

International lournal of Energy Economics and Policy

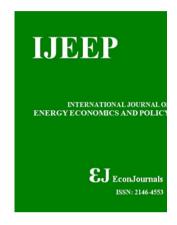
Home Current Issue Archives Abstracting and Indexing Editorial Team About the Journal EconJournals Q. Se

International Journal of Energy Economics and Policy (IJEEP) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of energy economics, energy policy and related disciplines. The journal has a worldwide audience. The journal's goal is to stimulate the development of energy economics, energy policy and related disciplines theory worldwide by publishing interesting articles in a highly readable format. ISSN: 2146-4553

Ranking: 2021 SJR: 0.380

23/68 Energy: General Energy (Scopus®)

2021 CiteScore: 4.1


Editorial Board: 79 editors in 27 countries/regions

Current Issue

Vol. 13 No. 3 (2023)

Published: 2023-05-17

Make a Submission

Articles

Can the Basis Lead to Arbitrage Profits on the MISO Exchange?

Abstract views: 0 / PDF downloads: 0

Kevin Jones

FULL TEXT

Contract Structure of Production Sharing Agreement by International Oil Company in Exploration of Petroleum Resources in Developing Countries

Abstract views: 1 / PDF downloads: 0

Shafiqul Hassan, Yusuff Jelili Amuda , Mohsin Dhali, Saghir Munir Mehar

☐ FULL TEXT

Financial Analysis of Solar Rooftop PV System: Case Study in Indonesia

Abstract views: 0 / PDF downloads: 0

Elieser Tarigan 15-19

☑ FULL TEXT

Impact of Renewable Energy on the Economy of Saudi Arabia

Abstract views: 1 / PDF downloads: 0

Khaled Abdalla Moh'd AL-Tamimi, Mohammad Sulieman Jaradat, Fatima Lahcen Yachou Aityassine, Mustafa M. Soumadi

☑ FULL TEXT

The Relationship between the Highest Prices and Trading Volume in the Share Indices of Energy and Oil Companies in Kazakhstan

Abstract views: 1 / PDF PDF downloads: 0

Elmira Y. Zhussipova, Serikbay Saduakasuly Ydyrys, Ulmeken Makhanbetova, Gulzhanat Tayauova, Zhansulu Pirmanova

☑ FULL TEXT

Energy use and End-use Technologies: Organizational and Energy Analysis in Italian Hospitals

Abstract views: 0 / PDF downloads: 0

Alfonso Marino, Paolo Pariso, Michele Picariello

For Librarians

Information

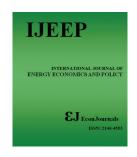
For Readers

For Authors

1-6

7-14

20-27


28-35

What is the Short-term and Long-term Relationship between Renewable Energy and Investment in Economic Growth? Abstract views: 0 / PDF downloads: 0 Heru wahyudi, Widia Anggi Palupi 46-55 ☐ FULL TEXT Prospects for the Development of Transport in Poland during the Energy Crisis Abstract views: 0 / PDF downloads: 0 Grzegorz Zimon 56-60 内 FULL TEXT Prospect of Hydrogen Usage in the Industrial Sector: Thailand Context Abstract views: 1 / PDF downloads: 0 Nitida Nakapreecha, Jakapong Pongthanaisawan, Weerin Wangjiraniran, Supawat Vivanpatarakij, Kulyos Audomvongseree 61-72 ☐ FULL TEXT Integrating Environmentally Friendly Management of Water Resources toward Ecological and Socio-Economic Sustainability Abstract views: 1 / PDF downloads: 0 Fajriani Ananda, Nofrizal Nofrizal , Dessy Yoswaty , Lena Farida, Rasoel Hamidy 73-79 内 FULL TEXT Impact of the Climate Change on the Production of the Fishing and Aquaculture Sectors of Latin America Abstract views: 0 / PDF downloads: 0 Rebeca Jaime Muniz, Juan Antonio Jimber Del Rio 80-91 ☑ FULL TEXT Ecological and Socio-Economic Factors on the Rate of Participation and Sustainable Forest Management Abstract views: 0 / PDF downloads: 0 T. Romi Marnelly, Tengku Dahril, Zulfan Saam, Nofrizal Nofrizal 92-101 内 FULL TEXT The Causal Relation between Energy Consumption, Carbon Dioxide Emissions, and Macroeconomic Variables in Somalia Abstract views: 0 / PDF downloads: 0 Zakarie Abdi Warsame, Maria Mohamed Ali, Liban Bile Mohamed, Farhia Hassan Mohamed 102-110 ☐ FULL TEXT Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter Abstract views: 0 / PDF downloads: 0 Ariodillah Hidayat, Bernadette Robiani, Taufiq Marwa, Suhel Suhel 111-121 ☐ FULL TEXT Policy Framework Analysis in the Field of Energy Saving and Relevant Energy Saving Practices in Uzbekistan Abstract views: 2 / PDF downloads: 0 Anastasia Salnikova 122-128 ☑ FULL TEXT **Examining Capital Structure Determinants for ASEAN Energy Firms** Abstract views: 1 / PDF downloads: 0 Erlane K. Ghani, Qazi Muhammad Adnan Hye, Raja Rehan, Sultan Salahuddin 129-140 ☐ FULL TEXT Growth and Financial Performance Governance by the Total Resources: A Case of Indian Downstream Oil and Gas Firms

Anis Ali, Nadeem Fatima

Abstract views: 0 / PDF downloads: 0

141-148

International Journal of Energy Economics and Policy

ISSN: 2146-4553

available at http: www.econjournals.com

International Journal of Energy Economics and Policy, 2023, 13(3), 111-121.

Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter

Ariodillah Hidayat*, Bernadette Robiani, Taufiq Marwa, Suhel Suhel

Department of Economic and Development, Faculty of Economics, Sriwijaya University, Indonesia. *Email: ariodillahhidayat@fe.unsri.ac.id

Received: 11 January 2023 **Accepted:** 06 April 2023 **DOI:** https://doi.org/10.32479/ijeep.14199

ABSTRACT

Crude palm oil (CPO) is the mainstay of Indonesian agricultural products which is the largest CPO producing country in the world. The high market share of Indonesian CPO exports reflects the high competitiveness of Indonesian CPO in the global market. The purpose of this study is to determine the competitiveness of Indonesian CPO, the concentration of the Indonesian CPO industry, and analyze the factors that are suspected to affect the competitiveness of the CPO industry in Indonesia. The data used in this study are secondary data with a five-digit International Standard Industrial Classification (10432) using time series data for 2001–2020 and the analytical techniques used in this study include revealed comparative advantage, Gini coefficient, and error correction model. The results showed that Indonesian CPO has high competitiveness in the international market, the Indonesian CPO industry is not concentrated, in the short term the variables that affect competitiveness are CPO prices, subsidized solar prices policy, and industrial concentrations, while in the long term the influential variables are biodiesel policy, subsidized diesel oil policy and industrial concentration.

Keywords: Crude Palm Oil, Competitiveness, Biodiesel Policy, Subsidized Fuel Oil

JEL Classifications: D24, F62, L11, O13

1. INTRODUCTION

The crude palm oil (CPO) industry is one of the plantation commodities that has a strategic role in economic development, generates domestic income and foreign exchange (Nurfatriani et al., 2022). CPO is also known as a critical component for food security in Indonesia and other countries (Goh and Lee, 2010). CPO is one of the flexible commodities because of its benefits that can be utilized for daily activities, such as human food consumption, with 80% to 90% of users (Shimizu and Desrochers, 2012).

Based on Figure 1, Indonesia as the largest producer CPO in the world controls 56% of total global exports with an export capacity of 73.5% of total production in 2020 (Purba, 2020). Even though in 2020 Indonesia and the world were hit by the Covid-19 pandemic, the export value of these palm oil products still showed a positive figure of around US\$ 35 billion in 2021, up 9.32% due to rising

prices. In terms of CPO demand due to the Covid-19 pandemic, only import demand from the Netherlands and Italy has decreased (Jamilah et al., 2022). This shows the high competitiveness of Indonesian CPO in the global market even though the world economy is experiencing a decline.

Price elasticity has become an important element in controversy among empirical studies of commodity competitiveness (Ismail et al., 2022). The nature of markets and their role in price determination are central to economics (Kharin, 2019). The significant increase in global CPO prices since the end of 2019 has resulted in an increase in the prices of CPO derivative products such as cooking oil, butter and other derivative products that have put great pressure on the Indonesian economy (Rosyadi et al., 2021). This also has an impact on unrest in Indonesia's CPO export destination countries such as India, China, Pakistan and as well as Bangladesh where most of the world's population is located (Figure 2) (Ali, 2019).

This Journal is licensed under a Creative Commons Attribution 4.0 International License

The existence of the Indonesian government's policy regarding biodiesel production for sustainable energy utilization will reduce Indonesia's dependence on fuel oil imports. Furthermore, the implementation of the B30 policy has an impact on increasing domestic demand for CPO and also causes a multiplier effect in the form of added value in the downstream palm oil industry (CPO to biodiesel) and employment (Zulqarnain et al., 2020).

The biodiesel policy in Indonesia has several objectives including, increasing the export value of the country's palm oil by encouraging its use in domestic transportation, reducing the country's dependence on imported fossil fuels, which can significantly drain the country's foreign exchange reserves, encouraging the domestic agricultural industry by providing new markets for domestic crops such as palm oil, which is used as the main raw material for biodiesel production in Indonesia, promoting energy security and reducing the country's vulnerability to fluctuations in world oil prices, the use of biodiesel can result in significant reductions in greenhouse gas emissions, and creating new jobs in agriculture and biofuel production ((Naylor and Higgins, 2017; Manik et al., 2013; Kharina et al., 2016; Halimatussadiah et al., 2021).

In Indonesia, the government still uses subsidized fuel policies, including solar is a type of fuel oil which is still massively used for transportation in the plantation and mining sectors, including the CPO industry. The purpose of the subsidized diesel oil policy in Indonesia is to support the country's industrial competitiveness by providing cheap and affordable fuel for the transportation and manufacturing sectors Dartanto (2013), which are the main drivers of economic growth in the country. In addition, the policy also aims to encourage the development of the country's manufacturing sector and support the growth of other industries, such as agriculture, by providing a reliable source of affordable fuel (Kumar et al., 2013).

Industrial competitiveness has always been an interesting study in empirical studies, one of which is due to market structure (Worley et al., 2008). Market structure is a market component that will affect the nature of competition (Wilden et al., 2013). The CPO industry in Indonesia continues to grow every year, of course, it has an impact on the competitive nature of the CPO industry in Indonesia. The lower concentration of an industry makes competition high, thus suppressing price levels and affecting competitiveness. In addition to market structure, global influences such as the Covid-19 pandemic, the war between Russia and Ukraine which has an impact on world CPO prices, are expected to affect the competitiveness of Indonesian CPO in the global market. We, therefore, answer the following questions:

- What is the structure of the Indonesian CPO Industry?
- How is the competitiveness of the Indonesian CPO Industry in the international market?
- Do market structures, CPO prices, subsidized fuel oil prices, and Biodiesel policies affect the competitiveness of the Indonesian CPO industry?

Several empirical studies support the arguments in this research objective. Othman et al. (2022) studied the competitiveness of the Malaysian CPO industry and other major producing countries,

showing that Indonesia is a strong competitor to Malaysia. The level of continuity of trade continues to increase from time to time, reflecting the increasing competitiveness of Indonesian CPO Industry companies in the global market, and in terms of competitiveness is heavily influenced by government policies and taxes. Harahap et al. (2019) concluded that dependence on the use of subsidized fuel oil affects the competitiveness of the CPO industry. Rifin et al. (2020) found that CPO prices also affect competitiveness in international trade.

2. LITERATURE REVIEW

According to Lipczynski et al. (2017) industry concentration refers to the number and size distribution of companies. In this case, the fewer the number of companies that exist in the market and the larger the size of those companies relative to the size of the entire company in the industry is usually indicated by a higher sales share. This is based on the argument that as the level of industry concentration increases, the ability of existing companies in the market to suppress competition and coordinate price policies among such companies tends to get higher.

According to Rostow (1960) in Cho and Moon (2003) competitiveness is the ability to produce goods or services that meet the test of international competition while our citizens enjoy sustainable standards. Krugman et al. (2012) explain that the country's competitiveness depends on the country's industrial capacity to continue to innovate and develop.

Cho and Moon (2003) explains the nine-factor model for assessing international competitiveness. According to him, there are four physical determinants of international competitiveness, namely the resources conferred, the business environment, related industries and supporting domestic demand; there are also four human factors namely workers, government policies, entrepreneurs and professional managers and engineers. External opportunities are listed as the ninth factor. Political factors and bureaucrats that can increase international competitiveness are through the application of efficient and non-corrupt bureaucracies to implement state policies and politicians who have a commitment to growth and success. Regulation can change demand factors (e.g. regulations related to fuel subsidies), a country's government has an important role in shaping the extensibility of factors that determine a country's level of competitive advantage in the industry. Porter (1990) also explained that the company's strategy, structure, and level of competition can affect competitiveness. Furthermore, factors in the condition of resource availability in a country, namely human resources, raw materials, knowledge, capital, and infrastructure that affect the price of these commodities so that they affect competitiveness.

3. METHODOLOGY

The scope of this study is the CPO industry. The industry category in this study is from the 2020 Indonesian Business Field Standard Classification (KBLI) with code 10432, which is included in the production of the processing industry sub-industrial vegetable and animal oils and fats (Central Bureau of Statistics Indonesia, 2022).

Annual data from 2001 to 2020. The data used in this study are secondary data related to the Indonesian CPO industry, the total number of Indonesian CPO companies officially registered with the government, Indonesia's biodiesel policy, subsidized fuel oil (diesel) price. In this study, data were obtained from the Indonesian Central Bureau of Statistics (BPS), UN Comtrade, Ministry of Trade of the Republic of Indonesia.

3.1. Revealed Comparative Advantage (RCA)

The most popularly used measurement of competitiveness is the RCA which measures comparative advantage. Introduced by Ballasam (1965), the rationale underlying this method is that a country's export performance is determined by its relative level of competitiveness against related products made by other countries. Mathematically to calculate the RCA index is as follows:

$$RCA = \left(\frac{X_{IK}}{X_{IM}}\right) / \left(\frac{X_{WK}}{X_{WM}}\right)$$
 (i)

Where

 X_{IK} = Export value of products I country K

 X_{IM}^{IR} = Total export value of country k

 X_{WK} = Export value of world product I

The RCA method is used to measure a country's comparative advantage over a product by comparing its share or ratio of exports to the ratio of that product to world exports. If the RCA values >1, it means that a country has a comparative advantage over the world average, so the product is of high power.

3.2. Lorenz Curve and Gini Coefficient

Lipczynski et al. (2017) the Lorenz curve shows a variation in the cumulative size of n largest companies in an industry, since n varies from 1 to N (where N is the total number of companies) (Figure 3).

- If all companies are the same size, the Lorenz curve is a 45° line OCA. At point C, for example, exactly half of the industry member companies make up exactly half of the total industry size, represented by the OD distance.
- If the company size distribution is skewed, the Lorenz curve is an OBA concave curve. At point B, exactly half of the industry member companies make up three-quarters of the total industry size, represented by OD. The Gini coefficient is defined as follows:

$$G = \frac{\text{The crescent area between OBA and OCA}}{\text{Area of triangle ODA}}$$

- The maximum possible value of G = 1 corresponds to the case of one dominant company with a market share close to one, and N-1 small companies each with a negligible market share. In this case the Lorenz curve approaches the OD line.
- The minimum value of G = 0 corresponds to the case of N the same sized company. In this case the Lorenz curve is the OCA of the 45-degree line, so the numerator in the formula for G is zero.

