PENDETEKSIAN T WAVE ALTERNANS MELALUI DELINEASI SINYAL ELEKTROKARDIOGRAM BERBASIS DEEP LEARNING

SARI, DWINDA LAELA ANGGUN and Nurmaini, Siti (2024) PENDETEKSIAN T WAVE ALTERNANS MELALUI DELINEASI SINYAL ELEKTROKARDIOGRAM BERBASIS DEEP LEARNING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011282025063.pdf] Text
RAMA_56201_09011282025063.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_TURNITIN.pdf] Text
RAMA_56201_09011282025063_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_01_front_ref.pdf] Text
RAMA_56201_09011282025063_0002085908_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011282025063_0002085908_02.pdf] Text
RAMA_56201_09011282025063_0002085908_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (246kB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_03.pdf] Text
RAMA_56201_09011282025063_0002085908_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (345kB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_04.pdf] Text
RAMA_56201_09011282025063_0002085908_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_05.pdf] Text
RAMA_56201_09011282025063_0002085908_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (73kB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_06_ref.pdf] Text
RAMA_56201_09011282025063_0002085908_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (91kB) | Request a copy
[thumbnail of RAMA_56201_09011282025063_0002085908_07_lamp.pdf.pdf] Text
RAMA_56201_09011282025063_0002085908_07_lamp.pdf.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (614kB) | Request a copy

Abstract

T Wave Alternans (TWA) dikaitkan dengan beberapa penyakit dan deteksi akuratnya yang dapat mengdiagnosis lebih dini mengenai komplikasi jantung. Penelitian ini menggunakan data dari QT Database (QTDB) dan T Wave Alternans Database (TWADB). QTDB digunakan untuk proses training untuk pengujian model sedangkan dataset TWA digunakan untuk proses pengujian. Delineasi terhadap sinyal EKG secara otomatis menggunakan deep learning yang dapat membantu para dokter karena adanya human errors pada anotasi sinyal EKG secara manual. Metodologi penelitian ini mengadopsi pendekatan dengan menggabungkan Convolution Neural Network (CNN) sebagai fitur ekstraksi dan arsitektur Bidirectional Gated Recurrent Unit (Bi-GRU). Parameter model berupa epoch, batch size dan learning rate menghasilkan 17 total 30 model. Hasil penelitian menunjukkan bahwa model CNN dan Bi-GRU dapat melakukan delineasi sinyal dengan cukup baik pada skenario dengan 5 kelas gelombang. Model ini menghasilkan hasil evaluasi terbaik dengan nilai recall sebesar 91.4%, precision sebesar 89.4%, spesifity sebesar 99.2%, accuracy sebesar 99.3%, dan F1-Score sebesar 90.2%. Hasil terbaik delineasi ini mendeteksi 17 dari 30 data pasien yang mengalami TWA. Kata Kunci : EKG Delineasi, T Wave Alternans, ConvBiGRU, QT Database.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Kata Kunci : EKG Delineasi, T Wave Alternans, ConvBiGRU, QT Database
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Dwinda Laela Anggun Sari
Date Deposited: 12 Aug 2024 07:57
Last Modified: 12 Aug 2024 07:57
URI: http://repository.unsri.ac.id/id/eprint/154917

Actions (login required)

View Item View Item