KLASIFIKASI TRAFFIC ANONYMOUS THE ONION ROUTE DENGAN METODE K-NEAREST NEIGHBOR (K-NN)

AKMAL, M. KABIR and Stiawan, Deris (2024) KLASIFIKASI TRAFFIC ANONYMOUS THE ONION ROUTE DENGAN METODE K-NEAREST NEIGHBOR (K-NN). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011382025126.pdf] Text
RAMA_56201_09011382025126.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_TURNITIN.pdf] Text
RAMA_56201_09011382025126_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_01_front_ref.pdf] Text
RAMA_56201_09011382025126_0003047905_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (731kB)
[thumbnail of RAMA_56201_09011382025126_0003047905_02.pdf] Text
RAMA_56201_09011382025126_0003047905_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (284kB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_03.pdf] Text
RAMA_56201_09011382025126_0003047905_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (155kB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_04.pdf] Text
RAMA_56201_09011382025126_0003047905_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (769kB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_05.pdf] Text
RAMA_56201_09011382025126_0003047905_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10kB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_06_ref.pdf] Text
RAMA_56201_09011382025126_0003047905_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (141kB) | Request a copy
[thumbnail of RAMA_56201_09011382025126_0003047905_07_lamp.pdf] Text
RAMA_56201_09011382025126_0003047905_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (372kB) | Request a copy

Abstract

Penelitian ini bertujuan untuk mengembangkan model klasifikasi yang akurat untuk mengidentifikasi dan mengkategorikan lalu lintas anonim pada jaringan Tor. Dataset yang digunakan adalah CIC-Darknet2020. Teknik Synthetic Minority Over-sampling Technique (SMOTE) diterapkan untuk menangani ketidakseimbangan kelas, sementara Mutual Information Classifier (MIC) digunakan untuk seleksi fitur. Model K-Nearest Neighbor (K-NN) digunakan untuk klasifikasi dengan hasil akurasi tertinggi sebesar 93.17% pada n_neighbors = 1. Meskipun tidak menggunakan normalisasi data karena distribusi fitur yang cukup merata, penelitian ini menunjukkan bahwa kombinasi K-NN, SMOTE, dan MIC efektif dalam memberikan klasifikasi lalu lintas anonim yang akurat pada jaringan Tor. Penelitian ini berkontribusi signifikan dalam bidang keamanan jaringan dan dapat menjadi dasar untuk penelitian lebih lanjut dalam deteksi dan keamanan jaringan.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Tor, K-NN, CIC-Darknet2020, SMOTE, MIC
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: M. Kabir Akmal
Date Deposited: 31 Jul 2024 02:23
Last Modified: 31 Jul 2024 02:23
URI: http://repository.unsri.ac.id/id/eprint/153552

Actions (login required)

View Item View Item