The definition of the formula for the Gini coefficient is as follows:

$$G = \left\{ \frac{\sum_{n=1}^{N} \sum_{i=1}^{n} Xi}{0.5(N+1) \sum_{i=1}^{N} Xi} \right\} - 1$$
 (ii)

Where xi is the size of company i (as before, measured using sales, assets, jobs, or some other appropriate size indicator) when the company is ranked in descending order of size.

3.3. Error Correction Model (ECM)

The ECM regression aims to explain whether an independent variable affects the dependent variable in the short and long term. This study analyzes the effect of CPO Price, Indonesian Biodiesel Policy, Subsidized Fuel Oil (Diesel) Price, and Structure used as independent variables (X) and Competitiveness as bound variables (Y). The equation in the short term is as follows:

$$\Delta Y = \beta_0 + \beta_1 \Delta_X I_t + \beta_2 \Delta_X I_t + \beta_3 \Delta_X I_t + \beta_4 \Delta X I_t + \beta_5 ECTe_t$$
 (iii)

$$\Delta RCA = \beta_0 + \beta_1 \Delta_P CPO_t + \beta_2 \Delta_B D_t + \beta_3 \Delta_P BBM_t + \beta_4 \Delta Gini_t + \beta_5 ECTe_t$$
 (iv)

While the equation in the long term is as follows:

$$Y = \beta_0 + \beta_1 X 1 + \beta_2 X 2 + \beta_3 X 3 + \beta_4 X 4 + e \tag{v}$$

$$RCA = \beta_0 + \beta_1 PCPO + \beta_2 BD + \beta_3 PBBM + \beta_4 GINI + e$$
 (vi)

Where, Y is the dependent variable, β_0 , 1, 2, 3, 4 is the coefficient of the 1st, 2, 3, 4th variable, RCA is competitiveness, PCPO is International CPO Price, BD is Indonesia's Biodiesel Policy, PBBM is Subsidized fuel prices, and Gini Coefficient is Industry concentration, e is the error term.

4. ANALYSIS AND DISCUSSION

The following is the analysis of the data and the trend of the variables used in the research:

4.1. Competitiveness Calculation Results using Revealed Competitive Advantage (RCA)

A country or region will have competitiveness in the form of a comparative advantage if the country or region is able to produce and export goods or services at relatively lower costs than the country or region imports goods and services from other countries (Nesti and Tan, 2017). Higher specialization can lead to higher productivity and competitiveness (and vice versa) (Zdráhal et al., 2020).

Based on Table 1, the value of processed RCA products, the results are obtained annually from 2000-2020, the value of RCA > 1, then CPO commodities in Indonesia have a comparative advantage above the world average so that CPO commodities have strong competitiveness in the international market.

Export competitiveness is one of the determining factors in the persistence of a country's long-term economic growth (Ansonfino et al., 2021). The derivative value of RCA in 2008 was caused by the global economic crisis, affecting the competitiveness of the country's CPO exports because financial, credit, and mortgage pressures in developed countries changed the global demand for

No data 0 t 100,000 t 500,000 t 1 million t 5 million t

Figure 1: Crude palm oil production

Source: Food and Agriculture Organization of the United Nations (2019)

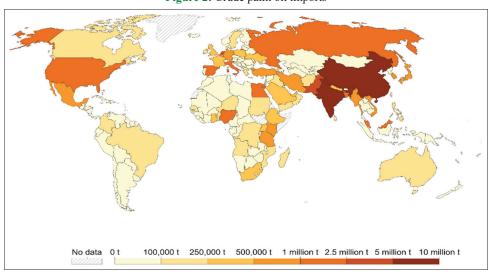
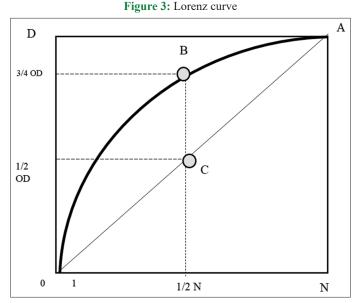



Figure 2: Crude palm oil imports

Source: Food and Agriculture Organization of the United Nations (2019)

Source: Lipczynski et al., (2017)

this commodity (Krugman, 2011). Also, overvaluation of financial derivative products and rising oil prices raise input costs, shrinking investment, productivity, and competitiveness of CPO exports (Arias et al., 2020).

Indonesia has the highest competitiveness in the international market for CPO due to several factors, including: Indonesia is the world's largest palm oil producer and has abundant land suitable for growing oil palm trees, Indonesia has a favorable climate and geography, as well as relatively low labor costs, which contributes to the low cost of CPO production in the country, the Government of Indonesia has implemented policies to support and advance the palm oil industry, including tax incentives and export subsidies, Strong distribution network: Indonesia has an established distribution network, both domestically and internationally, that assists in efficient CPO exports (Petrenko et al., 2016; Varkkey et al., 2018).

Indonesia's main competitor in international trade in CPO is Malaysia. In research Othman and Tahir (2022) found that

Indonesia's competition in the long term is difficult to compete with because it has greater potential for economies of scale and other cost advantages when compared to Malaysia. Ramadhani and Santoso (2019) concluded that CPO exports by Indonesia are driven by the use of palm oil as cooking oil in Asian countries such as China, India, and Pakistan.

In terms of importers of CPO commodities in the world, India and China are the two largest (Guerrieri and Caffarelli, 2012). The role of the Indian state in international trade is enough to make Indian consumption the main determinant of the relative price of CPO (Carter et al., 2007).

4.2. Results of Industrial Concentration Calculation using Gini Coefficient

The following is the result of the calculation of the Gini coefficient which is used as a measure of the concentration of the Indonesian CPO industry.

Based on Table 2, it is known that from 2001–2020 the results of calculating the Gini coefficient are getting closer to 0, which means that Indonesia's CPO industry is an industry that is not concentrated. In the research of Wibowo et al. (2021) which

analyzed the concentration of the Malaysian and Indonesian CPO Industries resulted in a less concentrated market trend, but Indonesia and Malaysia as the main palm oil producers and exporters still have at least 70% of the total export share. The market trend of Indonesia's CPO industry is less concentrated due to several factors, including: The Indonesian government has implemented policies aimed at encouraging competition and reducing market concentration in the CPO industry, these include policies aimed at encouraging the development of smallholder farmers and increasing their participation in the industry, the growth of the CPO industry in Indonesia has attracted new players to the market, increased competition and reduced concentration, the increasing global demand for sustainable palm oil has led to an influx of new players in the industry, including smaller and more environmentally conscious producers (Hospes, 2014).

The market size (structure) effect shows the change of the receptivity of the reference market, which can also at constant market share modify the exports to the reference market (Juhász and Wagner, 2013). It is known from the Figure 4 that the results of the Gini ratio in the Indonesian CPO industry show a volatile movement. From the annual average results, the results are always close to zero, meaning that the Indonesian CPO Industry

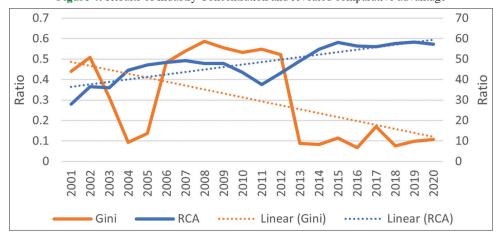


Figure 4: Results of Industry Concentration and revealed comparative advantage

Source: UN Comtrade, data processed (2001-2020)

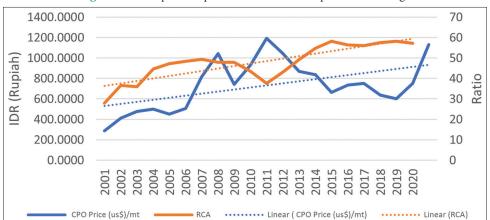


Figure 5: Crude palm oil prices and revealed comparative advantage

Source: World Bank and UN Comtrade, data processed (2001-2020)

is not concentrated. As concentration increases, competitiveness decreases, this shows a negative relationship between the two variables. High levels of concentration can also reduce the bargaining power of suppliers and consumers, as they have fewer options to choose from and less influence over the market (De Marchi et al., 2013).

In the long term, the price and demand for CPO shows an increasing trend in line with the growth of the world population and therefore increases the consumption of products with palm oil raw materials such as food and products (Figure 5). The increase in CPO prices itself results in a decrease in demand for purchasing power for CPO products and their derivatives, thereby reducing the volume and value of exports and the competitiveness of CPO in the international market. Higher prices for palm oil can lead to decreased demand for palm oil-based products, as consumers switch to alternative, lower-priced products (Ruggeri and Samoggia, 2018). Consumers will also tend to choose other substitutes or in this case other vegetable oils such as sunflower oil and soybean oil which are increasingly relatively more affordable although still more expensive compared to the price of CPO oil.

Intense competition in the global market has led to the enactment of several policies, which can limit and facilitate trade (Tandra et al., 2022). As a highly contested oilseed crop, CPO dominates discussions on sustainability compared to other vegetables in the oil and fat sector (Naidu and Moorthy, 2021). The formulation of policies underlying the sustainable development of the palm oil industry needs to strike a balance between environmental, social, and economic attitudes (Zakaria et al., 2020). Based on Figure 6, it is known that Indonesia's biodiesel policy has been implemented since 2016. When the biodiesel policy was implemented, the competitiveness of the Indonesian CPO Industry increased. Although it is still increasing, in the future Indonesia's CPO exports do face several challenges. Indonesia's palm oil exports are increasing in line with the increasing demand for palm oil in international markets, especially India, China, and the European Union. In the domestic market, the consumption of palm-based biofuels is higher than

the composition of biofuel exports, due to the government's mandatory policy on the use of biodiesel from B-5(2010), B-10(2012), B-15(2014), B-20(2016), and B-30(2020) (Jamilah et al., 2022). The Indonesian government has set mandates for the use of biofuels, such as biodiesel, in the domestic market to reduce the country's dependence on fossil fuels and increase the use of renewable energy sources (Kumar et al., 2013; Mofijur et al., 2015). Development of downstream palm oil industry including Biodiesel is expected to increase the added value of palm oil products for Indonesia which are mostly just enjoyed by other countries (Singagerda et al., 2018).

From the Figure 7 above, it is known that the price movement of subsidized diesel oil in Indonesia always increases. The highest price of subsidized diesel in 2014 was Rp 7,500 rupiah but fell in 2015 at Rp 6,500 due to the decline in world crude oil prices and the rupiah exchange rate (Baumeister and Kilian, 2016).

In this case, subsidized diesel oil has an impact on its price which is cheaper than the market price which the difference reaches an average of 66% if averaged from 2001-2020 so that it affects the increasing competitiveness caused by the Indonesian CPO industry using subsidized fuel oil in its production and transportation.

4.3. Results and Discussion of Estimated ECM

The following are the stages of the estimation results of the ECM method in this study:

4.4. Unit Root Test

Based on Table 3, it can be seen that all variables are stationary on the first different, because all variables have a probability of less than alpha $\alpha = 5\%$ (significant).

4.5. Cointegration Test

Based on Table 4, the cointegration test from Johansen, a statistical trace value = 121.8242 was obtained > a critical value of α = 5% = 69.82 with a probability of $0.000 < \alpha = 0.05$ then H0 was rejected, which means that the data of all variables have a longterm relationship (cointegrated).

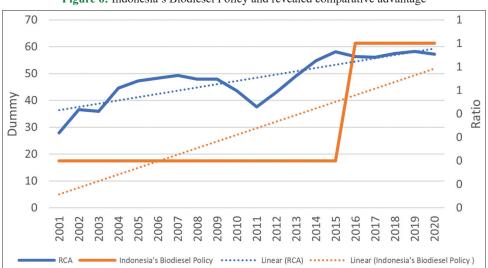


Figure 6: Indonesia's Biodiesel Policy and revealed comparative advantage

Source: Institute for Essential Services Reform and UN Comtrade, data processed (2001–2020)

8000 70 7000 60 6000 50 DR (Rupiah) 5000 40 4000 30 3000 20 2000 10 1000 0 0 Diesel fuel prices (Rp) RCA ····· Linear (Diesel fuel prices (Rp))

Figure 7: Indonesian Subsidized Diesel Fuel Prices and revealed comparative advantage

Source: CEIC Data and UN Comtrade, data processed (2001-2020)

4.6. Short-term Estimation Results

In the short-term ECM model using Least Squares, the following short-term estimates are generated:

$$\Delta$$
RCA = 0.820035 + (-5.712165) Δ PCPO_t +1.395145 Δ BD_t + 5.863557 Δ PBBM_t + -8.312636 Δ Gini_t + (-0.792963)ECT

From the short-term estimation equation in Table 5, it shows that CPO Price (PCPO) and Industry concentration is negatively and significantly correlated to CPO competitiveness. Biodiesel Policy (BD) is positively correlated but not significant. The variable price of fuel oil (diesel) subsidies correlates positively and significantly.

The value of the ECT coefficient shows how much the equilibrium cost at the level of competitiveness (RCA) in the earlier period adjusted for the present change is -0.792963 where the probability of ECT is 0.0084 which means significant at $\alpha = 5\%$. While the ECT coefficient that has a negative sign indicates that the model has a short-term relationship.

4.7. Long-Term Estimation Results

In the long-term ECM model using Least Squares, a long-term estimate is generated as follows:

$$RCA = -6.110938 + (-4.414982)PCPO + 5.139311BD$$

+10.2749 PBBM + (-9.918397) GINI + ε

From the long-term estimation equation in Table 6, it shows that CPO Price (PCPO) is negatively and insignificantly correlated to CPO competitiveness. Biodiesel policy (BD) and the price of fuel oil are positive and significant. Industry concentration is negatively correlated and has a significant effect.

4.8. Discussion of CPO Industry Analysis in the Short and Long Term

The short-term estimation equation shows that CPO prices are negatively and significantly correlated to CPO competitiveness.

