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Abstract
TheMuara Laboh geothermal field lies in a South Solok basin zone,West Sumatra, Indonesia. Production and reinjection of geothermal
fluids into the underground reservoir commonly induce crustal deformation. The study area is covered by 63.8% plantation, primary,
and secondary forests, which limit the ability of conventional InSAR techniques. Therefore, an Intermittent Small BASeline Subset
(ISBAS) analysis has been performed to estimate line-of-sight (LOS) displacement time series due to geothermal production using
the Sentinel-1 dataset between 8 March 2021 and 15 March 2022. The localized subsidence with ⇠30 mm/yr rate over this tropical
geothermal field has been revealed by using the ISBAS. The subsidence coincides with an area of the Muara Laboh geothermal
reservoir. We suggest that geothermal production induced subsidence. In addition, the deformation in this geothermal field was
controlled by faults and seasonally influenced by rainfall. Therefore, deformation variation was correlated with fluctuations in rainfall
patterns. The geothermal reservoir system exhibited elastic expansion in response to seasonal recharge events during the rainy
season.
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1. INTRODUCTION

Sumatra Island is tectonically related to the oblique sinking of
the Indo-Australian Plate under the Eurasian Plate. It has an
important role in creating the Great Sumatra Fault (GSF), a
series of volcanic activities, and geothermal systems. This GSF
system, segmented with compression and extension zones, is
northwest-southeast dextral strike-slip faults along the Suma-
tra island (⇠1,900 km) from Banda Aceh in the northwest
to Bandar Lampung in the southeast (Mussofan et al., 2018) .
The fault system determines the island’s geothermal activity
structurally.

The Muara Laboh geothermal �eld lies in a depression
zone between the Siulak and Suliti fault segments located in
the south and north, respectively. This geothermal �eld is in
the South Solok Regency, West Sumatra, Indonesia (Figure
1). The geothermal power plant in this �eld has o�cially op-
erated with a capacity of 80 MWe since last December 2019
(Hutter, 2020) . Production and reinjection of geothermal �u-
ids into the underground reservoir commonly induce crustal

deformation. The reservoir’s in-situ stress �eld signi�cantly
a�ects the combined hydraulic and deformation mechanisms
(Soltanzadeh et al., 2009) . Detectable and monitored defor-
mation can provide essential insights into reservoir extent and
dynamics.

Synthetic aperture radar interferometry (InSAR) techniques
can be applied to observe the ground surface deformation,
which can estimate the deformation of the host rock caused by
�uid migration at depth. Small surface deformations with an
accuracy of 1 cm or less and sizeable spatial area coverage (up
to several tens of square kilometers) can be imaged at any time
of day or night, regardless of the weather, with the InSAR tech-
niques (Khakim et al., 2013) . Di�erential InSAR (DInSAR) is
the �rst radar interferometry technique to measure deforma-
tion (Gabriel et al., 1989) . Measured deformation from the
InSAR technique was successfully used to infer the sources’
depths, locations, shapes, and relative deformation magnitudes
over Eastern California’s Coso geothermal site (Fialko and Si-
mons, 2000) . Previous studies of the DInSAR technique were
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Figure 1. Location of the Study Area

also applied in other geothermal �elds, such as the Mexicali
Valley, Baja California, Mexico (Sarychikhina et al., 2010) and
Mexico’s Cerro Prieto geothermal �eld (Sarychikhina et al.,
2016) .

However, the DInSAR is problematic when the phase dif-
ference of re�ected radar waves from a ground element cannot
be interpreted as deformation, such as vegetation change and
variation in atmospheric conditions. This limitation can be
overcome by developing multi-temporal InSAR approaches,
such as Persistent Scatterer Interferometry (PSI) (Crosetto
et al., 2010) and Small BASeline Subset (SBAS) (Berardino
et al., 2002; Khakim et al., 2023; Lanari et al., 2015). These
conventional PSI and SBAS are e�ective methods for measur-
ing surface deformations in typically urbanized regions or bare
rock outcrops. Furthermore, an intermittent SBAS (ISBAS)
method is a modi�ed implementation of the SBAS approach
providing a better image of the spatial extent of the land defor-
mation (Sowter et al., 2013) . The ISBAS method was mostly
applied in environment studies, such as urban subsidence (Liu
et al., 2020) , coal mining (Bateson et al., 2015; Novellino et al.,
2014; Sowter et al., 2013), and peatland monitoring (Alsham-
mari et al., 2020; Alshammari et al., 2018; Marshall et al.,
2018), but still limited in the geothermal study. This ISBAS
was used in the Tengiz oil �eld (Grebby et al., 2019) and has
not been applied in a tropical geothermal �eld. The Tengiz oil
�eld is in a region that has a semi-arid climate. However, our
study area is one of the tropical geothermal �elds, mostly cov-
ered by forest with tall trees and dense vegetation. In addition,
there is no deformation measurement for the current state in
this �eld.

