OPTIMASI FIS TSUKAMOTO DALAM MEMPREDIKSI CURAH HUJAN DI KABUPATEN BANYUASIN MENGGUNAKAN ALGORITMA GENETIKA

AKBAR, MUHAMMAD RAFI and Miraswan, Kanda Januar and Rodiah, Desty (2023) OPTIMASI FIS TSUKAMOTO DALAM MEMPREDIKSI CURAH HUJAN DI KABUPATEN BANYUASIN MENGGUNAKAN ALGORITMA GENETIKA. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021282025065.pdf] Text
RAMA_55201_09021282025065.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_TURNITIN.pdf] Text
RAMA_55201_09021282025065_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (12MB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_01_front_ref.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_02.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_03.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_04.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_05.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (305kB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_06.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (99kB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_07_ref.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (112kB) | Request a copy
[thumbnail of RAMA_55201_09021282025065_0009019002_0021128905_08_lamp.pdf] Text
RAMA_55201_09021282025065_0009019002_0021128905_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (121kB) | Request a copy

Abstract

Indonesia, as a tropical climate country with high rainfall, heavily relies on accurate rainfall predictions for various critical purposes, including water resource management and extreme weather impact mitigation. One commonly used method is the Tsukamoto Fuzzy Inference System (FIS). However, implementing the Tsukamoto FIS often leads to high error rates. This is attributed to the difficulty in determining the boundaries of fuzzy variable membership functions. To address this issue, this research proposes an innovative approach by optimizing the boundaries of fuzzy membership functions using Genetic Algorithms (GA). The study resulted in a 49.02% reduction in the error rate, decreasing from 76.82% to 27.8%. This method significantly enhances rainfall prediction accuracy and contributes to the advancement of more sophisticated prediction methods. The optimization method proposed in this study also holds potential for application across various atmospheric science contexts.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Error Rate, Fuzzy Inference System (FIS) Tsukamoto, Fuzzy Membership Optimization, Genetic Algorithms, Rainfall Prediction, Algoritma Genetika, Optimasi Fungsi Keanggotaan Fuzzy, Prediksi Curah Hujan, Tingkat Error
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Q Science > QA Mathematics > QA299.6-433 Analysis > Q334.A755 Artificial intelligence. Computational linguistics. Computer science.
Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76 Computer software
Q Science > QA Mathematics > QA8.9-QA10.3 Computer science. Artificial intelligence. Computational complexity. Data structures (Computer scienc. Mathematical Logic and Formal Languages
Q Science > QA Mathematics > QA1-939 Mathematics > QA9.64.A56 Computer science. Fuzzy mathematics.
T Technology > T Technology (General) > T57.6-57.97 Operations research. Systems analysis > T57.84 Heuristic programming
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Muhammad Rafi Akbar
Date Deposited: 29 Dec 2023 06:34
Last Modified: 29 Dec 2023 06:34
URI: http://repository.unsri.ac.id/id/eprint/137165

Actions (login required)

View Item View Item