Table 1: Results of RCA Indonesia CPO Industry 2001–2020

_001 _0_	•		
Year	RCA value	Year	RCA value
2001	27.98183	2011	37.63006
2002	36.59414	2012	43.12149
2003	35.96132	2013	49.16183
2004	44.55598	2014	54.81517
2005	47.24825	2015	58.15362
2006	48.36279	2016	56.39279
2007	49.32231	2017	56.09925
2008	47.87606	2018	57.55124
2009	47.93711	2019	58.23941
2010	43.53909	2020	57.24834

Source: UN Comtrade, data processed (2001–2020). RCA: Revealed Comparative Advantage, CPO: Crude palm oil

Table 2: Results of Indonesia CPO Industry Concentration 2001–2020

Year	Gini	Year	Gini
2001	0.439615	2011	0.548842
2002	0.508395	2012	0.521722
2003	0.31367	2013	0.088816
2004	0.093358	2014	0.083853
2005	0.136281	2015	0.115198
2006	0.483983	2016	0.067441
2007	0.539051	2017	0.170539
2008	0.586615	2018	0.075846
2009	0.555527	2019	0.098709
2010	0.533207	2020	0.107863

Source: Central Bureau of Statistics Indonesia, data processed (2001–2020). CPO: Crude palm oil

Table 3: Unit root test

111010 01	C 1110 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Variable	Level		Level 1	
	T-Statistics	Probability	T-Statistics	Probability
PCPO	-6.53545	0.0075***	-6.53545	0.0000***
BD	-5.03496	0.0668*	-5.03496	0.0000***
PBBM	37.2242	0.0788*	37.2242	0.0000***
Gini	44.9013	0.0001***	44.9013	0.0000***

***, ** represent statistical significance at 1%, 5%, and 10%, respectively Source: Output EViews (2001-2020)

This shows that any increase in international prices will always be followed by a decrease in the level of export competitiveness,

Table 4: Cointegration Test

No. of	Eigenvalue	Statistics	Critical	Probability
CE (s)			value	
None*	0.953767	121.8242	69.81889	0.0000***
At most 1*	0.806125	66.49117	47.85613	0.0004***
At most 2*	0.692394	36.96141	29.79707	0.0063***
At most 3*	0.552497	15.74059	15.49471	0.0459**
At most 4	0.067983	1.267277	3.841466	0.2603

***, **, and * represent statistical significance at 1%, 5%, and 10%, respectively. Source: Output EViews (2001–2020)

Table 5: Short-term ECM estimation results

Variables	Coefficient	Std.	t-Statistics	Probability
		Error		
С	0.820035	0.703570	1.165535	0.2647
D (PCPO)	-5.712165	2.285745	-2.499039	0.0266**
D (BD)	1.395145	3.025837	0.461077	0.6524
D (PBBM)	5.863557	2.368215	2.475940	0.0278**
D (GINI)	-8.312636	4.693110	-1.771243	0.0999*
ECT(-1)	-0.792963	0.255509	-3.103462	0.0084***
R Squared	0.669915			
Prob F	0.007274***			
Statistics				

***, **, and * represent statistical significance at 1%, 5%, and 10%, respectively.

Source: Output EViews (2001-2020). ECM: Error correction model

Table 6: Long-term ECM estimation results

Variables	Coefficient	Standard	t-statistics	Probability
		error		
C	-6.110938	19.57744	-0.312142	0.7592
PCPO	-4.414982	2.890605	-1.527356	0.1475
BD	5.139311	1.920145	2.676523	0.0173**
PBBM	10.27249	1.305558	7.868274	0.0000***
GINI	-9.918397	4.342323	-2.284123	0.0374**
R-squared	0.902956			
Prob F	0.0000***			
statistics				

***, ** represent statistical significance at 1%, 5%, and 10%, respectively.

Source: Output EViews (2001-2020). ECM: Error correction model

and vice versa. In the short term, the price of CPO and the competitiveness of CPO can be negatively and significantly correlated for several reasons including, when CPO demand increases and supply remains, prices will rise, and competitiveness will decrease. On the contrary, when demand decreases and supply remains, prices will fall, and competitiveness will increase. CPO competes with other vegetable oils such as soybean oil and sunflower oil. If the price of this oil falls, it will increase its competitiveness and reduce the competitiveness of CPO. This is in line with research conducted by Arias et al. (2020); Ziae and Ali (2021); Jambor and Babu (2016). However, this only has a significant effect on short-term circumstances, in the long-term, the result is that the CPO price has no effect. There is no effect on CPO prices on their competitiveness because CPO prices tend to be relatively stable in the long term, and price fluctuations do not have a significant impact on the demand for these commodities. In addition, CPO is often substituted with other vegetable oils, so changes in its price do not necessarily affect its competitiveness. Overall, while short-term changes in CPO prices can affect its competitiveness, the long-term stability of demand, substitution options, and cost competitiveness make it a competitive commodity. diversify energy sources, and reduce GHG emissions. Indonesia has biodiesel blending targets for the transportation and industrial sectors set at 15% in 2015, 20% in 2016 and 30% from 2020 to 2025 (Khatiwada et al., 2021). In the short term, Biodiesel (BD) policy is positively but not significantly correlated. Meanwhile, in the long term, the policy is positive and significant. In the short term, the relationship between biodiesel policy and CPO prices can be positively correlated but not necessarily significant for several reasons: In the short term, market conditions can be very volatile and uncertain, making it difficult to establish a strong and significant relationship between policy and price. Policies may take some time to impact the market, so their effect on CPO prices may not be direct or significant (Dutta et al., 2021). Whereas in the long run, the relationship between biodiesel policy and CPO prices can be positive and significant because in the long run, policies tend to become more stable, reducing market uncertainty and allowing the emergence of a stronger relationship between policy and price. Over time, policies will most likely be implemented more consistently and effectively, leading to a stronger and significant relationship between policy and price. In the long run, market participants can adapt to policies and their influences, which leads to a more stable and predictable relationship between policy and prices. Overall, while the relationship between biodiesel policy and CPO prices may not be significant in the short term, it can be both positive and significant in the long run as policies become more stable, implemented more consistently, and market participants adjust to their influence. This is in line with the research of Von Geibler (2013); Johari et al. (2015); and Rifin et al. (2020). On one hand, the policy has helped to promote the development of the domestic biodiesel industry, which is a key driver of economic growth in Indonesia (Koizumi, 2015; Ewing and Msangi, 2009). The policy requires a mandatory use of biodiesel in transport, with a target of reaching 30% biodiesel blend (B30) in 2020, which has increased the demand for palm oil as the main raw material for biodiesel production (Zahan, 2018). This has boosted the demand for CPO and supported the growth of the CPO industry, which is a major contributor to Indonesia's economy. On the other hand, the biodiesel policy has had negative impacts on the competitiveness of the CPO industry and the environment. Firstly, the mandatory use of biodiesel has resulted in a significant increase in the domestic consumption of CPO, leading to a shortage of supply for export markets and, as a result, higher prices for CPO in the domestic market. This has made it difficult for CPO exporters to compete with other producers in the global market, which has hurt the competitiveness of the industry (Mekhilef et al., 2011, Johari et al., 2015, Ahmad et al., 2011). Secondly, the expansion of the CPO industry has also led to deforestation and loss of biodiversity, which has negative environmental impacts (Taheripour et al., 2019). The expansion of oil palm plantations has been associated with the destruction of rainforests, leading to habitat loss for wildlife, increased greenhouse gas emissions, and soil degradation (Meijaard et al., 2020).

Biodiesel policy targets aim to reduce imported fossil fuels,

The price of subsidized fuel oil (diesel) is positively and significantly correlated in both the long and short term. Fuel oil

is one of the main elements, even the largest in the components of carrying costs, production, and distribution costs. In the subsidy, the price of diesel fuel oil so that the price is cheaper than the market price has a positive influence on competitiveness due to the Indonesian CPO industry using subsidized fuel in production and transportation. This is an advantage for the Indonesian CPO Industry because it is more efficient in competing with CPO products from other countries. This is supported by the Indrawan (2020) report. Favorable government policies: The Indonesian government provides various incentives and support for the palm oil industry, making it easier for companies to operate and increasing competitiveness. The provision of various subsidies by the Indonesian government is in accordance with a study conducted by Brandi et al. (2013). The Indonesian government subsidizes fuel oil to the industry as part of its economic and energy policy. The reasons for this subsidy include: to support economic growth: By reducing the cost of energy, the government hopes to boost the competitiveness of Indonesian industries, including the palm oil industry, and stimulate economic growth (Dartanto, 2013). However, it is important to note that the subsidized diesel oil policy is not without its drawbacks. The policy can lead to overconsumption of fuel, which can contribute to pollution and harm the environment (Wesseh et al., 2016). Furthermore, the subsidies are costly to the government, which can put a strain on public finances and limit the government's ability to invest in other areas, such as education and healthcare (Javier et al., 2012).

Industrial concentrations are negatively and significantly correlated in both the long and short term. From the results of concentration, it shows that the Indonesian CPO Industry is an industry that is not concentrated. Negative signs indicate that the lower the industry concentration, the higher the competition between CPO industries, which has an impact on the price of Indonesian CPO getting cheaper and has an impact on high competitiveness. The effect of concentration on competitiveness is in line with Aritenang (2021) research. This is not in line with the research conducted by Marković et al. (2019) mentioning that concentrated industries have greater opportunities in International trade. The positive impact of the low concentration level of the CPO industry i.e., Low-concentrated industries can lead to more competition among companies, which can benefit consumers and lead to innovation and lower prices (Kariyasa and Dewi, 2011). This can make the industry more attractive to buyers and increase the demand for CPO. In addition, Low-concentrated industries will be more resilient to economic shocks or changing global market conditions, as smaller companies may be able to adapt more quickly to changing circumstances and find new markets or niches to serve (Curzi et al., 2021).

5. CONCLUSION

Indonesia's CPO industry has a comparative advantage in the international trading market. This is showed through the calculation of more than one RCA value. Indicates that the Indonesian CPO industry can produce and export CPO products and their derivatives at a relatively cheaper cost than other countries so as to increase competitiveness in the international market. In addition, with more stable prices, Indonesia does not need to import CPO from other countries and is able to meet domestic needs. Based on the ECM estimates, the factors that affect competitiveness in the short term are the price of CPO, solar subsidies, and the concentration of industry, while in the long term the variables that affect are biodiesel policy, subsidized diesel oil and industrial concentration.

The results show that the lack of concentrated CPO industry in Indonesia indicates that there is no gap between large companies and companies with small business scales. A Gini coefficient value close to zero indicates the more dispersed concentration, or close to perfect competition behavior. The less concentrated CPO industry results in a more competitive market and prices. The low concentration of the CPO industry makes competition between companies higher so that it can reduce price levels and affect the competitiveness of CPO.

Nationally, the B30 policy has many benefits for Indonesia. From an economic point of view, the use of biodiesel, which is a mixture of diesel fuel, has an impact on reducing oil imports so as not to reduce the country's foreign exchange reserves. The large absorption of CPO as a feedstock for biodiesel due to the B30 policy has implications for palm oil stocks in the global market to be maintained (no oversupply). The implication is that international prices of palm oil are stable and tend to increase. Another implication is that the biodiesel policy can maintain domestic CPO prices so that they are stable and do not fall, supply added value through down streaming the agricultural industry, save the country's foreign exchange and trade balance, provide job opportunities, and maintain energy security. In addition, the increase in CPO production has an impact on increasing CPO demand, thereby increasing competitiveness in international trade. Therefore, while Indonesia's biodiesel policy has had positive impacts on the domestic economy and the development of the biodiesel industry, policymakers must also consider the negative impacts on the competitiveness of the CPO industry and the environment. It is important to strike a balance between economic growth, social welfare, and environmental sustainability to ensure that the benefits of the policy are realized without harming the competitiveness of the CPO industry or the environment.

The fact that the CPO industry that uses subsidized diesel oil in the production and transportation process has an impact on its price that is cheaper than the market price, which has a difference of an average of 66% if on average from 2001-2020 so that this affects the increase in competitiveness. In terms of policy making, the efficiency of fuel oil consumption in the industrial sector and other sectors needs to be improved. In addition, the high dependence on fuel oil in energy consumption needs to be corrected through the substitution of fuel oil with non-fuel oil energy sources. Although this policy is felt to be unfair to the public, the provision of subsidies by the Indonesian government is a form of protecting the domestic industry so that solar subsidies show positive results for the increasing competitiveness of the Indonesian CPO industry. Overall, the subsidized diesel oil policy in Indonesia is intended to support the country's industrial competitiveness, but policymakers must carefully balance the benefits of the policy against its potential costs and drawbacks.

REFERENCES

- Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K. (2011), Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1), 584-593.
- Ali, A. (2019), Malaysia's palm oil export to India. Indian-Pacific Journal of Accounting and Finance, 3(4), 25-37.
- Ansonfino, A., Zusmelia, Z., Dahen, L.D., Puteri, Y.E. (2021), Diamond model and competition of rubber export markets: Evidence from Sumatra economic growth center. Agris on-Line Papers in Economics and Informatics, 13(1), 15-27.
- Arias, E.R.L., de la Puente Pacheco, M.A., Arias, J.L. (2020), An examination of palm oil export competitiveness through price-nominal exchange rate. International Trade Journal, 34(5), 495-509.
- Aritenang, A.F. (2021), The contribution of foreign investment and industrial concentration to firm competitiveness in Jakarta Megacity. Cities, 113, 103152.
- Ballasam, B. (1965), Trade liberalization and revealed comparative advantage. The Manchester School, 33(2), 92-193.
- Baumeister, C., Kilian, L. (2016), Understanding the decline in the price of oil since June 2014. Journal of the Association of Environmental and Resource Economists, 3(1), 131-158.
- Brandi, C., Cabani, T., Hosang, C., Schirmbeck, S., Westermann, L., Wiese, H. (2013), Sustainability Certification in the Indonesian Palm Oil Sector. German Development Institute (Issue 74). Available from: https://www.die-gdi.de/uploads/media/studies 74.pdf
- Carter, C., Finley, W., Fry, J., Jackson, D., Willis, L. (2007), Palm oil markets and future supply. European Journal of Lipid Science and Technology, 109(4), 307-314.
- Cho, D.S., Moon, H.C. (2003), Evoluasi Teori Daya Saing from Adam Smith to Michael Porter. Erly Suandy Pertama: Salemba Empat.
- Curzi, D., Garrone, M., Olper, A. (2021), Import competition and firm markups in the food industry. American Journal of Agricultural Economics, 103(4), 1433-1453.
- Dartanto, T. (2013), Reducing fuel subsidies and the implication on fiscal balance and poverty in Indonesia: A simulation analysis. Energy Policy, 58(2), 117-134.
- De Marchi, V., Di Maria, E., Micelli, S. (2013), Environmental strategies, upgrading and competitive advantage in global value chains. Business Strategy and the Environment, 22(1), 62-72.
- Dutta, A., Bouri, E., Saeed, T., Vo, X.V. (2021), Crude oil volatility and the biodiesel feedstock market in Malaysia during the 2014 oil price decline and the COVID-19 outbreak. Fuel, 292, 120221.
- Ewing, M., Msangi, S. (2009), Biofuels production in developing countries: Assessing tradeoffs in welfare and food security. Environmental Science and Policy, 12(4), 520-528.
- Guerrieri, P., Caffarelli, F.V. (2012), Trade openness and international fragmentation of production in the European Union: The new divide? Review of International Economics, 20(3), 535-551.
- Halimatussadiah, A., Nainggolan, D., Yui, S., Moeis, F.R., Siregar, A.A. (2021), Progressive biodiesel policy in Indonesia: Does the Government's economic proposition hold? Renewable and Sustainable Energy Reviews, 150, 111431.
- Harahap, F., Silveira, S., Khatiwada, D. (2019), Cost competitiveness of palm oil biodiesel production in Indonesia. Energy, 170, 62-72.
- Hospes, O. (2014), Marking the success or end of global multi-stakeholder governance? The rise of national sustainability standards in Indonesia and Brazil for palm oil and soy. Agriculture and Human Values, 31(3), 425-437.
- Indrawan, R. (2020), Aturan Direvisi, Sektor Pertambangan dan Perkebunan Dilarang Gunakan Solar Bersubsidi. Dunia Energi. Available from: https://www.dunia-energi.com/aturan-direvisi-sektor-pertambangan-dan-perkebunan-dilarang-gunakan-solar-bersubsidi

