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Abstract: In this study mitial-boundary value problems for a linear and a weakly nonlinear string (or wave)
equation are considered. One end ofthe string is assumed to be fixed and the other end of the string is attached

a spring-mass-dashpot system, where the damping generated by the dashpot is assumed to be small. This
problem can be regarded as a simple model describing oscillations of flexible structures such as overhead power
transmission lines. For a linear problem a semigroup approach will be used to show the well-posedness of the
problem as well as the asymptotic validity of formal approximations of the solution on long time-scales. It is also
shown how a multiple time-scales perturbation method can be used effectively to construct asymptotic
approximations ofthe solution on long timescales. The main problem of this paper is to study how efficiently

these boundary dampers work.
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INTRODUCTION

asymplotic

There are examples of flexible structures such as
suspension  bridges, overhead transmission  lines,
dynamically loaded helical springs that are subjected to
oscillations due to different causes. Simple models which
describe these oscillations can be expressed in initiale
boundary value problems for wave equations (Keller and
Kogelman, 1970: Van Horssen, 1988; Van Horssen and
Van der Burgh, 1988) or for beam equations (Castro and
Zuazua, 1998: Boertjens and Van Horssen, 1998). To
suppress the types of boundary
damping can be applied (Castro and Zuazua, 1998).

In most cases simple, classical boundary conditions
are applied (Boertjens and Van Hors sen, [998: Keller and
Kogelman, 1970: Van Horssen, [998) to construct
approximations of the oscillations. For more complicated,
non-classical boundary conditions (Castro and Zuazua
1998), it is usually not possible to construct explicit
approximations of the oscillations. In this study such an
initial-boundary value problem with a non-classical
boundary be studied and explicit
asymptotic approximations of the solution, which are valid
on a long time-scale will be constructed. The main
problem of this paper is to study how efficiently these
boundary dampers work. The method which can be used
to investigate these problems are multiple timescales
methods (Kevorkian and Cole, 1981; Van Horssen, 1988),
Galerkin truncation methods and combinations of these
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oscillations  various

condition  will

approximation,

multiple timescales, perturbation method,
methods. From the asymptotic point of view it is also
interesting to study the convergence properties of the
applied perturbation methods for these types ofinitiale
boundary value problems. A string which is fixed at
x =0 and attached to a spring-mass-dashpot system at
will be considered.
To derive a model for flexible structures such as
suspension bridges or overhead transmission lines it
refers to Boertjens and Van Horssen (1998). It is assumed
that | (the length of the string), p (the mass-density of the
string), T (the tension in the string), rii (the mass in the
spring-mass-dashpot system), [ (the stiffness of the
spring) and ,a , § (the damping coefTicients of the
dashpot) are all positive constants. Furthermore, the only
vertical displacement u(x,t) of the string is considered,
where x is the placg along the string and f is time.

After applyilz a simple rescaling in time and in
displacement _

putting m=pmy=y.T,
(t= gt UxD =uxt)
p

X =

and a=..frpa simple model for the oscillations of the

string the following initial-boundary value problem:

Urr— Usx +P u=EF(x,u,u,),0<x<I1=0, (1)
u(0,t)=0t=0, (2)
u, (lt)=—g()r=0, (3)
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u(x 0)=4(x).0< x-c (4)
1
(5)

w, (0= 0 < X<
1

is obtained, where E is a small parameter with 0 <E « | and
where the function f is an external force (for instance a

wind force) and where g (t) is the boundary control force
defined by:

g(t)=nu. 0.t)+)U 0,t)+on,0,1)
The functions @i and 1l represent the initial

displacement of the string and the initial velocity of the
string, respectively.

