ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP GIBRAN RAKABUMING RAKA

RAMADHAN, MUHAMMAD REFLY PUTRA and Mahriani, Retna and Elfandari, Safitri (2024) ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP GIBRAN RAKABUMING RAKA. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_70201_07031382025241_COVER.JPG]
Preview
Image
RAMA_70201_07031382025241_COVER.JPG - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (69kB) | Preview
[thumbnail of RAMA_70201_07031382025241.pdf] Text
RAMA_70201_07031382025241.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_TURNITIN.pdf] Text
RAMA_70201_07031382025241_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_01_front_ref.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_02.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (311kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_03.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (244kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_04.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (333kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_05.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (697kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_06.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (186kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_07_ref.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (200kB) | Request a copy
[thumbnail of RAMA_70201_07031382025241_0009126007_0016068806_08_lamp.pdf] Text
RAMA_70201_07031382025241_0009126007_0016068806_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Penelitian berjudul “Analisis Sentimen Pada Media Sosial Twitter Terhadap Gibran Rakabuming Raka” bertujuan untuk mengeksplorasi pandangan dan persepsi masyarakat mengenai Gibran pada twitter. Dalam studi ini, digunakan metode campuran (mixed methods) dengan menggabungkan analisis linguistik korpus menggunakan frekuensi serta analisis sentimen untuk mengidentifikasi sentimen positif, netral, dan negatif. Data penelitian dikumpulkan melalui pengumpulan data tweet dengan keyword “Gibran” menggunakan tweet harvest, telah ditemukan sekitar 3056 data tweet selama periode 20 Oktober – 19 November 2024 dengan total kata yang dianalisis berjumlah 47.335 kata. Hasil analisis linguistik korpus menunjukkan terdapat 3.492 kata dengan sentien positif atau netral dan 375 kata dengan sentimen negatif. Hasil analisis sentimen berbeda dengan analisis linguistik korpus dikarenakan dalam pelabelan sentimen menggunakan kamus Inset (Indonesia Sentiment) kamus ini berisi daftar kata-kata dengan polaritas positif dan negatif. Hasil analisis menggunakan kamus Inset menunjukan bahwa sentimen dari tweet dengan keyword “Gibran” bernilai negatif yang menyoroti program dan kebijakan, serta ujaran kebencian terhadap “Gibran”. Kata Kunci: Analisis Sentimen, Korpus, Gibran, Twitter, Voyant

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Kata Kunci: Analisis Sentimen, Korpus, Gibran, Twitter, Voyant
Subjects: T Technology > T Technology (General) > T10.5-11.9 Communication of technical information
Divisions: 07-Faculty of Social and Politic Science > 70201-Communication Science (S1)
Depositing User: Mr. Refly Ramadhan
Date Deposited: 10 Mar 2025 06:28
Last Modified: 10 Mar 2025 06:28
URI: http://repository.unsri.ac.id/id/eprint/167898

Actions (login required)

View Item View Item