KAJI EKSPERIMENTAL PENGARUH PENAMBAHAN HIDROGEN DAN OKSIGEN HASIL ELEKTROLISA KE DALAM RUANG PEMBAKARAN TERHADAP EMISI GAS BUANG PADA MOTOR HONDA SUPRA V

SKRIPSI

Dibnot unink Mensembi Pengusian Menyekessikan Pendubiran S-1 pada Jurusan Teknik Mesin Pekulian Teknik Universitan Sriwijaya

Carpen

GARARIA ONT CERT NOW (MIC)

9 629.227 507 bis 6-091570

> KAJI EKSPERIMENTAL PENGARUH PENAMBAHAN HIDROGEN DAN OKSIGEN HASIL ELEKTROLISA KE DALAM RUANG PEMBAKARAN TERHADAP EMISI GAS BUANG PADA MOTOR HOND SUPRA V

SKRIPSI

Dibuat umuk Memenuhi Persyaratan Menyelesaikan Pendidikan S-1 pada Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya

Oleh:

GABRIEL DWI HERI WIBOWO 03043150093

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA 2009

DEPARTEMEN PENDIDIKAN NASIONAL FAKULTAS TEKNIK JURUSAN TEKNIK MESIN UNIVERSITAS SRIWIJAYA

SKRIPSI

KAJI EKSPERIMENTAL PENGARUH PENAMBAHAN HIDROGEN DAN OKSIGEN HASIL ELEKTROLISA KE DALAM RUANG PEMBAKARAN TERHADAP EMISI GAS BUANG PADA MOTOR HONDA SUPRA V

Oleh:

GABRIEL DWI HERI WIBOWO

03043150093

Mengetahui:

Ketua Jurusan Teknik Mesin.

Ir. Helmy Alian, MT

NIP:131/672 077

Ir. Marwani, MT NIP.131 933 012

Dosen Pembimbing

Inderalaya, Agustus 2009

Diperiksa dan disetujui oleh

UNIVERSITAS SRIWIJAYA **FAKULTAS TEKNIK** JURUSAN TEKNIK MESIN

Agenda Diterima tanggal

Paraf

:1832/MIA/2009 :31-08-2009

Nama

: Gabriel Dwi Heri Wibowo

Nim

: 03043150093

Spesifikasi

: Konversi Energi

Judul

: Kaji Eksperimental Pengaruh Penambahan Hidrogen dan Oksigen

Hasil Elektrolisa ke Dalam Ruang Pembakaran Terhadap Emisi Gas

Buang Pada Motor Honda Supra V

Diberikan

: Januari 2009

Selesai

: Agustus 2009

Mengetahui:

Ketua Jurusan Teknik Mesin,

Ir. Helmy Alian, MT NIP.131 672 077

r. Marwani, MT NIP.131 933 012

Disetujui Untuk Jurusan

Teknik Mesin oleh

Dosen Pembimbing

MOTTO: APAPUN SAYA BISA JIKA SAYA MAU

Spesial Thanks to:

- 1. Tuhan Yesus Kristus yang senantiasa memberikan Anugerah yang luar biasa kepadaku
- 2. Kedua Orang Tuaku (Mulyono dan Baniah) yang tercinta atas dukungan dan doanya
- 3. Kakakku (Wendi) dan adikku (Berna) yang tercinta atas dukungan dan doanya
- 4. Pacarku Henrika yang tercinta atas kesetiaannya mendampingi
- 5. Segenap keluarga di Tegal Sari atas doanya
- 6. Keluargaku di PMKRI(Perhimpunan Mahasiswa Katolik Republik Indonesia) cabang palembang : Angel, Jhon sipayung, jhontinus, Chris, Esdras, Wati, Agung, Tia, Josua, Mega, Ponco, Reni, Dini, Gita, Lukas, Desi, Endro, Cris,Oda, Prisan, Pardo, Abi, Dedi, Chandra, Dya, Dian, Dwi Endang, Eka, Anna, lupi, Januar bersama kalian saya belajar menjadi manusia. Teman teman PMKRI Cabang lain : Taim, Elmon, Adi, Desi, Dolok, Sendy,Niki, Yani, Eka, Debby, Posma, dan yang lain yang tidak disebutkan atas dukungan untuk bersama sama belajar dan bertukar pikiran.
- 7. Sahabat sahabat SMA: my best friends (Leni, Komeng, Iman,), lena Eva, Oni, Dolo, Indah, Widi, HT, Robi, Anen, Tiwi, Heri, dan yang lain yang tak dapat disebut satu persatu.
- 8. Teman teman Alumni PMKRI cabang Palembang: Pak Yohanes, Bapak Hasiholan, Bang Sutan, Ko Billy, Kak Anom, Mas Wiwid, Mas Boby, Ko Novian, Bang Adi, Bang Abdi, Mas Noto, Ko Beni, Mbak Veni, Bang Stef, Kak Eko, Kak Rotua, Kak Diana dan yang lain yang tak dapat disebutkan satu persatu atas bimbingan yang diberikan.
- 9. Teman teman Teknik Mesin Unsri angkatan 2004
- 10. Teman teman Kelompok CIPAYUNG dan Persaudaraan Pemuda Antar Iman Kota Palembang.