- Ismail, N.W., Kamal, S.N.M., Firdaus, M., Hariri, N.M. (2022), Export demand of palm oil in Malaysia: Analysis using ardl approach. Asian Journal of Agriculture and Rural Development, 12(3), 157-163.
- Jambor, A., Babu, S. (2016), Competitiveness of global: Agriculture policy lessons for food security. In: Competitiveness of Global Agriculture: Policy Lessons for Food Security. Washington, D.C: International Food Policy Research Institute.
- Jamilah, J., Zahara, H., Kembaren, E.T., Budi, S., Nurmala, N. (2022), Market share analysis and export performance of Indonesian crude palm oil in the EU market. International Journal of Energy Economics and Policy, 12(2), 218-225.
- Javier, F., Del, A., Coady, D., Gillingham, R. (2012), The unequal benefits of fuel subsidies: A review of evidence for developing countries. World Development, 40(11), 2234-2248.
- Johari, A., Nyakuma, B.B., Nor, S.H.M., Mat, R., Hashim, H., Ahmad, A., Zakaria, Z.Y., Abdullah, T.A.T. (2015), The challenges and prospects of palm oil based biodiesel in Malaysia. Energy, 81, 255-261.
- Juhász, A., Wagner, H. (2013), An analysis of hungarian agri-food export competitiveness. Studies in Agricultural Economics, 115(3), 150-156.
- Kariyasa, K., Dewi, Y.A. (2011), Convergence of market concentration: Evidence from Czech food processing sectors. Journal of Gender, Agriculture and Food Security, 1(3), 1-22.
- Kharin, S. (2019), Horizontal price transmission on the Russian dairy market: Nonlinear approach. Agris on-Line Papers in Economics and Informatics, 11(3), 45-54.
- Kharina, A., Malins, C., Searle, S. (2016), Biofuels Policy in Indonesia: Overview and status Report. In: The International Council on Clean Transportation: Washington, DC, USA.
- Khatiwada, D., Palmén, C., Silveira, S. (2021), Evaluating the palm oil demand in Indonesia: Production trends, yields, and emerging issues. Biofuels, 12(2), 135-147.
- Koizumi, T. (2015), Biofuels and food security. Renewable and Sustainable Energy Reviews, 52, 829-841.
- Krugman, P. (2011), The profession and the crisis. Eastern Economic Journal, 37(3), 307-312.
- Krugman, P.R., Obstfeld, M., Melitz, M.J. (2012), International Economics Theory and Policy. 9th ed. London: Pearson.
- Kumar, S., Shrestha, P., Salam, P.A. (2013), A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts. Renewable and Sustainable Energy Reviews, 26, 822-836.
- Lipczynski, J., Wilson, J., Goddard, J. (2017), Industrial Organization: Competition, Strategy, and Policy. 5th ed. United Kingdom: Pearson.
- Manik, Y., Leahy, J., Halog, A. (2013), Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. International Journal of Life Cycle Assessment, 18(7), 1386-1392.
- Marković, M., Krstić, B., Rađenović, Ž. (2019), Export competitiveness of the Serbian agri-food sector on the EU market. Ekonomika Poljoprivrede, 66(4), 941-953.
- Meijaard, E., Brooks, T.M., Carlson, K.M., Slade, E.M., Garcia-Ulloa, J., Gaveau, D.L.A., Ser, J., Lee, H., Santika, T., Juffe-Bignoli, D., Struebig, M.J., Wich, S.A., Ancrenaz, M., Koh, L.P., Zamira, N., Abrams, J.F., Prins, H.H.T., Sendashonga, C.N. (2020), The environmental impacts of palm oil in context. Nature Plants, 6, 1418-1426.
- Mekhilef, S., Siga, S., Saidur, R. (2011), A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews, 15(4), 1937-1949.
- Porter, M. (1990), The Competitive Advantage of Nations. New York: The MacMillan Press Ltd.
- Mofijur, M., Masjuki, H.H., Kalam, M.A., Rahman, S.M.A., Mahmudul, H.M. (2015), Energy scenario and biofuel policies and

- targets in ASEAN countries. Renewable and Sustainable Energy Reviews, 46, 51-61.
- Naidu, L., Moorthy, R. (2021), A review of key sustainability issues in malaysian palm oil industry. Sustainability (Switzerland), 13(19), 131910839.
- Naylor, R.L., Higgins, M.M. (2017), The political economy of biodiesel in an era of low oil prices. Renewable and Sustainable Energy Reviews, 77, 695-705.
- Nesti, L., Tan, F. (2017), The competitiveness crude palm oil product of West Sumatra in domestic and world market. Reports on Economics and Finance, 3(1), 37-43.
- Nurfatriani, F., Ramawati, R., Sari, G.K., Saputra, W., Komarudin, H. (2022), Oil palm economic benefit distribution to regions for environmental sustainability: Indonesia's revenue-sharing scheme. Land, 1 1(9), 1452.
- Othman, N., Subri, M.T., Leylawati, J. (2022), On the duration of trade competitiveness: The case of the Malaysian palm-based oleochemical industry. SSRN Electronic Journal, 8, e11903.
- Othman, N., Tahir, M.S. (2022), On the duration of trade competitiveness: The case of the Malaysian palm-based oleochemical industry. SSRN Electronic Journal, 8, e11903.
- Petrenko, C., Paltseva, J., Searle, S. (2016), Ecological Impacts of Palm Oil Expansion in Indonesia. Washington, US: International Council on Clean Transportation. p1-21.
- Purba, J.H.V. (2020), Does Chinese vegetable oil consumption have positive implications for the Indonesia-China trade balance? Integrated Journal of Business and Economics, 4(1), 36.
- Ramadhani, T.N., Santoso, R.P. (2019), Competitiveness analyses of Indonesian and Malaysian palm oil exports. Economic Journal of Emerging Markets, 11(1), 46-58.
- Rifin, A., Feryanto, F., Herawati, H., & Harianto, H. (2020), Assessing the impact of limiting Indonesian palm oil exports to the European Union. Journal of Economic Structures, 9(1), 26.
- Rostow, W. (1960), The Stages of Economic Growth: A Non-Communist Manifesto. United Kingdom: Cambridge University Press.
- Rosyadi, F.H., Mulyo, J.H., Perwitasari, H., Darwanto, D.H. (2021), Export intensity and competitiveness of Indonesia's crude palm oil to main destination countries. Agricultural Economics (Czech Republic), 67(5), 189-199.
- Ruggeri, A., Samoggia, A. (2018), Twitter communication of agrifood chain actors on palm oil environmental, socio-economic, and health sustainability. Journal of Consumer Behaviour, 17(1), 75-93.
- Sheng Goh, C., & Teong Lee, K. (2010). Will biofuel projects in Southeast Asia become white elephants? Energy Policy, 38(8), 3847–3848.
- Shimizu, H., Desrochers, P. (2012), The health, environmental and

- economic benefits of palm oil. In: IEM's Economic Note. Available from: https://www.institutmolinari.org/wp-content/uploads/2012/09/note0912_en.pdf
- Singagerda, F.S., Hendrowati, T.Y., Sanusi, A. (2018), Indonesia growth of economics and the industrialization biodiesel based CPO. International Journal of Energy Economics and Policy, 8(5), 319-334.
- Taheripour, F., Hertel, T.W., Ramankutty, N. (2019), Market-mediated responses confound policies to limit deforestation from oil palm expansion in. Proceedings of the National Academy of Sciences, 116(38), 1903476116.
- Tandra, H., Suroso, A.I., Syaukat, Y., Najib, M. (2022), The determinants of competitiveness in global palm oil trade. Economies, 10(6), 132.
- Varkkey, H., Tyson, A., Choiruzzad, S.A.B. (2018), Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and sociopolitical factors influencing policy. Forest Policy and Economics, 92, 148-159.
- Von Geibler, J. (2013), Market-based governance for sustainability in value chains: Conditions for successful standard setting in the palm oil sector. Journal of Cleaner Production, 56, 39-53.
- Wesseh, P.K., Lin, B., Atsagli, P. (2016), Environmental and welfare assessment of fossil-fuels subsidies removal: A computable general equilibrium analysis for Ghana. Energy, 116, 1172-1179.
- Wibowo, R.P., Sumono, S., Khaliqi, M., Maryunianta, Y. (2021), Analyzing global competitiveness of Indonesian palm oil. IOP Conference Series: Earth and Environmental Science, 892(1), 012094.
- Wilden, R., Gudergan, S.P., Nielsen, B.B., Lings, I. (2013), Dynamic capabilities and performance: Strategy, structure and environment. Long Range Planning, 46(1-2), 72-96.
- Worley, A., Krastev, P.G., Li, B. (2008), Nuclear constraints on the moments of inertia of neutron stars. The Astrophysical Journal, 685(1), 390-399.
- Zahan, K.A. (2018), Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(8), 1-25.
- Zakaria, Z., Rahim, A.R.A., Aman, Z. (2020), Issues and challenges of oil palm cooperatives towards greater sustainability: A proposal of conceptual framework. International Journal of Academic Research in Business and Social Sciences, 10(1), 46-69.
- Zdráhal, I., Verter, N., Lategan, F. (2020), Agris on-line papers in economics and informatics products mapping' of South Africa's Agri-food trade with the EU28 and Africa, XII(4), 133-149.
- Ziae, S.M., Ali, I. (2021), Commodity exports and macroeconomic performance: The case of palm oil in Malaysia. Cogent Economics and Finance, 9(2), 1-16.
- Zulqarnain, Yusoff, M.H.M., Ayoub, M., Jusoh, N., Abdullah, A.Z. (2020), The challenges of a biodiesel implementation program in Malaysia. Processes, 8(10), 1244.

International Journal of Energy Economics and Policy (IJEEP) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of energy economics, energy policy and related disciplines. The journal has a worldwide audience. The journal's goal is to stimulate the development of energy economics, energy policy and related disciplines theory worldwide by publishing interesting articles in a highly readable format. ISSN: 2146-4553

2023 CiteScore: 3.2

36/73: General Energy (Scopus®)

71/288: Economics, Econometrics and Finance (Scopus®)

Ranking: 2023 SJR: 0.310

Editorial Board: 79 editors in 27 countries/regions

Current Issue

Vol. 14 No. 5 (2024)

Published: 2024-09-07

Articles

Understanding the Influence of Wind and Solar PV on Socioeconomic and Environmental Trends: A Non-causality Perspective

Palloma Silva, Roberta Amaral, Patricia Fortes, Isabel Soares 1-9

Influence of Economy, Energy, and Population on Foreign Direct Investment and CO2 Emissions in ASEAN-5 Countries

Susilawati Susilawati, Alpon Satrianto 10-18

The Relationship between Inward Foreign Direct Investment, Economic Growth and Carbon Emissions: A Case of Italy from G7 Countries

Farrukh Nawaz, Misbah Sadiq, Mohammad Salem Oudat, Khalil Abu Saleem, Umar Kayani, Mrestyal Khan 19-25

A Bibliometric Analysis of Green Financing and Renewable Energy Research for 2000-2023

Uwalomwa Uwuigbe, Damilola Felix Eluyela, Bankole Olajide Martins, Olubukola Ranti Uwuigbe, Saidu Musa 26-34

Navigating Energy Market Cycles: Insights from a Comprehensive Analysis

Huthaifa Alqaralleh, Awon Almajali, Alessandra Canepa 35-48

Eco-Smart Economics: Revolutionizing Jordan's Logistics with Sustainable Drone Technology

Ghazi A. Samawi, Omar M. Bwaliez, Wajd A. Dmour, Metri F. Mdanat, Mohammad A. Ta'Amnha 49-61

Spillover Effects between Oil, Gold, Stock, and Exchange Rate Returns in Thailand: An Extended Joint Connected TVP-VAR Approach

Supanee Harnphattananusorn 62-72

Financial Viability of Thermal Power Generation Plants in the Transition to Renewable Energy

James Duván Ramírez-Quintero, Yessenia Martínez-Ruiz, Diego Fernando Manotas-Duque 73-84

The Relationship between Geopolitical Events and the Crude Oil Prices: An Application of ARDL Model

Saleh Mothana Obadi, Matej Korcek 85-97

Nexus between Returns on Equity and Disclosures of Greenhouse Gas Emissions, Waste Management, and Renewable Energy

Yinka Lydia Emmanuel, Oluwasikemi Janet Owolabi, Babatunde Ayodeji Owolabi, Jerry D. Kwarbai, James Olalekan Akinbode, Sunday Festus Olasupo, Isiaka Olayinka Kolawole, Adegbola Olubukola Otekunrin 98-108

Investigating Factors Affecting Renewable and Nonrenewable Electricity Generation in Iran

Seyedeh Fatemeh Razmi, Mahboubeh Ghodratnama, Seyed Mohamad Javad Razmi, Amirmohammad Esmaeili Korani

109-117

☑ FULL TEXT

Powering Growth: The Dynamic Impact of Renewable Energy on GDP in ASEAN-5

Mahfuzur Rahman, Ngu Wang Keat, Md Abdul Kaium Masud, Mohamed Albaity 118-130

The Relationship between the Return of Energy Companies Listed on the Kazakhstan Stock Exchange and the Exchange Rate, KASE Index, and Gold Return: ARDL Bounds Value Approach

Baltaim Sabenova, Lyazat Talimova, Meruert Kanabekova, Dilyara S. Zhakipbekova, Gulnara Seitova, Gulbana Erzhigitovna Maulenkulova, Artur Bolganbayev

131-140

☐ FULL TEXT

The Impact of Socio-cultural and Environmental Deterioration Factors on Economic Sustainability in G7 Countries

Noura Najia, Hanadi Taher, Ghassan Abed Elkader 141-148

Education, Electricity Access, and Income Inequality in Nigeria

Oluwarotimi Ayokunnu Owolabi, Mercy Chidera Omeire, Blessing Onyinyechi Okwudire, Oluwemimo Tomisin Bolujoko

149-161

☐ FULL TEXT

162-167

Advancing Sustainable Development through the lens of Energy Efficiency: A Systematic Literature Review

Most. Asikha Aktar, Al-Amrani Khadeem Ali Dhahi, Usman Abdullahi 168-180

The Impact of Crude Oil Price Fluctuation on Revenue Generation in the Oil Dependent Economy: Nigeria

Augustine Adebayo Kutu, Abieyuwa Ohonba 181-190

Evaluation and Ranking of Energy Alternatives for Implementation in Different Geographic Scenarios using Decision Methods: Case Study of Colombia

Christian Manuel Moreno Rocha, Daina Arenas Buelvas, Sandra De la Hoz Escorcia 191-202

Identification of Factors Affecting Net Zero Emission Level in Indonesia

Adhitya Nugraha, Hermanto Siregar, Idqan Fahmi, Zenal Asikin, Dikky Indrawan, Harianto Harianto, Salis Aprilian

203-210

Optimizing Price Markup: The Impact of Power Purchase Agreements and Energy Production Uncertainty on the Economic Performance of Onshore and Offshore Wind Farms

Antonio C. C. Perrelli, Eduardo A. Sodré, André V. R. N. Silva, Caarem D. S. Studzinski, Vinícius F. Silva, Dalton F. G. Filho, Armando T. Neto, Alex A. B. Santos

The Economic Effects of Renewable Energy Investments: Evidence from Firm-Level Data

The Relationship between Renewable Energy Consumption and Economic Growth: Insights from Iceland and Azerbaijan

Shafa Aliyev, Ramil I. Hasanov, Khanim Aghayeva, Javadkhan Y. Gasimov, Sadagat E. Ahmadova 229-235

The Asymmetric Effects of Oil Prices on Stock Returns: Evidence from Hanoi Stock Exchange, Vietnam

Loc Dong Truong, Anh Thi Kim Nguyen, H. Swint Friday, Nhien Tuyet Doan 236-241

Energy Storage Integration for Renewable Energy Supply in Malaysia: A Review

Shafini M. Shafie, A. H. Nu'man 242-250

Impacts of Renewable Energy Transitions on the Economic Growth in Malaysia: A Dynamic ARDL Simulations

Nurulhuda Seriram, Muhamad Rias K. V. Zainuddin, Hakimah Nur Ahmad Hamidi, Amirul Hamza Abdullah 251-258

The Resource Curse in the Gulf Region: Charting a Path for Long-term Economic Sustainability

Benedict Belobo Ateba, Prince Chuwuneme Enwereji 259-270

Towards Sustainable Solutions to South Africa's Energy Crisis: Lessons from South Korea for the Gas-to-Power Programme

Nkosingiphile Mkhize, Danielle Nel-Sanders 271-278

Navigating the Oil-environment Nexus: Saudi Arabia's Challenge in Sustainable Development

Ahmed Benlaria, Naima Sadaoui, Naeimah Fahad S. Almawishir, Houcine Benlaria 292-300

Impact of Foreign Direct Investment on Renewable Energy Consumption: Findings from Bootstrap ARDL with a Fourier Function

Osman Murat Telatar, Tugce Adimli 301-310

On the Way to Net Zero Emissions: Can Environmental Tax be the Game Changer? The Vise Grad Group Evidence

Takyi Kwabena Nsiah, Martin Mikeskac, Beata Govurova 311-320

The Nonlinear Nexus of Climate Policy Uncertainty and Renewable Energy Consumption in the United States of America: A Markov-Switching Approach

Sekar Utami Setiastuti, Mohammad Arief Rajendra 321-334

Boosting Corporate Value through ESG Excellence in Oil and Gas Sector

Suzan Dsouza, K. Krishnamoorthy 335-346

Has Real Time Spot Electricity Market in India Impacted Day-Ahead Spot Electricity Market?