Therefore, this study aims to estimate spatiotemporal de-
formation over the tropical Muara Laboh geothermal �eld and
surrounding area by modifying the ISBAS method and using
the Sentinel-1 image. The estimated deformation is impor-
tant for geodynamic monitoring and characterization during

geothermal energy production.

2. EXPERIMENTAL SECTION

2.1 Materials
This study utilized the European Space Agency’s (ESA) Sentinel-
1 IW TOPS images. The Sentinel-1 uses a C-band Synthetic
Aperture Radar (SAR) sensor with a central frequency of 5.405
GHz and a wavelength of 5.6 cm to o�er continuous world-
wide all-weather, day-and-night radar imagery. The bene�ts of
this dataset over competing o�erings include a larger coverage
area, a shorter revisit period (12 days), and no cost to the user.
Therefore, a higher spatial and temporal resolution of surface
deformation monitoring is possible with a time-series analysis
based on this data (Yalvac, 2020) . We used 32 descending
Sentinel-1A Single Look Complex (SLC) images with a path
of 3 and a frame of 617 from 8 March 2021 to 15 March
2022.

2.2 Methods
ISBAS-DInSAR Analysis. A processing �ow of spatiotemporal
deformation is presented in Figure 2. We used open-source
GMTSAR software for InSAR data processing on the Ubuntu
18.04 platform (Sandwell et al., 2011) . Twenty-two descend-
ing SLC images were used to generate 111 interferometric
pairs. The SLC image of 19 September 2021 was used as a
super-master image selected automatically using the Sentinel
Application Platform (SNAP) software version 7.0.

Figure 2. The Processing Flow of Spatiotemporal Deformation

The other SLCs, as slave images, are geometrically aligned
with the super-master image (Shirzaei et al., 2017; Xu et al.,
2020). The alignment of slave scenes to a super-master scene
started with a pixel-wise estimation of range and azimuth o�sets
using precise orbits and the 1-arcsecond shuttle radar topog-
raphy mission (SRTM) digital elevation model (DEM), which
covers the area of the SLC images (Xu et al., 2017) . This
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process was done to align the SLC images with the master
image properly. The spatial and temporal baseline thresholds
to form interferometric pairs are 50 m and 100 days, respec-
tively. These perpendicular and temporal baseline networks
are presented in Figure 3.

Figure 3. Perpendicular and Temporal Baseline Networks to
Derive Interferometric Pairs from 8 March 2021 to 15 March
2022; A Red Dot Denotes a Super-Master Image

Using the SRTM DEM, the topographic phase was sub-
tracted from the measured interferometric phase. In addi-
tion, a Gaussian �lter with a half-width of 200 m was used to
eliminate the phase term from the speckle noises, and it was
multi-looking by factors of 8 pixels in range and 2 pixels in
azimuth. Phase interferograms were unwrapped by applying a
SNAPHU algorithm (Chen and Zebker, 2001) and a coher-
ence threshold 0.2. The interferometric phase images were
successfully unwrapped and then projected onto a map coordi-
nate system WGS84. Then, the atmospheric phase delay was
removed from the original interferogram using the Generic
Atmospheric Correction Online Service (GACOS) (Yu et al.,
2018) (Figure 4). After the atmospheric correction, we applied
a best-�t plane to eliminate the interferograms’ remaining lin-
ear trends.

The study area is covered by 63.8% plantation, primary,
and secondary forests (Figure 5). Therefore, spatiotemporal
deformation is derived by modifying the ISBAS algorithm.
Our modi�ed ISBAS has applied a convolution �lter type of
boxcar with a width of 0.7s. The deformation estimation was
performed only on coherence points. The coherence threshold
of 0.20 was applied to the generated interferogram for the
ISBAS analysis. A minimum quality criterion is applied to
select enough quality in a minimum number of interferograms
to be accepted for analysis.