ABSTRAK

Dalam setiap pembakaran motor bakar, akan menghasilkan emisi gas buang karena terjadinya pembakaran tak sempurna, dalam kenyataannya pembakaran sempurna tidak pernah terjadi dalam setiap pembakaran. Kadar emisi gas buang juga ditentukan oleh jenis bahan bakar, hidrogen merupakan salah satu bahan bakar yang ramah lingkungan. Hidrogen hasil elektrolisa pada pengujian ini tidak mencukupi untuk menggantikan kebutuhan bensin pada motor Honda Supra V, maka hidrogen hanya digunakan untuk penambah bensin.

Pengujian dilakukan pada motor Honda supra V dengan memvariasikan beberapa putaran yaitu 850 rpm, 1050 rpm, 1250 rpm, 1450 rpm, 1650 rpm, 2500 rpm, 4500 rpm, dan 6500 rpm. Dengan kondisi sebelum penambahan hidrogen dan oksigen dan setelah penambahan hidrogen dan oksigen. Hidrogen dan oksigen dihasilkan dengan cara elektrolisa, dan pada pengujian ini menggunakan alat yang menghasilkan 0,52 ml/s hidrogen dan oksigen. Pengujian ini bertujuan untuk mengetahui pengaruh penambahan hidrogen dan oksigen hasil elektrolisa ke dalam ruang pembakaran dengan cara membandingkan hasil emisi gas buang sebelum penembahan hidrogen dan oksigen dan setelah penambahan hidrogen dan oksigen. Data yang diperoleh dalam pengujian ini adalah CO, CO₂, HC, O₂, NOx,dan λ.

Dari data yang didapat, penambahan hidrogen dan oksigen dalam ruang pembakaran menyebabkan emisi CO turun, emisi HC meningkat, CO2 yang dihasilkan menurun, O2 yang dihasilkan naik, NOx menurun dan campuran bahan bakar setelah penambahan lebih miskin bahan bakar. Dari data yang didapat emisi CO terendah terjadi pada putaran 1450 rpm pada kondisi dengan penambahan hidrogen dan oksigen dengan nilai 2.97 % dengan persentase penurunan 9,42% dibandingkan tanpa penambahan hidrogen dan oksigen. Emisi HC tertinggi pada putaran 850 rpm pada kondisi dengan penambahan hidrogen dan oksigen yaitu dengan nilai 3385 ppm dengan pesentase kenaikan 20,5%, nilai CO2 terendah pada putaran 850 rpm pada kondisi dengan penambahan hidrogen dan oksigen yaitu sebesar 7.12 %, atau terjadi penurunan sebesar 12,5 %, sedangkan O2 yang dihasilkan tertinggi pada putaran 850 rpm pada kondisi dengan penambahan hidrogen dan oksigen dengan nilai 7.76 % atau terjadi kenaikan 28,9%. Nilai lambda tertinggi terjadi pada putaran 1050 rpm pada kondisi dengan penambahan hidrogen dan oksigen dengan nilai rata rata 1.19 atau terjadi kenaikan sebesar 6,25%.