Rashmita Saran, Bharath Supra, G. P. Girish, Sweta Singh 347-355

Methodology for Generating a Reference Wind Year for Offshore Wind Energy: A Case Study in La Guajira, Colombia

Adalberto Ospino-Castro, Sharys Romero Navas, Carlos Robles-Algarín 356-364

ESG and Environmental Performance: Multiple Mediation Models of Green Accounting and CSR Disclosure

Darsono Darsono, Dwi Ratmono, Sunseok Lee, Nur Cahyonowati, Lianawati Lianawati 365-371

Energy Consumption, Bank Credit and Manufacturing Industry Performance: A Panel ARDL Analysis in Western Indonesia

Amaluddin Amaluddin, Rina Indiastuti, Nury Effendi, Cupian Cupian 372-379

Volatility Transmission between Oil Price and Exchange Rate

Arafet Hamida, Salah ben Nasr 380-392

Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India

Nibedita Mahanta, Ruma Talukdar 393-400

Testing the Environmental Kuznets Curve Hypothesis within the Context of Industrial Development through NARDL Model: The Case of France

Ayşe Özge Artekin 401-409

Stock Market Development and Environmental Sustainability in Saudi Arabia: Asymmetry Analysis

Anass Hamadelneel Adow

A Bibliometric Review to Understanding the Supply Chain of Renewable Energy

Ibrahim Hassan Mohamud, Zakarie Abdi Warsame

418-424

Reducing CO2 Emissions by Off-Grid Photovoltaic Systems: A Case Study in the Departamento del Magdalena - Colombia

Carlos Robles-Algarín, Diego Restrepo-Leal, Maryam Carrillo-Reales 425-434

Embracing Green Foreign Direct Investment in a Journey toward Global Sustainable Economy: An Empirical Approach Using Statistical Analysis

Bui Huy Nhuong, Ho Dinh Bao, Le Thanh Ha 435-446

Economic Diversification, Oil Revenue and Energy Transition in Oil Dependent Countries: A Wavelet Decomposition and Panel Data Approach

Salem Hathroubi, Chaker Aloui, Hela Ben Hamida 447-456

Towards Sustainable Environment in Somalia: The Role of Urbanisation and Energy Consumption

Ali Yusuf Hassan, Mohamed Abdukadir Mohamed, Abdirahman Ahmed Mohamed, Bashir Mohamed Osman 457-463

Electricity Industry Strategies in Ecuador and Peru: Their Impacts on Energy Efficiency and Prices

Liliana Del Carmen Suárez Santa Cruz, Victor Hugo Puican Rodriguez, Diego Isidro Ferré López, Juan José Inoñan Olivera

464-478

Colombian Oil Energy Security through a Framework of Risks and Vulnerabilities

John Grimaldo-Guerrero, Juan Rivera-Alvarado, Jainer Acosta-Bustamante, Tulio Cabeza-Abello, Jose Osorio-Tovar

479-486

ESG Integration and Financial Performance: Evidence from Malaysia's Leading Companies

Kelvin Lee Yong Ming, Yamunah Vaicondam, Amira Mas Ayu Amir Mustafa, Siti Nurul Munawwarah Roslan, Shen Yi, Komal Chopra, Pooja Khanna

487-494

Energy Efficiency in Developing Countries: A Systematic Review of Current Findings and Directions towards a Net Zero Economy

Erna Farina Mohamed, Azlina Abdullah, Amar Hisham Jaaffar 495-508

Analyzing the Dynamics: Asymmetric Effects of Economic Growth, Technological Innovation, and Renewable Energy on Carbon Emissions in Africa

Derese Kebede Teklie, Burak Doğan 509-519

Impact of External Debt and Energy Consumption on Environmental Quality in Somalia

Zakarie Abdi Warsmame, Abdirahman Omar Abdi 520-526

Transforming Mexico's Electric Load Infrastructure: A Quantile Transformer Network Deep Learning Approach, 2019-2020

Wellcome Peujio Jiotsop-Foze, Adrián Hernández-del-Valle, Francisco Venegas-Martínez 527-533

Do Climate Change Matter for Agricultural Production in an era of Globalization? Empirical Insights from Pakistan

Nabila Khurshid, Natasha Arfa Butt, Asma Fiaz, Suzan Sameer Issa, Mosab I. Tabash, Mujeeb Saif Mohsen Al-Absy

534-545

☐ FULL TEXT

The Impact of R&D Expenditures on Regional Energy Intensity in Turkey

Yahya Algül, Deniz Erenel

546-557

☑ FULL TEXT

Modelling the Relationship between Air Pollution and Economic Growth in Somalia

Mohamud Hussein Mohamud, Ali Yusuf Hassan 558-565

☑ FULL TEXT

Strategic Management of Clean Energy Investments: Financial Performance Insights by Using BWM-based VIKOR and TOPSIS Methods

Faruk Dayi, Ali Cilesiz, Mustafa Yucel 566-574

☑ FULL TEXT

Effect of CO2 emissions, Renewable Energy Consumption and General Government Final Consumption Spending on Moroccan Economic Growth: ARDL Approach

Yahya Fikri, Mohamed Rhalma 575-581

FULL TEXT

Influence of Board Characteristics on Carbon Emission Disclosure: Evidence from the Nigerian Oil and Gas Sector

Oyerogba Ezekiel, Sunday Olugbenro, Sunday Omojola, Olatunde Wright, Olateju Aregbesola 582-592

☑ FULL TEXT

Trading Momentum in the U.S. Crude Oil Futures Market

Carbon Emissions and Growth: The Role of Trade and Urbanization in Sub-Saharan Africa

Zwakele Dlamini, Ntokozo Nzimande, Mduduzi Biyase, Hlalefang Khobai, Mathias Manguzvane, Sanele Gumede

605-614

Examining the Impacts of Grid Tariff on the Economic Viability of Photovoltaic Energy: The Case of Residential Power Generation in Brazil

José Eduardo Holler Branco, Paulo Nocera Alves Junior, Fernando Okamura, Isotilia Costa Melo 615-628

Impact of Oil Price Shocks on Islamic and Conventional Bank Performance: Empirical Evidence from Saudi Arabia

Sarra Ben Slimane, Majed Qabil Alsolamy 629-642

Exploring the Potential for Renewable Energy Consumption in Reducing Environmental Degradation in Somalia

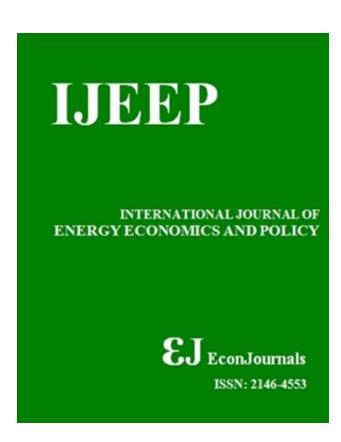
Bile Abdisalan Nor, Yusniliyana Yusof, Zakarie Abdi Warsame 643-650

Pioneering Sustainability: The Development and Policy Framework of Ammonia Fuel Technology in China

Tian Xia, Zhihao Ma, Miao Li 651-663

Towards a Sustainable Future: Examining the Symmetric and Asymmetric Effect of Unstable Macroeconomic Factors on Initial Public Offerings Variability

Waqas Mehmood, Fakir Al Gharaibeh, Ifham Rizvi, Waqar Mehmood 664-677


The Effect of Institutional Quality on Renewable Energy: Evidence from Developing Countries

Alpon Satrianto, Akmil Ikhsan, Evo Yunanda Dirma, Candrianto Candrianto, Egy Juniardi, Mia Ayu Gusti 678-686

View All Issues >

Make a Submission

Information

For Readers

For Authors

For Librarians

Online ISSN: 2146-4553

IJEEP is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>.

Home / Editorial Team

Editorial Team

EDITORS

Ilhan Ozturk, Editor-in-Chief, University of Sharjah, UAE & Nisantasi University, Istanbul, Turkey.

Ali ACARAVCI, Co-Editor, Hatay Mustafa Kemal University, Hatay, Turkey

SECTION EDITORS

Usama Al-mulali, Sohar University, Oman

Serkan Yılmaz KANDIR, Çukurova University, Adana, Turkey

Yu Hsing, Southeastern Louisiana University, United States

Yue-Jun ZHANG, Business School of Hunan University, China

Aviral Kumar Tiwari, Indian Institute of Management Bodh Gaya, Bihar, India

Nicholas Apergis, University of Piraeus, Greece.

Alper ASLAN, Erciyes University, Kayseri, Turkey

Gazi Salah UDDIN, Linkoping University, Sweden

Constantinos ALEXIOU, Cranfield University, Bedfordshire, United Kingdom

Seyfettin ARTAN, Karadeniz Technical University, Trabzon, Turkey

Abdulnasser Hatemi-J, UAE University, United Arab Emirates

Hooi Hooi Lean, Universiti Sains Malaysia, Penang, Malaysia

Muhammad Shahbaz, School of Management and Economics, Beijing Institute of Technology, China

Cem SAATCIOGLU, Istanbul University, Istanbul, Turkey

Faik BILGILI, Erciyes University, Kayseri, Turkey

Abu N.M. WAHID, Tennessee State University, United States

Chor Foon TANG, Universiti Sains Malaysia, Penang, Malaysia

Yunke YU, Louisiana State University, Louisiana, United States

Mohamed El Hedi Arouri, Université Côte d'Azur Nice, France

Ali AHMED, Linköping University, Linköping, Sweden

Mohammad Salahuddin, Trent University (Canada) & University of Southern Queensland, Australia

Abdul JALIL, Quaid-i-Azam University, Pakistan

Diana Mihaela Pociovalisteanu, Constantin Brâncusi University of Targu-Jiu, Targu-Jiu, Romania

Vincenzo Bianco, Università degli Studi di Napoli "Parthenope", Italy

Mita Bhattacharya, Monash University, Australia

Seyed Ehsan Hosseini, Arkansas Tech University, United States

Burcu Ozcan, Firat University, Elazig, Turkey

Rabindra Nepal, University of Wollongong, Australia

Mohammad H. Ahmadi, Shahrood University of Technology, Islamic Republic of Iran

Roula Inglesi-Lotz, University of Pretoria, South Africa

Songül Kakilli ACARAVCI, Hatay Mustafa Kemal University, Hatay, Turkey

Victor M.F. Moutinho, Universidade de Aveiro, Portugal

Samuel Asumadu Sarkodie, Nord University, Business School, Norway

Abdul Rauf, Nanjing University of Information Science and Technology, China

Ardi Gunardi, Universitas Pasundan, Indonesia

Qazi Muhammad Adnan Hye, Academic Research and Development Wing, Dubai, UAE

Solarin Sakiru Adebola, University of Nottingham Malaysia, Semenyih, Malaysia

Abbas Ali Chandio, Sichuan Agricultural University Chengdu, Chengdu, China

Arshian Sharif, Sunway University, Malaysia

Hoang Phong Le, University of Economics Ho Chi Minh City & Ho Chi Minh City University of Law, Viet Nam

Festus Victor Bekun, Istanbul Gelisim University, Turkey

Oludele Folarin, University of Ibadan, Nigeria

Festus Adedoyin, Bournemouth University, United Kingdom

Adedoyin I. Lawal, Bowen University, Iwo, Osun State, Nigeria

Muddassar Sarfraz, Zhejiang Shuren University, Hangzhou, China

Ionel Bostan, Ştefan cel Mare University of Suceava, Romania

Bashar H. Malkawi, University of Sharjah, Sharjah, United Arab Emirates

Andrew Adewale Alola, Inland Norway University of Applied Sciences, Norway

Fabio Pizzutilo, University of Bari "Aldo Moro", Italy

Sana Ullah, Quaid-i-Azam University, Islamabad, Pakistan

Nuno Carlos Leitão, Évora University, Évora, Portugal

Idiano D'Adamo, Sapienza Università di Roma, Italy

Fayyaz Ahmad, Lanzhou University - Lanzhou, Gansu, China

Akbar Maleki, Shahrood University of Technology, Islamic Republic of Iran

Shah Fahad, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Muhammad Tariq Majeed, Quaid-i-Azam University, Islamabad, Pakistan

Muhammad Hafeez, University of Sialkot, Sialkot, Pakistan

Muntasir Murshed, North South University, Dhaka, Bangladesh

Daniel Balsalobre-Lorente, University of Castilla-La Mancha, Spain

Danish Khan, Guangdong University of Foreign Studies, Guangzhou, China

Avik Sinha, Management Development Institute, Gurgaon, India

Nisar Ahmad, Sultan Qaboos University, Oman

Kazi Sohag, Ural Federal University, Russian Federation

Phouphet - Kyophilavong, National University of Laos, Lao People's Democratic Republic

Angeliki N. Menegaki, Agricultural University of Athens-EU Conexus, Greece

Kamil Sertoglu, Eastern Mediterranean University, Famagusta, Cyprus

Danish Iqbal Godil, Dar-ul-Madina International University, Islamabad, Pakistan

Dinh Tran Ngoc Huy, Binh Duong University, Viet Nam

Larisa Ivascu, Politehnica University of Timisoara, Romania

Lucian-Ionel Cioca, Lucian Blaga University of Sibiu, Romania

Sobia Naseem, Shijiazhuang Tiedao University, China

Aura Domil, West University of Timisoara, Romania

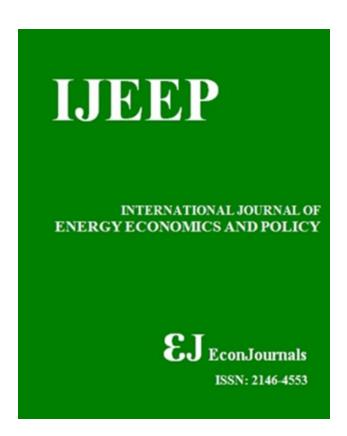
Muhammad Mohsin, Hunan University of Humanities, Science and Technology, China

Ayfer Gedikli, Duzce University, Duzce, Turkey

Balakrishnan Deepanraj, Jyothi Engineering College, Thrissur, India.

