and butyrate SCFAs
were observed along with a rise in Actinobacteria abun-
dance, though the specific mechanism is unclear [56].
Consequently, the Proteobacteria and Actinobacteria
were regarded as unfavorable strain related to cognitive
development.

Although animal models are useful to study the mecha-
nisms of human diseases, cares should be taken on the
species differences. To study the interaction between
microbiome and diseases including, such concept should
be also applied. Both differences and similarities exist
in the composition of microbiota between humans and
rodents [57]. Thus, meta-analyses in human generated
similar and different findings. Patients with post-stroke
cognitive impairment and depression have a higher
abundance of Proteobacteria, particularly Gammapro-
teobacteria, Enterobacteriales, and Enterobacteriaceae

[58, 59]. A meta-analysis study of the gut microbiota of
Alzheimer’s disease patients also revealed a considerably
higher abundance of Proteobacteria [60]. These results
are similar to those of animal studies showing decreased
abundance in CBE. Dietary supplementation with probi-
otics had a highly significant effect on cognitive function
in patients with cognitive impairment or Alzheimer’s dis-
ease [61, 62], indicating further the importance of these
bacteria. On the other hand, as stated above, while sev-
eral studies showed increased abundance of Firmicutes
in patients harboring cognitive impairment [47, 48], the
abundance decreased in Alzheimer’s disease patients
[63], indicating that the influence of Firmicutes on patho-
genesis in the brain may not be consistent between spe-
cies. As shown in the present study, despite a substantial
number of research supporting the association between
gut microbiota and cognition in rodents, it may not be
adequate to extrapolate the result of rodents into humans
without further studies. Unfortunately, there may be
presently inadequate evidence from human studies to
encourage the supplementation of specific bacteria.
Despite these remarkable findings, our study had
limitations. First, there were significant statistical dif-
ferences between the included studies, which could
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be assigned to differences in age of testing, interven-
tion, and strain of microbiota. Nevertheless, we used
the fixed-model to estimate the effect sizes in order to
minimize the implications of the minimal number of
studies on our results. Second, in a number of stud-
ies, we extracted the required data from bar and circle
graphs, which may have resulted in another sort of bias.
However, this procedure was performed by WebPlot-
Digitizer to convert graphically represented data into
numerical values. Since we applied this methodology
consistently throughout the studies, the direction of
the statistical significance in the between-group com-
parisons would not be profoundly affected. Third, the
present findings should be interpreted with caution
because only a small number of studies evaluated the
effects on numerous occasions. Future study should
include more studies to provide greater proof on this
topic.

Conclusion

This study yielded four major insights into the nature
of gut microbiota alterations in cognitive develop-
ment. First, phylum Bacteroidetes, and family Lac-
tobacillaceae were more abundant in CBE, whereas
Firmicutes, Proteobacteria, Actinobacteria, and fam-
ily Ruminococcaceae were less abundant. Second,
Bacteroidetes and Lactobacillaceae increased in the
prebiotic intervention group, while Firmicutes and Pro-
teobacteria were less abundant. Third, administration
of antibiotic resulted in an increase in the abundance
of Proteobacteria and a decrease in the abundance of
Bacteroidetes. Fourth, the abundance of Firmicutes
dominates the gut microbe through administration of
the probiotic Lactobacillus johnsonii BS15. Differences
in gut microbiota abundance are influenced by differ-
ences in stage of cognitive dysfunction, intervention,
and the strain of gut microbiota. Our study can con-
tribute greatly in gaining our understanding on the role
of specific bacteria on cognitive development in rodent
models.
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