MATERIALS AND
METHODS

Different cases are considered for f, m, vy, a and §- In
this paper, it will be considered the following three cases,
namely:

p’ o= 0. f(xp. p)=0,
m, v =0 (1),a=0(E)

p eQfix,uu) =N\ —IBI\ r
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m, ¥ a=0(E)

For  the first a semigroup approach
(Goldstein 1985), is used to show the well-posedness of
the problem for suitable initial conditions as well as to
prove the asymptotic validity ofthe formal approximations
of the solution on long time-scales. Although the problem
is linear the construction of these approximations is far
from being elementary because of the complicated, non+
boundary condition. Using some kind of

case

classical

balancing procedure we solve the linear wave equation
and construct approximations. In fact, the procedure is an
extension of the classical way to solve a linear wave
equation using the method of separation of variables. For
the second case, it will be analyzed the behavior of the
solutions of the problem where a justification is given
whether truncation of the infinite series for the formal
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be used. The idea of such an approach is to reformulate
the problem into an abstract Cauchy problem. To use this
approach we introduce the following auxiliary functions
defined as follows: a (t) = u(+, t) . b(t) = u,(+, t) and ri(t) =
mu, (1, t). For simplicity, we denote a,b, T, fora (1), b () T

(t), respectively. The following function
defined as follows:

spaces are

v: ={aEH'[0.1].a(0) = 0} (©

WM o= {y(t) = (a. b, IDE vx L' [0.1)x 9t}
{(7T) Now the space '}{is equipped with the inner

product
Hx "}{ -+ffl defined by:

(y.yh Z(a.+ a4+ bb)ydx+ya(lia(h+_| (8)

rifi
m

where, v = (a, b, TI) and y=(abij are in '"}{. Observe that

this inner product is based upon the energy of the string.
For that reason we call the space the energy space 'H.
The energy space '} together with the inner product\... )
is a Hilbert space. Next, itneeds to define the unbounded
operator A D (A) ¢ "H§'H

by:
s a- \
Ay(ty= b, Lye D(A)L
\_1] ¥
where,

D (Ay= {y(t) = (a,b, TI) E (HJO, 1] nv xv x ffl; T = mb
(1)}

It then follows that the form of the abstract Cauchy
problem of the initial-boundary problem (1)-(5) is of the
form:

approximation of the solution is

valid or not. We will y=
Ay

y (0)
=d>




where, y= di‘” fﬂ;ﬂ??rﬁsé’-’s.}? 11 (7):(9206)1212,
t Py

show that mode interactions occur only between modes
with non-zero initial energy (up to O(E)). For a sufficiently
large value of the damping parameter .. it will be shown
that all solutions tend to zero.

Case 1: To prove the well-posedness of the initials
boundary value problem (1)-(5) asemigroup approach will
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It is shown (Darmawijoyo and Van Horssen 2007),
using the Lumer-Philips theorem, that (9)-(10) is well®
posedness for tz(} and that the problems (1)-(5) and (9)*
(10) are equivalent (in classical sense) if Qi (x) E H (0, 1),
4i (0) = qi" (0) = 0 ar@tl 0 EH' 0, D n V. 1l 0) =0.

To an approximation of the solution of
initial-boundary value problem the two-time scales

construct
the
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perturbation method will be used. Using such a method
the function u (x, t) is supposed to be a function of x, t
and r — Et. For that reason, it is put

u(x,t)=w(x,t r;E) (11)
It is assumed that w (x, . t; E) can be approximated
by the formal expansion:
u (. to+Eu (4B (ro+E (12)
u

1 2

From (3), it is reasonable to expand the initial
displacement ¢ (x: E) and the initial velocity ijl(x: E) of the
string in Fourier series, that is:

(x)=a, (X)4E Gl (X)+ ... (13)

T0X) =l (+ETE (X) 4., (1)

Substituting (12-14) into (10-5) and after equating the
coefficients of like powers in E, it follows that the solution

of u,(x, 1 isgiven by:

u, (x,_‘t,T)zf (AN(L)sin( Ty 0+

fel (15)
B, (t)cas(yf7, sin(y/2, x)
where, Anis then-th non-negative zero of
min—y
cot(yfA, )———
W Vin (16)

and where two different eigenfunctions are orthogonal
with respectto the inner product defined by:

(X .Y::}I I +mo(x—1)] X¥dx

(0 is the delta function).
The O(E) - problem for is given by:

ul, —ul™ ==2u,ll,0<x «Lt=0

10,1, 1)=0,t>0,1:>0,
1209

Ui (x.0.0)=61 (xj.0x x <I (20)

Ui (.0.0) =Jfi (x)—u" (x.0.0).0 <x <1 (2D

To solve (17-21) the eigenfunction expansion
approach will be used. Using such an approach we have
to pay special attention to the non-classical boundary
condition at x = 1.