Farhan Ahmed, NED University of Engineering & Technology, Pakistan

Sahar Afshan, Sunway University, Subang Jaya, Malaysia


Seyfettin Erdogan, Istanbul Medeniyet University, Istanbul, Turkey

Imran Hanif, Government College University Lahore, Pakistan

Bekhzod Kuziboev, Urgench State University, Uzbekistan

Wasi Ul Hassan Shah, Zhejiang Shuren University, China

Make a Submission

Information

For Readers

For Authors

For Librarians

Online ISSN: 2146-4553

(CC) BY-NO-ND IJEEP is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>

Home / Archives / Vol. 13 No. 3 (2023)

Vol. 13 No. 3 (2023)

Published: 2023-05-17

Articles

Can the Basis Lead to Arbitrage Profits on the MISO Exchange?

Kevin Jones

1-6

Contract Structure of Production Sharing Agreement by International Oil Company in Exploration of Petroleum Resources in Developing Countries

Shafiqul Hassan, Yusuff Jelili Amuda , Mohsin Dhali, Saghir Munir Mehar 7-14

Financial Analysis of Solar Rooftop PV System: Case Study in Indonesia

Elieser Tarigan

15-19

Impact of Renewable Energy on the Economy of Saudi Arabia

Khaled Abdalla Moh'd AL-Tamimi, Mohammad Sulieman Jaradat, Fatima Lahcen Yachou Aityassine, Mustafa M. Soumadi

20-27

The Relationship between the Highest Prices and Trading Volume in the Share Indices of Energy and Oil Companies in Kazakhstan

Elmira Y. Zhussipova, Serikbay Saduakasuly Ydyrys, Ulmeken Makhanbetova, Gulzhanat Tayauova, Zhansulu Pirmanova

Energy use and End-use Technologies: Organizational and Energy Analysis in Italian Hospitals

Alfonso Marino, Paolo Pariso, Michele Picariello

36-45

What is the Short-term and Long-term Relationship between Renewable Energy and Investment in Economic Growth?

Heru wahyudi, Widia Anggi Palupi 46-55

Prospects for the Development of Transport in Poland during the Energy Crisis

Grzegorz Zimon

56-60

Prospect of Hydrogen Usage in the Industrial Sector: Thailand Context

Nitida Nakapreecha, Jakapong Pongthanaisawan, Weerin Wangjiraniran, Supawat Vivanpatarakij, Kulyos Audomvongseree

61-72

Integrating Environmentally Friendly Management of Water Resources toward Ecological and Socio-Economic Sustainability

Fajriani Ananda, Nofrizal Nofrizal , Dessy Yoswaty , Lena Farida, Rasoel Hamidy 73-79

Impact of the Climate Change on the Production of the Fishing and Aquaculture Sectors of Latin America

Rebeca Jaime Muniz, Juan Antonio Jimber Del Rio 80-91

Ecological and Socio-Economic Factors on the Rate of Participation and Sustainable Forest Management

T. Romi Marnelly, Tengku Dahril, Zulfan Saam, Nofrizal Nofrizal 92-101

The Causal Relation between Energy Consumption, Carbon Dioxide Emissions, and Macroeconomic Variables in Somalia

Zakarie Abdi Warsame, Maria Mohamed Ali, Liban Bile Mohamed, Farhia Hassan Mohamed 102-110

Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter

Ariodillah Hidayat, Bernadette Robiani, Taufiq Marwa, Suhel Suhel 111-121

Policy Framework Analysis in the Field of Energy Saving and Relevant Energy Saving Practices in Uzbekistan

Anastasia Salnikova

122-128

☑ FULL TEXT

Examining Capital Structure Determinants for ASEAN Energy Firms

Erlane K. Ghani, Qazi Muhammad Adnan Hye, Raja Rehan, Sultan Salahuddin 129-140

Growth and Financial Performance Governance by the Total Resources: A Case of Indian Downstream Oil and Gas Firms

Anis Ali, Nadeem Fatima 141-148

Regional Impact Analysis of Carbon Tax Implementation on Indonesia's Coal Power Plant with Interregional Input-output Method

Ahmad Syafiq Kamil, Lindri Setyaningrum, Ade Chandra Lesmana, Megawati Suharsono Putri, Syandi Negara, Heni Susiati, Yohanes Dwi Anggoro

149-157

Working Capital and Financial Performance in the Energy Sector of Saudi Arabia: Moderating Role of Leverage

Abdul Rahman Shaik, Anis Ali, Ibtisam Dhuwayhi Alanazi 158-163

Application of Sarima Model in Load Forecasting in Hanoi City

Duong Trung Kien, Phan Dieu Huong, Nguyen Dat Minh 164-170

Effects of Oil Consumption, Urbanization, Economic Growth on Greenhouse Gas Emissions: India via Quantile Approach

Uzma Khan 171-176

Strategic Decision-Making on Mining Sector Company Stock Prices and Economic Variable (State Space Model Application)

Ayi Ahadiat, Fajrin Satria Dwi Kesumah, Rialdi Azhar, Febryan Kusuma Wisnu 177-184

Influence of Photovoltaic Systems on Power Quality Problems

Yohan Sanchez-Puentes, Christian Argote-Parra, Waddy Lakatt-Benavides, Jaider Narvaez-Viana, Jose Nuñez-Alvarez, John Grimaldo-Guerrero

185-190

Regulating the Regulators: Economic Assessment of Philippine Electricity Regulation

Chad Patrick Osorio

191-196

Renewable Electricity Consumption and Economic Growth: A Comparative Study of South Africa and Zimbabwe

Nyiko Worship Hlongwane, Olebogeng David Daw 197-206

Research on Biodiesel in the National Institute of Science and Technology for Energy and Environment: An Analysis through Scientometry, and Complex and Social Networks

Fábio Matos Fernandes, Luís Oscar Martins, Antônio Carlos dos Santos Souza, Francisco Gaudêncio Mendonça Freires, Marcelo Santana Silva

207-218

Long-Term Investigation of Emissions and Economic Growth in Developed and Developing Countries: A Bibliometric Analysis

Ratna Malisa Indriawati, Evi Gravitiani, Albertus Maqnus Soesilo, Malik Cahyadin 219-234

Towards the Sustainable Decommissioning of Fixed Platforms by Aligning Ecosystem Services and Wind Generation: A Brazilian Case

Douglas Vieira Barboza, Marcelo Jasmim Meiriño, Sergio Ricardo da Silveira Barros, Ricardo Luiz Fernandes Bella

235-242

Defining a New Business Model for Sustainable Biomass Production from Forestry Residues in Türkiye by Using TRIZ

Murat Danisman, Erkut Akkartal 243-253

Effect of Exports of Goods and Services and Energy Consumption in Italys Service Sector

Bahman Huseynli

254-261

Impact of Quantum Movement Theory on Energy Policy

Cooper R. Wade, Olusegun S. Tomomewo 262-270

The Long-Run Effect of Carbon Emission and Economic Growth in European Countries: A Computational Analysis through Vector Error Correction Model

Gyanendra Singh Sisodia, Hemant Kumar Sah, Hajer Kratou, Rajesh Mohnot, Alberto Ibanez, Bhumika Gupta 271-278

The Environmental Kuznets Curve and Renewable Energy Consumption: A Review

Haider Mahmood, Muhammad Shahid Hassan , Soumen Rej, Maham Furqan 279-291

The Role of Environmental Conditions and Purchasing Power Parity in Determining Quality of Life among Big Asian Cities

Marc Audi, Amjad Ali 292-305

BIST Tourism and BIST Electricity Index Relationship

Nigar Huseynli 306-312

Do Clean Energy and Financial Innovation Induce SME Performance? Clarifying the Nexus between Financial Innovation, Technological Innovation, Clean Energy, Environmental Degradation, and SMEs Performance in Bangladesh

Md. Qamruzzaman, Rajnish Kler 313-324

Financial Development Consequences on the Quality of the Environment: A Case of Developing Countries

Shahzad Jamil, Abdul Qayyum Khan, Muhammad Yar Khan

Aspects to Consider in the Evaluation of Photovoltaic System Projects to Avoid Problems in Power Systems and Electric Motors

Narciso Castro Charris, Vladimir Sousa Santos, Juan José Cabello Eras 334-341

Economic Feasibility of Hybrid Solar-Powered Charging Station with Battery Energy Storage System in Thailand

Phimsupha Kokchang, Naris Chattranont, Tanit Menaneatra, Nipawat Phetriang, Chutimon Lertmanokul, Nantiporn Nateprapai, Surachai Chaitusaney, Surapad Larbwisuthisaroj, Sunt Srianthumrong 342-355

Examining the Drivers of Natural Gas Price in Europe - Focus on the Role of Speculators

Saleh Mothana Obadi, Matej Korcek

356-366

The Effects of Environmental Cost, Environmental Disclosure and Environmental Performance on Company Value with an Independent Board of Commissioners as Moderation

Imam Hidayat, Tubagus Ismail, Muhamad Taqi, Agus Sholikhan Yulianto 367-373

Electricity Consumption and Population Growth in South Africa: A Panel Approach

Nyiko Worship Hlongwane, Olebogeng David Daw 374-383

Managing Electricity Consumption on Campus: The Effect of Online Learning from Home

Vera Pujani, Fajril Akbar, Refdinal Nazir 384-395

396-407

Renewable Energy Communities in the Energy Transition Context

Enzaemilia Cavallaro, Maria Rosaria Sessa, Ornella Malandrino 408-417

New Environmental Paradigm, Environmental Attitude, and Proenvironmental Behaviour as Antecedents of Environmental Sustainability

M. M. Sulphey, Nassar Saad AlKahtani, Nabil Ahmed Mareai Senan, Anass Hamad Elneel Adow 418-427

Crude Oil Price Movements between Fundamental and Uncertainty: Evidence from Frequency Causality Tests

Amine Mounir 428-433

Investigating the Impact of Key Factors on Electric/Electric-Vehicle Charging Station Adoption in Indonesia

Fajar Nurrohman Haryadi, **Ario**nmaro Asi Simaremare, Shochrul Rohmatul Rohmatul, Dzikri Firmansyah Hakam, Kevin Gausultan Hadith Mangunkusumo 434-442

Nexus between Government Debt, Globalization, FDI, Renewable Energy, and Institutional Quality in Bangladesh

Salma Karim, Md. Qamruzzaman, Ishrat Jahan 443-456

Fossil Fuel Energy Consumption, Economic Growth, Urbanization, and Carbon Dioxide Emissions in Kenya

Jacob Otim, Susan Watundu, John Mutenyo, Vincent Bagire 457-468

Gas Consumption as a Key for Low Carbon State and its Impact on Economic Growth in Malaysia: ARDL Approach

Temitayo B. Majekodunmi, Mohd Shahidan Shaari, Nor Fadzilah Zainal, Nor Hidayah Harun, Abdul Rahim Ridzuan, Noorazeela Zainol Abidin, Nur Hayati Abd Rahman 469-477

From "Fairly Good" to "Optimal" Energy Efficiency Practices within the Moroccan Manufacturing Sector: Are Financial Resources Sufficient?

Mehdi Bensouda, Mimoun Benali 478-488

Using Artificial Neural Networks to Recognize the Determinants of Energy Consumption in Saudi Arabia

Abdulrahman M. Alsobhi 489-493

Impact of Bioenergy on Economic Growth and Development: An European Perspective

Stavros Kalogiannidis, Fotios Chatzitheodoridis, Stamatis Kontsas, Dimitrios Syndoukas 494-506

The Effect of Crude Oil Price and Inflation on Algae Export in Indonesia

Dzulfikri Azis Muthalib, Abd Azis Muthalib, Ahmad Muhlis Nuryadi, Arifuddin Arifuddin, La Ode Muhammad Harafah, Murdjani Kamaluddin, La Ode Sahili, Muh. Irfandy Azis, Rince Tambunan 507-511

Impact of Financial Development and Economic Growth on Energy Consumption in Developing Countries of Asia

Muhammad Usman, Kiran Rasheed, Faiq Mahmood, Ahsan Riaz, Mohsin Bashir 512-523

The Successfulness of the Reasons for Malaysia's Energy Initiatives

Rabiul Islam, Nazariah Osman, Md. Shukri Shuib, Awang Dzul-Hashriq Dharfizi, Ahmad Bashawir Abdul Ghani, Sabina Sultana

524-531

The Effect of Green Intellectual Capital on Green Competitive Advantage in Sustainable City Management

Hevearita Gunaryanti Rahayu, Hardi Warsono, Rina Kurniati, Hartuti Purnaweni 532-537

The Relationship between Economic Growth and Energy Consumption Disaggregated by Sector: The Case of Morocco

Fatima Zahraa Tatou, Abdellah Yousfi, Tawfiq Rahaoui 538-544

Determinants of Sustainable Land Use Change in Agricultural Utilization and Environmental Performance

Bayu Dwi Anggono, Rofi Wahanisa, Cairin Melina 545-551

Greening Public Policy: The Effects of Environmentally Friendly Regulations, Public Support, Sustainability Orientation on Green Governance

Erna Erna, Zenal Mutaqin 552-559

The Dynamic Relationship among Domestic Stock Returns Volatility, Oil Prices, Exchange Rate and Macroeconomic Factors of Investment

Malik Shahzad Shabbir, Laila Refiana Said, Irem Pelit, Esma Irmak 560-565

The Relationship between Oil Prices and Exchange Rate: A Systematic Literature Review

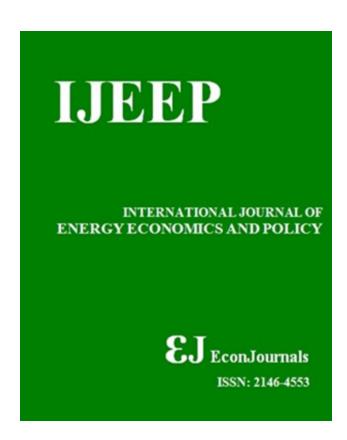
Taufeeque Ahmad Siddiqui, Haseen Ahmed, Mohammad Naushad, Uzma Khan

Applications of Long-Memory and Structure Breaks for Carbon Indexes

Do Thi Van Trang, Jo-Hui Chen 579-585

Factors Affecting the Environmental Quality: The Role of Renewable Energy Consumption and the Financial Market

Khanh Vo Thi Van, Thao Nguyen Le Phuong 586-591



Does Education Improve Environmental Quality in Saudi Arabia?