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa, yang telah memberikan berkat dan rahmat-Nya kepada penulis sehingga dapat menyelesaikan penulisan tugas akhir ini. Judul tugas akhir yang penulis susun adalah: "Kaji Eksperimental Pengaruh Penambahan Hidrogen dan Oksigen Hasil Elektrolisa ke Dalam Ruang Pembakaran Terhadap Emisi Gas Buang pada Motor Honda Supra V", yang disusun untuk memenuhi persyaratan untuk menyelesaikan studi di Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya.

Penulis mengucapkan banyak terimakasih kepada Ibu Ir. Marwani, MT yang telah menyediakan waktu, tenaga dan pikiran untuk membimbing penulis sehingga dapat menyelesaikan tugas akhir ini.

Pada kesempatan ini penulis juga mengucapkan terimakasih kepada:

- 1. Prof. Dr. Badia Perizade, MBa selaku Rektor Universitas Sriwijaya
- Bapak Prof.Dr.Ir.H.M. Toufik Toha, DEA, selaku Dekan Fakultas Teknik Universitas Sriwijaya.
- Bapak Ir. Helmy Alian, M.T, selaku Ketua Jurusan Teknik Mesin Universitas Sriwijaya
- Bapak Qomarul Hadi, ST,MT selaku Sekretaris Jurusan Teknik Mesin Universtas Sriwijaya
- Bapak Al Antoni Akhmad, ST,MT selaku Dosen Pembimbing Akademik penulis
- Segenap Dosen Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya yang telah memberikan pengetahuan tentang ilmu teknik mesin
- 7. Rekan rekan Mahasiswa Teknik mesin angkatan 2004

Penulis menyadari bahwa isi karya tulis ini masih jauh dari kesempurnaan, karena itu penulis mengharapkan masukan, saran dan kritik yang membangun seluruh pihak.

Penulis berharap semoga karya tulis ini dapat bermanfaat bagi kita semua

Palembang, Agustus 2009

Penulis

DAFTAR ISI

ABSTRA	K	V
KATA PE	NGANTAR	vii
DAFTAR	ISI	viii
DAFTAR	GAMBAR	x
DAFTAR	TABEL	xi
DAFTAR	LAMPIRAN	xii
BAB I PE	ENDAHULUAN	
1.2 Perum 1.3 Tujua 1.4 Pemba 1.5 Metoo	Belakang	I-1 I-3 I-3 I-3 I-4 I-4
вав п т	INJAUAN PUSTAKA	
2.1.1. 2.1.2. 2.1.3. 2.1.4.	Prinsip Kerja Motor Bensin 2.1.1.1. Motor Bensin Empat Langkah 2.1.1.2. Motor Bensin Dua Langkah Kelebihan dan Kekurangan Motor 4 langkah dan 2 Langkah Kelebihan dan Kekurangan Antara Motor Bensin dan Motor Diesel Siklus Termodinamika Motor Bakar Bensin	II-1 II-1 II-2 II-4 II-5 II-7 II-8
2.2.1. 2.2.2. 2.2.3.	Gas Buang Kendaraan Jenis-jenis Emisi Gas Buang Kendaraan Pengaruh Rancangan Mesin Terhadap Emisi Gas Buang 2.2.2.1. Perbandingan Kompresi 2.2.2.2. Ruang Bakar Sistem dalam Mesin dan Emisi Gas Buang 2.2.3.1. Pengaturan Camputan Udara Bahan Bakar 2.2.3.2. Sistem Injeksi Bahan Bakar 2.2.3.3. Sistem Aliran Udara 2.2.3.4. Sistem Pengapian Elektronik Pengaruh Kondisi Operasi Mesin Terhadap Emisi Gas Buang 2.2.4.1. Beban Motor 2.2.4.2. Operasi yang Dinamik 2.2.4.3. Kecepatan Kendaraan	II-10 II-14 II-14 II-15 II-16 II-16 II-18 II-19 II-20 II-20 II-20 II-21