Making boundary conditions homogeneous is the
usual way to solve initial-boundary value problems when

the inhomogeneous boundary conditions are of classical
type (that is, are ofDirichlet, Neumann, or of Robin type).
For the non-classical boundary condition at x = | this
approach tums out to be not applicable. When we apply
the eigenfunction expansion to solve the initial- boundary
value problem (17-21) the left-hand side of(17) atx = | and
that of (19) are ofthe same form. So, to solve the problem
correctly the right-hand side of (17) at x = | and that of
(19) should match, that is, should be proportional. To
obtain this matching we introduce the following
transformation:

Tt B=xg(t L+ vix. 1)

(22) Taking v(x.tT)=L w(L.T)sin(.Ax) we find

|
ot =€ u. (LL1) (23)
y+1
Using transformation (23) the boundary condition at
x = | now becomes:

mvit (Lt THyv(lL tr)+vx(L tT)=
(24)
—2mu,JLLI:)+m}ﬁu w (Ltr), =0

It should be observed that if m is equal to zero then
the boundary condition at x = | becomes a classical
boundary condition. From (24) it can readily be seen that
in that case the boundary condition (19)at x = | becomes
an homogeneous one afler the transformation (23). By
using the eigenfunction expansion for v (x, t r) we find
that vn (t. r) has to satisfy:

(e (e (e
) Ln P PR S o S (17)

(18)
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where:

2y+1sin(I™N)
e
"+ (mh, +ysin' i, )

Observe that v (x, t, r) now automatically satisfies the
boundary conditions v (0,1, r) = 0 and (24). In order to
remove secular terms, it now easily follows from (25) that
Anand B, have to satisfy:

Au"+Eﬁ__l—]Ansin(V'(%lg.hﬁ‘ (26)
Bn+2Tyﬂ-!-_UAnsm["<Elﬂ )Bn:(} (27)
Using (16) and defining:
Lo
cl]1 = F‘FTTAH Sln(vé)
e Ff (28)
AsitCEE) g
An +(rnAn +y sinl(,A)
the solution of (26)-(27) is given by
A (t)=A, (0)exp(—o,T) (29)
(30)

B )=BJ0)exp(-an,)

It is easy to see that the infinite series representation
(15) foru, is twice continuously differentiable with respect
to x and t and infinitely many times with respect to r. From

(16) it follows that JX‘0 (n-1)re as n : = So,c, tends
to 0 as n tends to = From (29) and (30) itthen follows that
u, is stable but not uniform. Afler removing secular terms
vi(t, r) can now be determined completely, yielding:

v, (LD D, (Deas(yf, )+ E, (Dsin(fA, t)
N
p#n

+B, (T)oos(y f?.,n 1))
where, Di(-r) and Eal-r) are still arbitrary functions which
can be used to avoid secular terms in ui(x, t, r), At this
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that [AaCO)I, Ba(0)I 5.constant/n' JCu(O0)I, Dn(0)ls
constantyn.So far we have constructed a formal
approximation il(x,) =u, (x.t, r)+ EU, (x, t, r) ofu (x,1),
where u, (x, t, r) and u, (x, t, r) are twice continuously
differentiable with respect to x and t and infinitely many
times with respectto r. It can be shown that u (x, t) -
(U, t, r)+ ri(x, t, 1) =0 (E)and u (x,t)- (u(x, t, ) = 0
(E) on OstsL, E-' and Osxs 1. And so we obtained
asymptotic approximations.