Figure 4. Atmospheric Correction and Residual Linear Trend
Removal

Figure 5. Landcover of the Study Area

3. RESULTS AND DISCUSSION

3.1 Surface Deformation Rate
The working area of Muara Laboh geothermal lies within the
Suliti Fault Segment of the Great Sumatra Fault (GSF), as
presented as a blue polygon area in the left panel of Figure 6.
The positive deformation values in this �gure indicate motion
towards the satellite, which can be interpreted as surface uplift.
In contrast, negative values indicate motion away or surface
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subsidence. The o�set of right dilatation along the segment
is an area that is the center of the volcanic activity. This fault
section accommodates a geothermal heat-producing magmatic
intrusion (Mussofan et al., 2018) . This Suliti Fault Segment
structure has high permeability for Muara Laboh geothermal
system and provides multiple conduits for magma moving up
(Alamsyah, 2012) . Consequently, the uplift around the Suliti
Fault segment occurred with the rate reaching about 15 mm/yr,
proving that the area along this fault segment is the potential
for a geothermal system.

Figure 6. Subsidence Rate of Muara Laboh Geothermal Field

The right panel of Figure 6 clearly shows the Muara Laboh
geothermal �eld exhibiting noticeable surface subsidence. The
subsidence around well pads was patterned irregularly. The
observed deformation is interpreted as dominantly resulting
from geothermal �uid production, so the subsidence patterns
appear to follow the distribution of production wells. A linear
subsidence rate in the LOS direction reached approximately
30 mm/yr over this geothermal �eld between March 2021 and
March 2022. The geological structure of this site might cause
an irregular pattern of subsidence. This area is a junction be-
tween two main segments, i.e., the Suliti Fault segment and the
Siulak Fault segment, creating several faults between these two
segments. These inferred faults might control the subsidence.

Consequently, the pattern of the subsidence in the south-
westMuara Laboh �eld indicates a reservoir segmented by these
faults. Moreover, the reservoir might undergo compaction due
to overburden and pressure loss from the reservoir during �uid
production. The reactivation of subsurface geological features
due to production may threaten the structural stability of the
reservoir seal and cause �uids to migrate to adjacent forma-
tions naturally. In addition, production levels in a formation
may drop due to subsidence-caused compaction that reduces
porosity.

3.2 Time Series and Pro�les of Deformation
The subsidence pro�les are compared to the geological con-
dition of the geothermal �eld. Larger magnitudes of ground
surface subsidence occurred near areas where production wells
exist, such as the ML-A and ML-H wells (Figure 7). Fluid
geothermal extraction from the shallower reservoir induced
the subsidence. However, the deformation around the injection
well, ML-B, appears to form an anticline shape of the pro�les.
The pressure of �uid injection into the deeper reservoir causes
an uplift. Moreover, a geothermal manifestation, such as Idung
Mancung fumarole, indicates �uid �ow from underground
to the surface. The pressure might further contribute to the
surface deformation pro�le’s anticline shape.

Figure 7. Pro�les of Displacement Time Series Marked W-E
and NNE-SSW in Figure 6 with the Geology Cross-Sections

Furthermore, ground surface displacements varied at seven
well pads with rainfall between March 2021 and March 2022
(Figure 8). Generally, the displacements were correlated with
rainfall variation. In addition, the displacement trends tended
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to decrease in common due to geothermal �uid production.
Subsidence with largermagnitudes, as expected, occurred around
production wells of ML-A, ML-F, and ML-H. Meanwhile, the
area associated with ML-B, ML-D, and ML-E injection wells
should have trends of cumulative deformation in the form of
anticline pro�les. As they are close to production wells, the
ground surface at their sites subsides by several millimeters,
following the subsidence pattern at production wells. Their
subsidence magnitudes were expected to be lower than those
at production wells.

Figure 8. Displacement Time Series Variation with Rainfall at
the Seven Well Pads

4. CONCLUSION

This report discusses geodetic data observed at a Muara Laboh
geothermal potential junction zone between the Suliti and Siu-
lak Fault segments. The ISBAS method has successfully re-
vealed surface deformation at this geothermal �eld. The maxi-
mum subsidence rate of ⇠30 mm/yr is interpreted as resulting
dominantly from geothermal �uid production, so the subsi-
dence patterns appear to follow the distribution of production
wells.

Faults might control the subsidence, which can be identi�ed
near the well pad cluster in the east part of the �eld. Moreover,
the identi�ed surface uplift rate was about 15 mm/yr due to
the activity of the suiliti and siulak fault segments in the west
and east of the study area, respectively. Fluid movement from
deep inside the earth to the surface, manifested as the Idung
Mancung fumarole, is suggested to contribute to surface defor-
mation. In addition to �uid production/injection and faults,
rainfall in�uenced the variation of the deformation.

The �ndings have implications not only for the geothermal
exploitation that is still going on but also for the potential risk
to development. Measuring this type of deformation improves
our understanding of the complexity of the spatial extent and

dynamics of the geothermal �eld, which may be essential for
the resource’s exploitation.
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