2.2.4.4. Perbandingan Campuran Udara Bahan	
Bakar	II-21
2.2.4.5. Saat Penyalaan	II-24
2.2 Flaktrolisis	II-25
2.3.1. Sejarah Penggunaan Hidrogen Hasil Elektrolisis untuk Bahan	700700072072
hakar	II-28
2.3.2. Elektrolisis Larutan Elektrolit	II-28
2.2.4.1. Menggunakan Elektrolit Natrium Bikarbonat	II-30
2.3.4. Komponen-komponen Elektrolisis	II-31
2.3.4.1. Tabung Elektroliser	II-32
2.3.4.2. Elektroda	II-32
2.3.4.3. Elektrolit	II-32
2.3.5 Hidrogen	II-33
2.3.5.1. Pembuatan dan Kegunaan	II-34
2.3.5.2. Pembakaran	11-35
2.3.5.3. Penemuan Hidrogen	II-36
2.3.5.3. Potensi Bahaya Hidrogen	II-37
2.3.6. Air	II-38
2.3.6.1. Kelarutan	11-40
2.3.6.1. Kohesi dan Adesi	II-40
BAB III PROSEDUR PENGUJIAN	
	*** .
3.1 Spesifikasi Motor Bensin	III-1
3.2 Peralatan Pengujian dan Prosedur Pengujian	III-2
3.3 Instalasi Alat Pengujian	III-5
3.4 Data Hasil Pengujian	ПІ-9
BAB IV ANALISA DAN PEMBAHASAN	
4.1 Pengaruh Penambahan Hidrogen dan Oksigen Hasil Elektrolisa	ı
dengan Emisi Gas Buang	IV-1
4.2 Emisi KarbonMonoksida (CO)	IV-3
4.3 Emisi Hidrokarbon (HC)	IV-5
4.4 Emisi Karbon Dioksida (CO ₂)	IV-7
4.5 Emisi Oksida Nitrogen (NOx)	IV-8
4.6 Lambda (λ)	IV-1
4.7 Standarisasi Emisi Gas Buang Kendaraan(CO ₂)	IV-1
BAB V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	V-1
5.2 Saran	V-1 V-2
	¥ -2
DAFTAR PUSTAKA	
LAMPIRAN	

DAFTAR GAMBAR

a L a L D ' ' Varia Matan Danain 4 Langkah	II-4
Gambar 2.1 Prinsip Kerja Motor Bensin 4 Langkah	II-9
Gambar 2.2 Diagram Siklus Volume-Konstan (siklus otto)	11-9
Gambar 2.3 Perbandingan Sistem Pengapian Konvensional (CI),	
Transistor dan kapasitor (CDI)	П-19
Gambar 2.4 Hubungan λ terhadap Emis Gas Buang	II-22
Gambar 2.5 Diagram Sel Elektrolisis	II-25
Gambar 2.6 Bagian bagian Tabung Elektroliser	II-31
Gambar 3.1 Automotive Emission Analyzer	III-3
Gambar 3.2 Skema Pemasangan Elektroliser pada Sepeda Motor	III-5
Gambar 3.3 Pengambilan Data Emisi Gas Buang dengan Penambahan	
Hidrogen dan Oksigen	III-7
Gambar 3.4 Tachometer untuk Mengukur Putaran Mesin	III-7
Gambar 3.5 Tempat Mengukur Putaran Mesin dengan Tachometer	III-8
Gambar 3.6 (1) Aki 24 A dan (2) Elektroliser	III-8
Gambar 4.1 Grafik CO dengan Penambahan Hidrogen dan Oksigen vs	
CO tanpa Penambahan Hidrogen dan Oksigen	IV-4
Gambar 4.2 Grafik HC dengan Penambahan Hidrogen dan Oksigen	
vs HC Tanpa Penambahan Hidrogen dan Oksigen	IV-6
Gambar 4.3 Grafik CO ₂ dengan Penambahan Hidrogen dan Oksigen	
vs CO ₂ Tanpa Penambahan Hidrogen dan Oksigen	IV-8
Gambar 4.4 Grafik NOx dengan Penambahan Hidrogen dan Oksigen vs NOx Tanpa Penambahan Hidrogen dan Oksigen	IV-10
Gambar 4.5 Grafik λ dengan Penambahan Hidrogen dan Oksigen	
vs λ Tanpa Penambahan Hidrogen dan Oksigen	IV-11

