PERBANDINGAN TF-IDF DAN WORD2VEC UNTUK ANALISIS SENTIMEN MENGGUNAKAN SUPPORT VECTOR MACHINE

ANGREINI, CINDY and Utami, Alvi Syahrini (2024) PERBANDINGAN TF-IDF DAN WORD2VEC UNTUK ANALISIS SENTIMEN MENGGUNAKAN SUPPORT VECTOR MACHINE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021282126057.pdf] Text
RAMA_55201_09021282126057.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_TURNITIN.pdf] Text
RAMA_55201_09021282126057_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_01_front_ref.pdf] Text
RAMA_55201_09021282126057_0022127804_01_front_ref.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (541kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_02.pdf] Text
RAMA_55201_09021282126057_0022127804_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (541kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_03.pdf] Text
RAMA_55201_09021282126057_0022127804_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (443kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_04.pdf] Text
RAMA_55201_09021282126057_0022127804_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (884kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_05.pdf] Text
RAMA_55201_09021282126057_0022127804_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (359kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_06.pdf] Text
RAMA_55201_09021282126057_0022127804_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (226kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_07_ref.pdf] Text
RAMA_55201_09021282126057_0022127804_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (166kB) | Request a copy
[thumbnail of RAMA_55201_09021282126057_0022127804_08_lamp.pdf] Text
RAMA_55201_09021282126057_0022127804_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (411kB) | Request a copy

Abstract

Sentiment analysis is a branch of Natural Language Processing (NLP) used to determine public opinions on specific topics as positive, negative, or neutral. This study aims to compare the performance of two feature extraction methods across three scenarios: TF-IDF, Word2Vec-CBOW, and Word2Vec-skipgram. The dataset utilized consists of comments from the Instagram platform @magangmerdeka regarding MSIB 7. The model was developed using the Support Vector Machine (SVM) algorithm with a linear kernel, and the data was split into training, validation, and test sets in an 80:10:10 ratio. Evaluation was conducted using a confusion matrix and evaluation metrics. The results show that the TF-IDF feature extraction method achieved the highest accuracy of 80.63%, compared to the Word2Vec methods, CBOW and skipgram, which achieved 69.38% and 71.88%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: TF-IDF, Word2Vec, CBOW, Skipgram, SVM, Sentiment Analysis
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
T Technology > T Technology (General) > T10.5-11.9 Communication of technical information
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Cindy Angreini
Date Deposited: 07 Jan 2025 02:37
Last Modified: 07 Jan 2025 02:38
URI: http://repository.unsri.ac.id/id/eprint/162781

Actions (login required)

View Item View Item