Zouheyr Gheraia, Mehdi Abid, Hanane Abdelli, Fawaz Alenezi 592-603

Make a Submission

Information

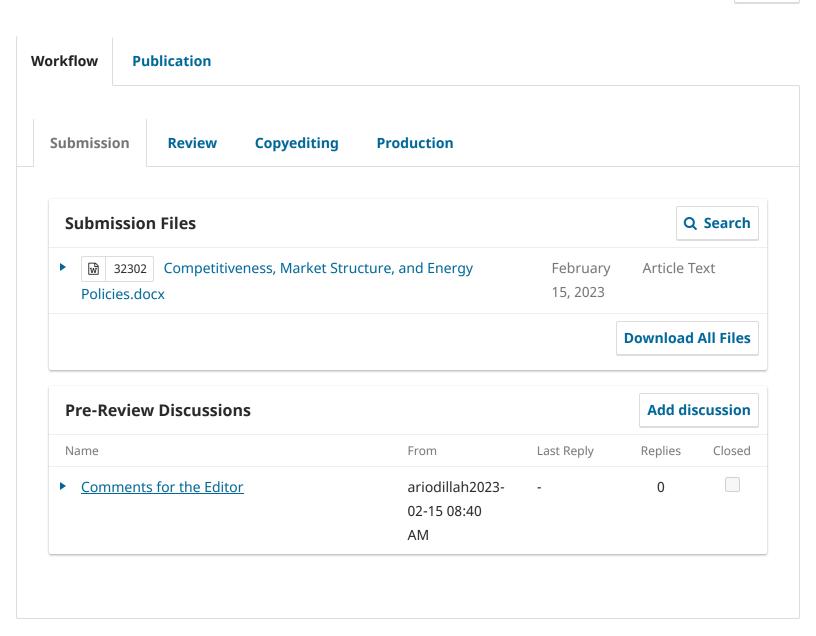
For Readers

For Authors

For Librarians

Online ISSN: 2146-4553

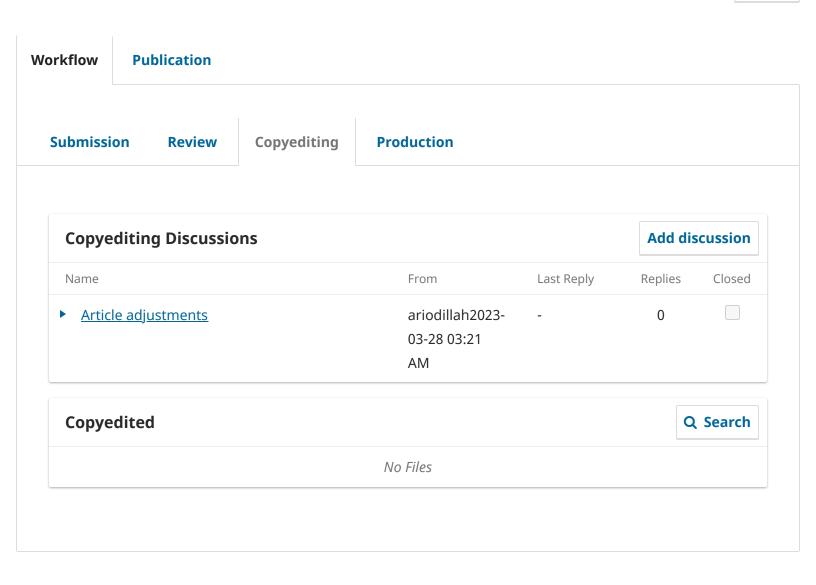
(CC) EY-NO-NO IJEEP is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</u>



← Back to Submissions

14199 / **Hidayat et al.** / Competitiveness, Market Structure, and Energy Policies: A Case Study of the Wo

Library



← Back to Submissions

14199 / **Hidayat et al.** / Competitiveness, Market Structure, and Energy Policies: A Case Study of the Wo

Library

I am happy to inform you that your paper entitled "Competitiveness,

Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter" has been accepted for publication in IJEEP for the next issue. Your paper will be send to you for final proof

Thus, I would like to remind you to pay 590 USD publication fee as soon

Name of account holder: KIBRIS IKTISAT BANKASI Ltd.
Bank account NO (IBAN): TR19 0001 5001 5804 8014 6767 84
Address: İktisat Kule, 151, Bedreddin Demirel Caddesi, Lefkosa, Mersin

kepada saya

10, TURKEY.

Terjemahkan ke Indonesia

check very soon after payment received.

as possible to the following account:

Dear Ariodillah Hidayat,

International Journal of Energy Economics and Policy <ijeep@econjournals.com>

Sen, 27 Mar 2023, 05.14

Chat

Meet

Berbintang

Ditunda

Terkirim Selengkapnya

Label

Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter

by Ariodillah Ariodillah

Submission date: 21-Jun-2024 11:38PM (UTC+0700)

Submission ID: 2406340669

File name: 14_IJEEP_14199_hidayat_okey_4.pdf (1.65M)

Word count: 8622 Character count: 46947

International Journal of Energy Economics and Policy

ISSN: 2146-4553

available at http: www.econjournals.com

Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter

Ariodillah Hidayat*, Bernadette Robiani, Taufiq Marwa, Suhel Suhel

Department of Economic and Development, Faculty of Economics, Sriwijaya University, Indonesia. *Email: ariodillahhidayat@fe.unsri.ac.id

Received: 11 January 2023 Accepted: 06 April 2023 DOI: https://doi.org/10.32479/ijeep.14199

ABSTRACT

Crude palm oil (CPO) is the mainstay of Indonesian agricultural products which is the largest CPO producing country in the world. The high market share of Indonesian CPO exports reflects the high competitiveness of Indonesian CPO in the global market. The purpose of this study is to determine the competitiveness of Indonesian CPO, the concentration of the Indonesian CPO industry, and analyze the factors that are suspected to affect the competitiveness of the CPO industry in Indonesia. The data used in this study are secondary data with a five-digit International Standard Industrial Classification (10432) using time series data for 2001–2020 and the analytical techniques used in this study include revealed comparative advantage, Gini coefficient, and error correction model. The results showed that Indonesian CPO has high competitiveness in the international market, the Indonesian CPO industry is not concentrated, in the short term the variables that affect competitiveness are CPO prices, subsidized solar prices policy, and industrial concentrations, while in the long term the influential variables are biodiesel policy, subsidized diesel oil policy and industrial concentration.

Keywords: Crude Palm Oil, Competitiveness, Biodiesel Policy, Subsidized Fuel Oil **JEL Classifications:** D24, F62, L11, O13

1. INTRODUCTION

The crude palm oil (CPO) industry is one of the plantation commodities that has a strategic role in economic development, generates domestic income and foreign exchange (Nurfatriani et al., 2022). CPO is also known as a critical component for food security in Indonesia and other countries (Goh and Lee, 2010). CPO is one of the flexible commodities because of its benefits that can be utilized for daily activities, such as human food consumption, with 80% to 90% of users (Shimizu and Desrochers, 2012).

Based on Figure 1, Indonesia as the largest producer CPO in the world controls 56% of total global exports with an export capacity of 73.5% of total production in 2020 (Purba, 2020). Even though in 2020 Indonesia and the world were hit by the Covid-19 pandemic, the export value of these palm oil products still showed a positive figure of around US\$ 35 billion in 2021, up 9.32% due to rising

prices. In terms of CPO demand due to the Covid-19 pandemic, only import demand from the Netherlands and Italy has decreased (Jamilah et al., 2022). This shows the high competitiveness of Indonesian CPO in the global market even though the world economy is experiencing a decline.

Price elasticity has become an important element in controversy among empirical studies of commodity competitiveness (Ismail et al., 2022). The nature of markets and their role in price determination are central to economics (Kharin, 2019). The significant increase in global CPO prices since the end of 2019 has resulted in an increase in the prices of CPO derivative products such as cooking oil, butter and other derivative products that have put great pressure on the Indonesian economy (Rosyadi et al., 2021). This also has an impact on unrest in Indonesia's CPO export destination countries such as India, China, Pakistan and as well as Bangladesh where most of the world's population is located (Figure 2) (Ali, 2019).

This Journal is licensed under a Creative Commons Attribution 4.0 International License

The existence of the Indonesian government's policy regarding biodiesel production for sustainable energy utilization will reduce Indonesia's dependence on fuel oil imports. Furthermore, the implementation of the B30 policy has an impact on increasing domestic demand for CPO and also causes a multiplier effect in the form of added value in the downstream palm oil industry (CPO to biodiesel) and employment (Zulqarnain et al., 2020).

The biodiesel policy in Indonesia has several objectives including, increasing the export value of the country's palm oil by encouraging its use in domestic transportation, reducing the country's dependence on imported fossil fuels, which can significantly drain the country's foreign exchange reserves, encouraging the domestic agricultural industry by providing new markets for domestic crops such as palm oil, which is used as the main raw material for biodiesel production in Indonesia, promoting energy security and reducing the country's vulnerability to fluctuations in world oil prices, the use of biodiesel can result in significant reductions in greenhouse gas emissions, and creating new jobs in agriculture and biofuel production ((Naylor and Higgins, 2017; Manik et al., 2013; Kharina et al., 2016; Halimatussadiah et al., 2021).

In Indonesia, the government still uses subsidized fuel policies, including solar is a type of fuel oil which is still massively used for transportation in the plantation and mining sectors, including the CPO industry. The purpose of the subsidized diesel oil policy in Indonesia is to support the country's industrial competitiveness by providing cheap and affordable fuel for the transportation and manufacturing sectors Dartanto (2013), which are the main drivers of economic growth in the country. In addition, the policy also aims to encourage the development of the country's manufacturing sector and support the growth of other industries, such as agriculture, by providing a reliable source of affordable fuel (Kumar et al., 2013).

Industrial competitiveness has always been an interesting study in empirical studies, one of which is due to market structure (Worley et al., 2008). Market structure is a market component that will affect the nature of competition (Wilden et al., 2013). The CPO industry in Indonesia continues to grow every year, of course, it has an impact on the competitive nature of the CPO industry in Indonesia. The lower concentration of an industry makes competition high, thus suppressing price levels and affecting competitiveness. In addition to market structure, global influences such as the Covid-19 pandemic, the war between Russia and Ukraine which has an impact on world CPO prices, are expected to affect the competitiveness of Indonesian CPO in the global market. We, therefore, answer the following questions:

- What is the structure of the Indonesian CPO Industry?
- How is the competitiveness of the Indonesian CPO Industry in the international market?
- Do market structures, CPO prices, subsidized fuel oil prices, and Biodiesel policies affect the competitiveness of the Indonesian CPO industry?

Several empirical studies support the arguments in this research objective. Othman et al. (2022) studied the competitiveness of the Malaysian CPO industry and other major producing countries,

showing that Indonesia is a strong competitor to Malaysia. The level of continuity of trade continues to increase from time to time, reflecting the increasing competitiveness of Indonesian CPO Industry companies in the global market, and in terms of competitiveness is heavily influenced by government policies and taxes. Harahap et al. (2019) concluded that dependence on the use of subsidized fuel oil affects the competitiveness of the CPO industry. Rifin et al. (2020) found that CPO prices also affect competitiveness in international trade.

2. LITERATURE REVIEW

According to Lipczynski et al. (2017) industry concentration refers to the number and size distribution of companies. In this case, the fewer the number of companies that exist in the market and the larger the size of those companies relative to the size of the entire company in the industry is usually indicated by a higher sales share. This is based on the argument that as the level of industry concentration increases, the ability of existing companies in the market to suppress competition and coordinate price policies among such companies tends to get higher.

According to Rostow (1960) in Cho and Moon (2003) competitiveness is the ability to produce goods or services that meet the test of international competition while our citizens enjoy sustainable standards. Krugman et al. (2012) explain that the country's competitiveness depends on the country's industrial capacity to continue to innovate and develop.

Cho and Moon (2003) explains the nine-factor model for assessing international competitiveness. According to him, there are four physical determinants of international competitiveness, namely the resources conferred, the business environment, related industries and supporting domestic demand; there are also four human factors namely workers, government policies, entrepreneurs and professional managers and engineers. External opportunities are listed as the ninth factor. Political factors and bureaucrats that can increase international competitiveness are through the application of efficient and non-corrupt bureaucracies to implement state policies and politicians who have a commitment to growth and success. Regulation can change demand factors (e.g. regulations related to fuel subsidies), a country's government has an important role in shaping the extensibility of factors that determine a country's level of competitive advantage in the industry. Porter (1990) also explained that the company's strategy, structure, and level of competition can affect competitiveness. Furthermore, factors in the condition of resource availability in a country, namely human resources, raw materials, knowledge, capital, and infrastructure that affect the price of these commodities so that they affect competitiveness.

3. METHODOLOGY

The scope of this study is the CPO industry. The industry category in this study is from the 2020 Indonesian Business Field Standard Classification (KBLI) with code 10432, which is included in the production of the processing industry sub-industrial vegetable and animal oils and fats (Central Bureau of Statistics Indonesia, 2022).

Annual data from 2001 to 2020. The data used in this study are secondary data related to the Indonesian CPO industry, the total number of Indonesian CPO companies officially registered with the government, Indonesia's biodiesel policy, subsidized fuel oil (diesel) price. In this study, data were obtained from the Indonesian Central Bureau of Statistics (BPS), UN Comtrade, Ministry of Trade of the Republic of Indonesia.

3.1. Revealed Comparative Advantage (RCA)

The most popularly used measurement of competitiveness is the RCA which measures comparative advantage. Introduced by Ballasam (1965), the rationale underlying this method is that a country's export performance is determined by its relative level of competitiveness against related products made by other countries. Mathematically to calculate the RCA index is as follows:

$$RCA = \left(\frac{X_{IK}}{X_{IM}}\right) / \left(\frac{X_{WK}}{X_{WM}}\right)$$
 (i)

Where:

 X_{IK} = Export value of products I country K

 X_{IM}^{iR} = Total export value of country k X_{WK}^{iR} = Export value of world product I

The RCA method is used to measure a country's comparative advantage over a product by comparing its share or ratio of exports to the ratio of that product to world exports. If the RCA values >1, it means that a country has a comparative advantage over the world average, so the product is of high power.

3.2. Lorenz Curve and Gini Coefficient

Lipczynski et al. (2017) the Lorenz curve shows a variation in the cumulative size of n largest companies in an industry, since n varies from 1 to N (where N is the total number of companies) (Figure 3).

- If all companies are the same size, the Lorenz curve is a 45° line OCA. At point C, for example, exactly half of the industry member companies make up exactly half of the total industry size, represented by the OD distance.
- If the company size distribution is skewed, the Lorenz curve is an OBA concave curve. At point B, exactly half of the industry member companies make up three-quarters of the total industry size, represented by OD. The Gini coefficient is defined as follows:

The crescent area between OBA and OCA Area of triangle ODA

- The maximum possible value of G = 1 corresponds to the case of one dominant company with a market share close to one, and N-1 small companies each with a negligible market share. In this case the Lorenz curve approaches the OD line.
- The minimum value of G = 0 corresponds to the case of N the same sized company. In this case the Lorenz curve is the OCA of the 45-degree line, so the numerator in the formula for G is zero.

The definition of the formula for the Gini coefficient is as follows:

$$G = \left\{ \frac{\sum_{n=1}^{N} \sum_{i=1}^{n} Xi}{0.5(N+1) \sum_{i=1}^{N} Xi} \right\} - 1$$
 (ii)

Where xi is the size of company i (as before, measured using sales, assets, jobs, or some other appropriate size indicator) when the company is ranked in descending order of size.