DAFTAR TABEL

Tabel 2.1	Reaksi pada Katoda dan Anoda Menurut Jenis Elektrolit	II-29
Tabel 3.1	Data Hasil Pengujian Sebelum Penambahan	
	Hidrogen dan oksigen	III-9
Tabel 3.2	Data Hasil Pengujian Sesudah Penambahan	
	Hidrogen dan Oksigen	III-10
Tabel 4.1	Data Rata-rata hasil Pengujian Pada Kondisi Tanpa	
	Penambahan Hidrogen dan Oksigen	IV-2
Tabel 4.1	Data Rata-rata hasil Pengujian Pada Kondisi dengan	
	Penambahan Hidrogen dan Oksigen	IV-3

DAFTAR LAMPIRAN

Lampiran 1	Gambar Pengambilan Data	1
Lampiran 2	Gambar Peralatan	2
Lampiran 3	Tabel Harga Eº Beberapa Logam	4
Lampiran 4	Spesifikasi Hidrogen	5
Lampiran 5	Print Out Hasil Pengujian	6

BABI

PENDAHULUAN

1.1 Latar Belakang

Mesin kalor adalah salah satu jenis penggerak mula yang banyak dipakai, yaitu mesin yang menggunakan energi termal untuk melakukan kerja mekanik, atau mengubah energi termal menjadi energi mekanik. Energi itu sendiri dapat diperoleh salah satunya dengan proses pembakaran. Mesin kalor dibagi menjadi dua golongan jika ditinjau dari cara memperoleh energi termal yaitu mesin pembakaran luar dan mesin pembakaran dalam. Mesin pembakaran luar terjadinya proses pembakaran diluar mesin, energi termal dari gas hasil pembakaran dipindahkan ke fluida kerja melalui dinding pemisah, contohnya mesin uap. Pada mesin pembakaran dalam atau sering dikenal dengan nama motor bakar, proses pembakaran terjadi didalam motor bakar itu sendiri sehingga gas pembakaran yang terjadi sekaligus berfungsi sebagai fluida kerja. Contoh mesin pembakaran dalam adalah motor bakar torak, sistem turbin gas dan propulsi pancar gas. Seperti yang telah diketahui energi yang diperoleh dengan pembakaran akan menghasilkan sisa pembakaran yang disebut gas buang dan dibuang ke udara bebas. Gas buang yang dimaksud terdiri dari CO (karbon monoksida), NOx (oksida nitrogen), HC (hidrokarbon), CO2 (karbon dioksida) yang dapat merusak lingkungan.

Semakin tipisnya cadangan minyak dunia menyebabkan dilakukan usaha usaha untuk menemukan sumber energi alternatif yang dapat diperbaharui dengan mengembangkan bahan bakar nabati seperti biofeul (biodiesel dan bioetanol). Dan juga mengembangkan biogas dari kotoran ternak. Kondisi alam yang semakin rusak akibat pecemaran yang dihasilkan oleh industri maupun mesin kendaraan mendorong diciptakan mesin ramah lingkungan.

Produsen mesin kendaraan terus berinovasi untuk mengeluarkan produk yang ramah lingkungan, sebagai peran serta produsen dalam upaya untuk mengurangi kerusakan lingkungan akibat emisi yang ditimbulkan kendaraan bermotor. Salah satu bahan bakar alternatif yang lebih ramah lingkungan adalah dengan penggunaan gas hidrogen meskipun penggunaan hidrogen masih terbatas, dan memiliki potensi bahaya yang tinggi. Hidrogen juga dapat dihasilkan dengan elektrolisa air, tetapi karena hidrogen hasil elektrolisa tidak cukup banyak untuk mensuplai sebagai bahan bakar maka hidrogen hasil elektrolisa ini hanya digunakan sebagai penambah bahan bakar fosil yang disalurkan melalui saringan udara dan atau *intake manifold*. Sifat hidrogen yang mudah terbakar akan membantu proses pembakaran dalam mesin sehingga mendorong terjadinya pembakaran yang lebih sempurna sehingga emisi gas buang yang dihasilkan kendaraan dapat diturunkan.

Pengaruh penambahanan gas hidrogen dan oksigen hasil elektrolisa terhadap emisi gas buang akan di analisa dengan membandingkan emisi gas buang sebelum penambahan gas hidrogen dan oksigen ke dalam ruang bakar motor bensin dengan emisi gas buang sesudah penambahan hydrogen dan oksigen.

