KLASIFIKASI KUALITAS UDARA MENGGUNAKAN RANDOM FOREST DENGAN PENERAPAN REGRESI K-NN DAN SMOTE UNTUK MENGATASI DATA HILANG DAN KELAS TIDAK SEIMBANG

LESTARI, INDAH and Resti, Yulia and Kresnawati, Endang Sri (2025) KLASIFIKASI KUALITAS UDARA MENGGUNAKAN RANDOM FOREST DENGAN PENERAPAN REGRESI K-NN DAN SMOTE UNTUK MENGATASI DATA HILANG DAN KELAS TIDAK SEIMBANG. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_44201_08011382025103_cover.pdf] Text
RAMA_44201_08011382025103_cover.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (91kB)
[thumbnail of RAMA_44201_08011382025103.pdf] Text
RAMA_44201_08011382025103.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_TURNITIN.pdf] Text
RAMA_44201_08011382025103_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_01_front_ref.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (785kB)
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_02.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (209kB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_03.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (163kB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_04.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (497kB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_05.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (114kB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_06_ref.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (109kB) | Request a copy
[thumbnail of RAMA_44201_08011382025103_0019077302_0008027701_07_lamp.pdf] Text
RAMA_44201_08011382025103_0019077302_0008027701_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (537kB) | Request a copy

Abstract

The lives of living things are highly dependent on air quality, especially humans. Air quality prediction that classifies air quality into categories can involve many factors including factors that affect pollution levels. This research classifies air quality based on PM2.5, PM10, NO2, CO, SO2, and O3 which are the main factors that affect pollution. The secondary data used in the study was obtained from Kaggle totaling 108.035. In this data there are more than 10,000 missing values and there is a class imbalance, to fill in the missing values the K-Nearest Neighbor method is used and for balancing class the Synthetic Minority Oversampling Technique (SMOTE) method is used. As for classifying the level of accuracy of air quality, the Random Forest method is used. The results of this study obtained the highest level of accuracy, precision, recall, and F1-score in the Random Forest classification method, respectively 76,192%, 72%, 76%, and 73%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Kualitas Udara, K-Nearest Neighbor, SMOTE, Random Forest
Subjects: Q Science > QA Mathematics > QA299.6-433 Analysis > Q337.3 Swarm intelligence. Big data -- Social aspects. Information technology -- Economic aspects.
Divisions: 08-Faculty of Mathematics and Natural Science > 44201-Mathematics (S1)
Depositing User: Indah Lestari
Date Deposited: 25 May 2025 07:48
Last Modified: 25 May 2025 07:48
URI: http://repository.unsri.ac.id/id/eprint/174064

Actions (login required)

View Item View Item