SEGMENTASI STRUKTUR FETAL PADA CITRA ULTRASONOGRAFI MENGGUNAKAN YOLO BERBASIS DEEP LEARNING

HAIRUNNISA, RIZQI and Nurmaini, Siti (2025) SEGMENTASI STRUKTUR FETAL PADA CITRA ULTRASONOGRAFI MENGGUNAKAN YOLO BERBASIS DEEP LEARNING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011282126118_cover.jpg]
Preview
Image
RAMA_56201_09011282126118_cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (491kB) | Preview
[thumbnail of RAMA_56201_09011282126118.pdf] Text
RAMA_56201_09011282126118.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_TURNITIN.pdf] Text
RAMA_56201_09011282126118_0002085908_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_01_front_ref.pdf] Text
RAMA_56201_09011282126118_0002085908_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011282126118_0002085908_02.pdf] Text
RAMA_56201_09011282126118_0002085908_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_03.pdf] Text
RAMA_56201_09011282126118_0002085908_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_04.pdf] Text
RAMA_56201_09011282126118_0002085908_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_05.pdf] Text
RAMA_56201_09011282126118_0002085908_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (217kB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_06_ref.pdf] Text
RAMA_56201_09011282126118_0002085908_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (187kB) | Request a copy
[thumbnail of RAMA_56201_09011282126118_0002085908_07_lamp.pdf] Text
RAMA_56201_09011282126118_0002085908_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (807kB) | Request a copy

Abstract

YOLO (You Only Look Once) merupakan arsitektur deep learning yang dikenal efisien dalam tugas deteksi dan segmentasi objek secara real-time. Meskipun telah banyak digunakan dalam berbagai bidang, penerapannya dalam segmentasi citra ultrasonografi (USG) fetal masih terbatas. Penelitian ini bertujuan untuk mengevaluasi dan membandingkan performa beberapa versi model YOLO, yaitu YOLOv8, YOLOv9, dan YOLO11, dalam tugas segmentasi citra USG fetal dua dimensi. Terdapat 22 struktur anatomi fetal dijadikan objek segmentasi, termasuk abdomen, femur, rongga dada, dan organ jantung. Sebanyak 12 model awal dilatih menggunakan konfigurasi hyperparameter dasar, kemudian tiga model terbaik dari masing-masing versi menjalani proses tuning dengan variasi epoch dan batch size. Evaluasi dilakukan menggunakan metrik Intersection over Union (IoU) dan kurva segmentation loss. Hasil eksperimen menunjukkan bahwa model YOLOv8-L dengan 200 epoch dan batch size 4 memiliki performa terbaik dengan mIoU mencapai 65% pada data pelatihan dan 56% pada data validasi. Penelitian ini memberikan kontribusi dalam pemanfaatan YOLO untuk segmentasi citra USG fetal dan dapat menjadi dasar bagi pengembangan sistem lanjutan.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: YOLO, Image Segmentation, Fetal Ultrasound, Intersection over Union (IoU), Deep Learning
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Rizqi Hairunnisa
Date Deposited: 11 Jul 2025 08:07
Last Modified: 11 Jul 2025 08:07
URI: http://repository.unsri.ac.id/id/eprint/170538

Actions (login required)

View Item View Item