Case 2: In this case we will analyse the asymptotic
behaviour of the solution for small E and large values of
t. For classical boundary conditions this problem has
been studied (Keller and Kogelman, 1970; Van Horssen,
1988). It was shown that the solution of the initial value
problem with classical boundary conditions tends to a
combination of a finite number of periodic solutions
(Keller and Kogelman, 1970). We will show that for a
sufficiently large value of the damping coefTicient these
periodic solutions tend to a stable-zero solution. The
problem we consider is:

5 ) 1 :

U, ~u FPU=E(y —u), G
O<x<n:t >0u(00)=0,=0, (32)
wi(xt) =E (mu. +yu+au,),x =n,>0 (33)
u(x.0) =q:(x),0<x <rt (34)

(35)

u,(x 0) 2§/ (x).0 <x<re

As we function u
be a

reason

did the (x, t} is supposed to
of x,t and r where r =EtFor that
(%, 1) =v (x,t,r). After expanding v
(x, t, r) into a formal power series in E as (12)
and afler substituting  this into the equations (31 )¢
(35) and after equating coefTicients of like power in E, it
follows that the solution for v, is given by:

function
we put u
in

vt D=3 (A(Teos(I\))

n=0

(36)
+Br (T)sin[-v’.é}l)si n( .'2+n)x




. howev e i ted, i io hepe. Ap= p+(n+1/2) is an eigenvalue. An (1) : (r
moment ho\l»e\elr‘ we are not 'nlere"'%ff)}:@t‘d}}]él?eﬂ (7)?!;?56-?5!5. [r.l ) ois dn_elgem lue. An ll]_dnd B.(r)
order approximations. For that reason we will take D, (r) will' be " determined to avoid secular terms in v.. The

=D, (0) and Ea (r) = En(0). It is shown (VanHorssen, 2003) function v, should satisfy:
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1
1 v I=vd: = 2¥ii— —v!
V-V P vid:—2vm V!

(37)
Oxx-cn.te-0
vA(0LE)=0.t= 0 v (mt; t=— (38)
(mvitt +yv, +av") (39)
X=mr =0
vi(x0.0)=00<x <lt (40)
Vi 00)=v"(100)0<x <lt (41

In order to solve problem (37-41) we make the
boundary conditions (39) homogeneous. For that purpose

we define the following transformation:

v Ll=Eviel) +x(my,. +yv, +av') (42)
Substituting (42) into (37-41) and putting:
\;(M:L]:]{T vn(LI:]sin("l)+n)x (43)
we obtain the following equation for vaCt, I'):
v, +11m-u:rn=!_."H)' [Ak =p")(Ck cai( ./ A:l)
+D, sin(yfI 0+ R, 247, (01— A, (2)]sin(E, 0 (a4)

+yfl,[B,(5)~ 2B, (m]cosiyl, 1)

klmen ktltmlen |

where:

H, =k, (A, @sin,1) + B, @eos(R,1)

where:

C,=mh, A, ~1A,~0yfA,B, and D, =mh.B, ~ B, + o/l A,
In order to avoid secular terms we have to take the
coefTicients of sin ..P] and cos ..P] in the right - hand

side of (44) to be equal to zero. This will give us equations
for AJ4;) and BJL). It can also be shown that in order to
determine the approximation u, of the solution completely.

1210

k+l+nr=n.or k-lm-1=n,
ork + 1+m + l=nand

tA = A - A I or
A=A A TS or

AczP:1dr-S.

(45)

To solve these equations we use a similar technique
to the used (1988). By
substituting n =k + |- mom=k -1-morn=k +1+m +
I into (45) and then squaring the equations with the
square roots twice and afler rearranging terms and using
some algebraic manipulations we find that secular terms
in the last term of (44) can only occur (fork, m, fand n in
Z'and p* > 0) if

one in Van Horssen

v fii= AL - A and k+l-m. In this case the
solution of the equation is give by |=m and n =1

. A=A - andkr = men In this case the
soltion of the equation is give by 1 =m and n=k

' J']‘.‘.:—A+A +%  and k+lbvmen: In this case the

soltion of the equation is give by k=mand n=1

Byputting: . /(Aa(T)=Ru(T)cos_pa(T)yand ../( Bn(T)Ra(T) sin (pa(T))
secular terms in v can be avoided if Rn(l:) and <n (L)

satisfy:
Y R®, 2 1 -
R = TR ——
= T 4»2412‘] (46)
and
¥, =110 £ _Al @47

rt H'V

forn=0,1,2....

