ANALISIS SENTIMEN CALON PRESIDEN 2024 PADA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE

PRATAMA, M.RIZKY ZULPA and Abdiansah, Abdiansah and Alfarissi, Alfarissi (2023) ANALISIS SENTIMEN CALON PRESIDEN 2024 PADA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021381924094.pdf] Text
RAMA_55201_09021381924094.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_TURNITIN.pdf] Text
RAMA_55201_09021381924094_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (9MB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_01_front_ref.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (754kB)
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_02.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (320kB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_03.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (114kB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_04.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (723kB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_05.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (196kB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_06.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6kB) | Request a copy
[thumbnail of RAMA_55201_09021381924094_0001108401_0215128501_07_ref.pdf] Text
RAMA_55201_09021381924094_0001108401_0215128501_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (77kB) | Request a copy

Abstract

Twitter has many features that can be used. One of these features is that users can share tweets or news in the form of text, photos or videos. One of the useful data on information is sentiment analysis. To find out how much the response from the public is related to the 2024 Indonesian presidential election, is it more inclined to positive sentiment, negative or neutral sentiment. One method of sentiment analysis is SVM (Support Vector Machine). The sentiment analysis on social media Twitter on presidential candidates in the 2024 election using the SVM method was tested on various percentage of data. From the test, the accuracy value is 0.66%. Several factors that influence the level of accuracy value are the percentage of training data and testing data, the data pre-processing process performed, and the percentage of positive data negative or neutral.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Twitter, SVM(Support Vector Machine), Pemilihan Umum
Subjects: P Language and Literature > P Philology. Linguistics > P98-98.5 Computational linguistics. Natural language processing
Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: M.Rizky Zulpa Pratama
Date Deposited: 21 Aug 2023 02:25
Last Modified: 21 Aug 2023 02:25
URI: http://repository.unsri.ac.id/id/eprint/127472

Actions (login required)

View Item View Item