1.2 Perumusan Masalah

Pengujian ini menggunakan motor Honda supra V tahun 2002, yang telah dipasang hidrogen elektrolizer, Alat ini menghasilkan gas hidrogen dan oksigen dengan cara elektrolisis, gas hidrogen dan oksigen tersebut yang kemudian di tambahkan kedalam ruang pembakaran melalui saringan udara. Pengujian dilakukan dengan menganalisa emisi gas buang pada beberapa variasi putaran mesin. Pengujian dilakukan sebelum dan sesudah penambahan hidrogen dan oksigen ke dalam ruang bakar. Dari data yang didapat akan di analisa bagaimana perbandingan emisi gas buang sebelum penambahan hidrogen dan oksigen dan sesudah penambahan hidrogen dan oksigen kedalam ruang bakar.

1.3 Tujuan dan Manfaat

Adapun tujuan penulis memilih permasalahan ini untuk dibahas adalah untuk mengetahui perbandingan emisi gas buang yang dihasilkan motor bakar sebelum dan sesudah penambahan hidrogen dan oksigen hasil elektrolisa ke dalam ruang pembakaran.

Manfaat dari penulisan ini diharapkan dapat digunakan sebagai bahan perbandingan untuk penelitian lebih lanjut terutama pada penelitian mengenai hubungan antara emisi gas buang dengan hidrogen yang di tambahkan ke ruang pembakaran.

1.4 Pembatasan masalah

Pada pengujian motor bensin ini penulis membatasi masalah pada pengaruh penambahan hidrogen dan oksigen ke dalam ruang bakar terhadap emisi gas buang yang dihasilkan motor Honda Supra V tahun 2002 pada putaran 850 rpm, 1050rpm, 1250rpm, 1450rpm, 1650rpm, 2500rpm, 4500rpm dan 6500rpm. Penulis juga mengabaikan kerugian kerugian yang terjadi pada saat pengujian

1.5 Metodologi

Metodologi penulisan tugas akhir ini adalah metode eksperimental yaitu dengan melakukan pengujian dan pengamatan langsung dan mencatat semua hasil yang didapat dari hasil eksperimental.

Adapun tahap pelaksanaan eksperimental yaitu:

- Studi literatur, dengan mengumpulkan materi-materi yang berkaitan dengan pengujian
- b. Merancang alat untuk pengujian
- c. Mengumpulkan data dengan melakukan pengujian
- d. Pengolahan data yang diperoleh dari hasil pengujian, kemudian disusun dan di buat tabel. Dibuat juga grafik dan kemudian dianalisa

I-5

1.6 Sistematika Penulisan

Pada penuliasan tugas akhir ini akan dibagi menjadi beberapa bagian meliputi

BABI: PENDAHULUAN

Berisi tentang tujuan, latar belakang, pembatasan masalah, metodologi dan sistematika penulisan.

BAB II: TINJAUAN PUSTAKA

Berisi tentang kelebihan dan kekurangan motor bensin, prinsip dasar motor bensin, siklus termodinamika motor bensin, jenis jenis emisi gas buang dan tinjauan mengenai elektrolisis.

BAB III: INSTALASI DAN PROSEDUR PENGUJIAN

Berisi tentang prosedur pengujian, instalasi alat dan data hasil pengujian

BAB IV: PEMBAHASAN

Berisi tentang analisa dan pembahasan data hasil pengujian,

BAB V: KESIMPULAN

Berisi tentang kesimpulan dan saran dari hasil analisa yang telah dilakukan

Daftar Pustaka

- 1. Anshory, Irfan & Haskia Achmad, "Acuan Pelajaran Kimia SMU untuk kelas 3", Penerbit Erlangga, 2000
- 2. Arifin, M.T, Zainal & Sukoco, M.Pd, "Pengendalian Polusi Kendaraan", penerbit Alfabeta Bandung, 2009
- 3. John B Heywood, "Internal Combustion Engine Fundamentals", Mc Graw-hill Publishing Company, 1998
- 4. S, Syukuri, "Kimia Dasar Jilid 3", Penerbit ITB Bandung, 1999
- 5. Sudirman, Urip, "Hemat BBM dengan Air", Penerbit Kawan Pustaka, Jakarta, 2008
- 6. Wiranto, Arismunandar, "Penggerak Mula Motor Bakar", penerbit ITB Bandung, 1998