From equation (46) it follows that if we start with
zero initial energy in the th mode (that is, An (0) =B, (0)
=Rn(0)=0)c then there will be no energy present
up to O (E) for 0<l:<O(1). In this case we say the coupling

the modes is of O (E) . This allows us
to those modes which have initial

between
truncate

to
NON-£ero
energy. As example we will consider Eq. 46 for two modes
only by assuming R. (0) = 0 for nzZ. The equations for R,
and R| are given by:




We have to determine the secular !95[{};{1}11?{,9”99}1_}:1}! (7): 1206-121R (T]:R,ﬁ)(]_}n_a_?R; __.{Rl » (48)
o L % B

by solving the Diophantine-like equation:
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=\

R,
Fig. 1: Phase plane for O <ex<<m/2
Table 1: The Behaviour ofthe critical points
Critical point Behaviour

(<< lz‘ cp. Unstable node
cp, Stable node
cp. Stable node
op. Saddle point

a<t cp. Stable node

R\(D)= (49)

R(of, 2 S s
() 1-24, —lR?; —iR'{ ]
2| = 4 6

The critical points ofthe equations (48) and (49) are

CP| =(0,0)cp.= |W;Ul-2ﬂ).0} cpl=(0.9@:(r— 2a)J and
cpe= (*0 ;“1-23) ,*0 ;(11-221)1 for O<a<m/2 and for 02112

the only critical point is (0, 0). By linearizing the equations
(48) and (49) around the critical points for O<w<m/2 we
obtain two stable nodes, node and one
saddle and for c>my/2 the critical point is a stable node
(Table 1).

From the table we can see that if e (the damping

one unstable

coefTficient) is increased then all critical points will move
to the stable node. The behaviour of the solutions of the
equation (48 and 49} locally can be shown in Fig. | and 2.
To see the qualitative behaviour of the solution we
implement the numerical continuation package DSTOOL
on the R -R, plane and by taking ei= 0.5 the result can be
seen in Fig. 3.

Also for more general initial values we can show that
u tends to zero for e > m/2 So far we have shown that it is

possible to construct secular free approximations v, + ev,
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R4

Fig. 2: Phase plane for e m/2

b 03 <
- T

=

R,

Fig. 3: Qualitative behaviour of the solution of system
(48) and (49) on the R = R, plane for a= 05

and ve of the exact solution u of the initial-boundary
value problem (31-35).

CONCLUSIONS

In the first part of this study an initial - boundary
value problem for a weakly
can be

initial-boundary value problem (1-5) is

damped string has been

considered. shown that (using a semigroup

the
well-posed for Osx sl and t7.0. Although the problem in

approach)




JApplied Sci, 11 (7): 1206-1212,

this part is linear, the construction of the approximation is
far from being elementary. For instance it is not possible
to solve (17-21) in the classical way by making the
boundary condition at x = | homogeneous. This is due to
the non-classical boundary condition at x = 1. It can only
be done by balancing or matching the right-hand side of
(17) and that of (19) by transforming u in an appropriate
way. It also should be noted that the way to solve the
wave equation with a non-classical boundary condition
(using the eigenfunction expansion is an extension of the
classical way to solve such problem. In the second part of
this we considered an initial-boundary
problem for a weakly nonlinear wave equation with a non®
classical boundary condition. We have constructed
formal approximations oforder £ . It has been showed that
for all values of p’>0 mode interactions of O (1) occur only
between modes with non-zero initial energy. In this case
we say the coupling between the modes is of O (E) and
truncation is allowed, restricted to those modes that have
non-zero initial energy. It has been showed that for large
values of \(t) the system will oscillate in only one mode
up to O (E) It has also been showed that for a sufficiently
large value ofthe damping parameter e all solutions tend

study value

to zero. Ifthe term u, in the boundary condition at x = re
is proposed, it can be shown that this term gives rise to a
singularly perturbed problem. Six scalings (four time
scales and two space scales) are necessary to describe
the behaviour of the solution correctly for large values of
t It can also be shown that the problem is well-posed for
all t = 0. It refers to Darmawijoyo (2010).
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