INTEGRASI INTRUSION DETECTION SYSTEM (IDS) TERDISTRIBUSI DENGAN MENGGUNAKAN FRAMEWORK ELT PADA MULTISOURCE DATA FUSION

ARRIFQI, MUHAMMAD AGIL and Heryanto, Ahmad (2025) INTEGRASI INTRUSION DETECTION SYSTEM (IDS) TERDISTRIBUSI DENGAN MENGGUNAKAN FRAMEWORK ELT PADA MULTISOURCE DATA FUSION. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011181924008_Cover.jpeg]
Preview
Image
RAMA_56201_09011181924008_Cover.jpeg - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (226kB) | Preview
[thumbnail of RAMA_56201_09011181924008.pdf] Text
RAMA_56201_09011181924008.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_TURNITIN.pdf] Text
RAMA_56201_09011181924008_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11MB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_01_front_ref.pdf] Text
RAMA_56201_09011181924008_0022018703_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (2MB)
[thumbnail of RAMA_56201_09011181924008_0022018703_02.pdf] Text
RAMA_56201_09011181924008_0022018703_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (920kB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_03.pdf] Text
RAMA_56201_09011181924008_0022018703_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (455kB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_04.pdf] Text
RAMA_56201_09011181924008_0022018703_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_05.pdf] Text
RAMA_56201_09011181924008_0022018703_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (183kB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_06_ref.pdf] Text
RAMA_56201_09011181924008_0022018703_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (146kB) | Request a copy
[thumbnail of RAMA_56201_09011181924008_0022018703_07_lamp.pdf] Text
RAMA_56201_09011181924008_0022018703_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Intrusion Detection System (IDS) is a tool designed to detect suspicious activities or security threats within a computer network. This study focuses on developing a distributed IDS framework using Multisource Data Fusion to enhance the detection of ICMP, SSH, and Ping of Death attacks. The framework integrates logs and alerts from multiple IDS machines, with Snort as the primary tool. The results show that the framework achieves 97.31 % accuracy, generating 610,288 logs and 382,770 alerts, with an attack distribution of 42.8% ICMP Flood, 42.6% Ping of Death, and 14% SSH. IDS 3 proved to be the most effective, recording 252,038 ICMP packets, 253,825 Ping of Death packets, and 83,416 SSH packets. This framework effectively improves the efficiency and accuracy of attack detection and can serve as a reference for developing more robust network security systems.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Intrusion Detection System (IDS), Multisource Data Fusion, Snort, Keamanan Jaringan, Deteksi Serangan
Subjects: Q Science > Q Science (General) > Q1-390 Science (General) > Q223.M517 Science -- Information services. Information storage and retrieval systems --Science.
Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Muhammad Agil Arrifqi
Date Deposited: 24 Mar 2025 05:58
Last Modified: 24 Mar 2025 05:58
URI: http://repository.unsri.ac.id/id/eprint/169477

Actions (login required)

View Item View Item