3.3. Error Correction Model (ECM)

The ECM regression aims to explain whether an independent variable affects the dependent variable in the short and long term. This study analyzes the effect of CPO Price, Indonesian Biodiesel Policy, Subsidized Fuel Oil (Diesel) Price, and Structure used as independent variables (X) and Competitiveness as bound variables (Y). The equation in the short term is as follows:

$$\Delta Y = \beta_0 + \beta_1 \Delta_X 1_t + \beta_2 \Delta_X 2_t + \beta_3 \Delta_X 3_t + \beta_4 \Delta X 4_t + \beta_5 ECTe_t$$
 (iii)

$$\begin{split} &\Delta \text{RCA} = \beta_0 + \beta_1 \, \Delta _PCPO_t + \beta_2 \Delta _BD_t \\ &+ \beta_3 \Delta _PBBM_t + \beta_4 \Delta Gini_t + \beta_5 ECTe_t \end{split} \tag{iv}$$

While the equation in the long term is as follows:

$$Y = \beta_0 + \beta_1 X + \beta_2 X + \beta_3 X + \beta_4 X + e$$
 (v)

$$RCA = \beta_0 + \beta_1 PCPO + \beta_2 BD + \beta_3 PBBM + \beta_4 GINI + e$$
 (vi)

Where, Y is the dependent variable, β_0 , 1, 2, 3, 4 is the coefficient of the 1st, 2, 3, 4th variable, RCA is competitiveness, PCPO is International CPO Price, BD is Indonesia's Biodiesel Policy, PBBM is Subsidized fuel prices, and Gini Coefficient is Industry concentration, e is the error term.

4. ANALYSIS AND DISCUSSION

The following is the analysis of the data and the trend of the variables used in the research:

4.1. Competitiveness Calculation Results using Revealed Competitive Advantage (RCA)

A country or region will have competitiveness in the form of a comparative advantage if the country or region is able to produce and export goods or services at relatively lower costs than the country or region imports goods and services from other countries (Nesti and Tan, 2017). Higher specialization can lead to higher productivity and competitiveness (and vice versa) (Zdráhal et al., 2020).

Based on Table 1, the value of processed RCA products, the results are obtained annually from 2000-2020, the value of RCA>1, then CPO commodities in Indonesia have a comparative advantage above the world average so that CPO commodities have strong competitiveness in the international market.

Export competitiveness is one of the determining factors in the persistence of a country's long-term economic growth (Ansonfino et al., 2021). The derivative value of RCA in 2008 was caused by the global economic crisis, affecting the competitiveness of the country's CPO exports because financial, credit, and mortgage pressures in developed countries changed the global demand for

100,000 t 500,000 t 1 million t 5 million

Figure 1: Crude palm oil production

Source: Food and Agriculture Organization of the United Nations (2019)

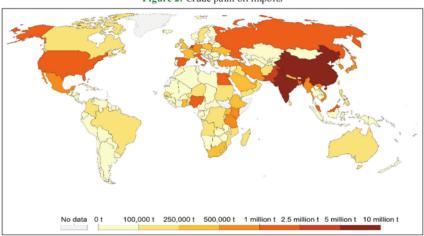


Figure 2: Crude palm oil imports

Source: Food and Agriculture Organization of the United Nations (2019)

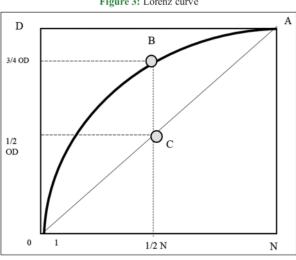


Figure 3: Lorenz curve

Source: Lipczynski et al., (2017)

this commodity (Krugman, 2011). Also, overvaluation of financial derivative products and rising oil prices raise input costs, shrinking investment, productivity, and competitiveness of CPO exports (Arias et al., 2020).

Indonesia has the highest competitiveness in the international market for CPO due to several factors, including: Indonesia is the world's largest palm oil producer and has abundant land suitable for growing oil palm trees, Indonesia has a favorable climate and geography, as well as relatively low labor costs, which contributes to the low cost of CPO production in the country, the Government of Indonesia has implemented policies to support and advance the palm oil industry, including tax incentives and export subsidies, Strong distribution network: Indonesia has an established distribution network, both domestically and internationally, that assists in efficient CPO exports (Petrenko et al., 2016; Varkkey et al., 2018).

Indonesia's main competitor in international trade in CPO is Malaysia. In research Othman and Tahir (2022) found that Indonesia's competition in the long term is difficult to compete with because it has greater potential for economies of scale and other cost advantages when compared to Malaysia. Ramadhani and Santoso (2019) concluded that CPO exports by Indonesia are driven by the use of palm oil as cooking oil in Asian countries such as China, India, and Pakistan.

In terms of importers of CPO commodities in the world, India and China are the two largest (Guerrieri and Caffarelli, 2012). The role of the Indian state in international trade is enough to make Indian consumption the main determinant of the relative price of CPO (Carter et al., 2007).

4.2. Results of Industrial Concentration Calculation using Gini Coefficient

The following is the result of the calculation of the Gini coefficient which is used as a measure of the concentration of the Indonesian CPO industry.

Based on Table 2, it is known that from 2001–2020 the results of calculating the Gini coefficient are getting closer to 0, which means that Indonesia's CPO industry is an industry that is not concentrated. In the research of Wibowo et al. (2021) which

analyzed the concentration of the Malaysian and Indonesian CPO Industries resulted in a less concentrated market trend, but Indonesia and Malaysia as the main palm oil producers and exporters still have at least 70% of the total export share. The market trend of Indonesia's CPO industry is less concentrated due to several factors, including: The Indonesian government has implemented policies aimed at encouraging competition and reducing market concentration in the CPO industry, these include policies aimed at encouraging the development of smallholder farmers and increasing their participation in the industry, the growth of the CPO industry in Indonesia has attracted new players to the market, increased competition and reduced concentration, the increasing global demand for sustainable palm oil has led to an influx of new players in the industry, including smaller and more environmentally conscious producers (Hospes, 2014).

The market size (structure) effect shows the change of the receptivity of the reference market, which can also at constant market share modify the exports to the reference market (Juhász and Wagner, 2013). It is known from the Figure 4 that the results of the Gini ratio in the Indonesian CPO industry show a volatile movement. From the annual average results, the results are always close to zero, meaning that the Indonesian CPO Industry

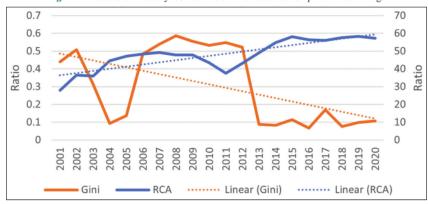


Figure 4: Results of Industry Concentration and revealed comparative advantage

Source: UN Comtrade, data processed (2001-2020)

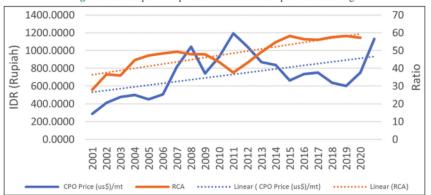


Figure 5: Crude palm oil prices and revealed comparative advantage

Source: World Bank and UN Comtrade, data processed (2001-2020)

is not concentrated. As concentration increases, competitiveness decreases, this shows a negative relationship between the two variables. High levels of concentration can also reduce the bargaining power of suppliers and consumers, as they have fewer options to choose from and less influence over the market (De Marchi et al., 2013).

In the long term, the price and demand for CPO shows an increasing trend in line with the growth of the world population and therefore increases the consumption of products with palm oil raw materials such as food and products (Figure 5). The increase in CPO prices itself results in a decrease in demand for purchasing power for CPO products and their derivatives, thereby reducing the volume and value of exports and the competitiveness of CPO in the international market. Higher prices for palm oil can lead to decreased demand for palm oil-based products, as consumers switch to alternative, lower-priced products (Ruggeri and Samoggia, 2018). Consumers will also tend to choose other substitutes or in this case other vegetable oils such as sunflower oil and soybean oil which are increasingly relatively more affordable although still more expensive compared to the price of CPO oil.

Intense competition in the global market has led to the enactment of several policies, which can limit and facilitate trade (Tandra et al., 2022). As a highly contested oilseed crop, CPO dominates discussions on sustainability compared to other vegetables in the oil and fat sector (Naidu and Moorthy, 2021). The formulation of policies underlying the sustainable development of the palm oil industry needs to strike a balance between environmental, social, and economic attitudes (Zakaria et al., 2020). Based on Figure 6, it is known that Indonesia's biodiesel policy has been implemented since 2016. When the biodiesel policy was implemented, the competitiveness of the Indonesian CPO Industry increased. Although it is still increasing, in the future Indonesia's CPO exports do face several challenges. Indonesia's palm oil exports are increasing in line with the increasing demand for palm oil in international markets, especially India, China, and the European Union. In the domestic market, the consumption of palm-based biofuels is higher than the composition of biofuel exports, due to the government's mandatory policy on the use of biodiesel from B-5(2010), B-10(2012), B-15(2014), B-20(2016), and B-30(2020) (Jamilah et al., 2022). The Indonesian government has set mandates for the use of biofuels, such as biodiesel, in the domestic market to reduce the country's dependence on fossil fuels and increase the use of renewable energy sources (Kumar et al., 2013; Mofijur et al., 2015). Development of downstream palm oil industry including Biodiesel is expected to increase the added value of palm oil products for Indonesia which are mostly just enjoyed by other countries (Singagerda et al., 2018).

From the Figure 7 above, it is known that the price movement of subsidized diesel oil in Indonesia always increases. The highest price of subsidized diesel in 2014 was Rp 7,500 rupiah but fell in 2015 at Rp 6,500 due to the decline in world crude oil prices and the rupiah exchange rate (Baumeister and Kilian, 2016).

In this case, subsidized diesel oil has an impact on its price which is cheaper than the market price which the difference reaches an average of 66% if averaged from 2001-2020 so that it affects the increasing competitiveness caused by the Indonesian CPO industry using subsidized fuel oil in its production and transportation.

4.3. Results and Discussion of Estimated ECM

The following are the stages of the estimation results of the ECM method in this study:

4.4. Unit Root Test

Based on Table 3, it can be seen that all variables are stationary on the first different, because all variables have a probability of less than alpha $\alpha = 5\%$ (significant).

4.5. Cointegration Test

Based on Table 4, the cointegration test from Johansen, a statistical trace value = 121.8242 was obtained > a critical value of α = 5% = 69.82 with a probability of 0.000 < α = 0.05 then H0 was rejected, which means that the data of all variables have a long-term relationship (cointegrated).

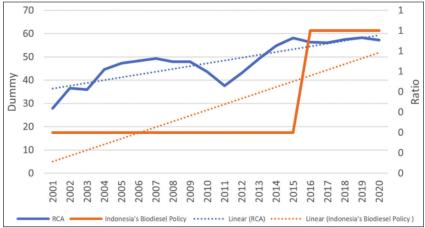


Figure 6: Indonesia's Biodiesel Policy and revealed comparative advantage

Source: Institute for Essential Services Reform and UN Comtrade, data processed (2001-2020)

8000 7000 60 6000 50 5000 40 4000 30 Ra 3000 20 2000 10 1000 O 0 Diesel fuel prices (Rp) RCA Linear (Diesel fuel prices (Rp)) Linear (RCA)

Figure 7: Indonesian Subsidized Diesel Fuel Prices and revealed comparative advantage

Source: CEIC Data and UN Comtrade, data processed (2001-2020)

4.6. Short-term Estimation Results

In the short-term ECM model using Least Squares, the following short-term estimates are generated:

$$\Delta$$
RCA = 0.820035 + (-5.712165) Δ _ PCPO_t +1.395145 Δ _BD_t + 5.863557 Δ _ PBBM_t + -8.312636 Δ Gini_t + (-0.792963)ECT

From the short-term estimation equation in Table 5, it shows that CPO Price (PCPO) and Industry concentration is negatively and significantly correlated to CPO competitiveness. Biodiesel Policy (BD) is positively correlated but not significant. The variable price of fuel oil (diesel) subsidies correlates positively and significantly.

The value of the ECT coefficient shows how much the equilibrium cost at the level of competitiveness (RCA) in the earlier period adjusted for the present change is -0.792963 where the probability of ECT is 0.0084 which means significant at $\alpha=5\%$. While the ECT coefficient that has a negative sign indicates that the model has a short-term relationship.

4.7. Long-Term Estimation Results

In the long-term ECM model using Least Squares, a long-term estimate is generated as follows:

$$RCA = -6.110938 + (-4.414982) PCPO + 5.139311BD$$

 $+10.2749 PBBM + (-9.918397) GINI + \varepsilon$

From the long-term estimation equation in Table 6, it shows that CPO Price (PCPO) is negatively and insignificantly correlated to CPO competitiveness. Biodiesel policy (BD) and the price of fuel oil are positive and significant. Industry concentration is negatively correlated and has a significant effect.

4.8. Discussion of CPO Industry Analysis in the Short and Long Term

The short-term estimation equation shows that CPO prices are negatively and significantly correlated to CPO competitiveness.

Table 1: Results of RCA Indonesia CPO Industry 2001–2020

Year	RCA value	Year	RCA value
2001	27.98183	2011	37.63006
2002	36.59414	2012	43.12149
2003	35.96132	2013	49.16183
2004	44.55598	2014	54.81517
2005	47.24825	2015	58.15362
2006	48.36279	2016	56.39279
2007	49.32231	2017	56.09925
2008	47.87606	2018	57.55124
2009	47.93711	2019	58.23941
2010	43.53909	2020	57.24834

Source: UN Comtrade, data processed (2001–2020). RCA: Revealed Comparative Advantage, CPO: Crude palm oil

Table 2: Results of Indonesia CPO Industry Concentration 2001–2020

Year	Gini	Year	Gini
2001	0.439615	2011	0.548842
2002	0.508395	2012	0.521722
2003	0.31367	2013	0.088816
2004	0.093358	2014	0.083853
2005	0.136281	2015	0.115198
2006	0.483983	2016	0.067441
2007	0.539051	2017	0.170539
2008	0.586615	2018	0.075846
2009	0.555527	2019	0.098709
2010	0.533207	2020	0.107863

Source: Central Bureau of Statistics Indonesia, data processed (2001–2020). CPO: Crude palm oil

Table 3: Unit root test

Variable	Level		Level 1	
	T-Statistics	Probability	T-Statistics	Probability
PCPO	-6.53545	0.0075***	-6.53545	0.0000***
BD	-5.03496	0.0668*	-5.03496	0.0000***
PBBM	37.2242	0.0788*	37.2242	0.0000***
Gini 7	44.9013	0.0001***	44.9013	0.0000***

***, ** represent statistical significance at 1%, 5%, and 10%, respectively Source: Output EViews (2001-2020)

This shows that any increase in international prices will always be followed by a decrease in the level of export competitiveness,

Table 4: Cointegration Test

No. of	Eigenvalue	Statistics	Critical	Probability
CE (s)			value	
None*	0.953767	121.8242	69.81889	0.0000***
At most 1*	0.806125	66.49117	47.85613	0.0004***
At most 2*	0.692394	36.96141	29.79707	0.0063***
At most 3*	0.552497	15.74059	15.49471	0.0459**
At most 4	0.067983	1.267277	3.841466	0.2603

***, **, and * represent statistical significance at 1%, 5%, and 10%, respectively. Source: Output EViews (2001–2020)

Table 5: Short-term ECM estimation results

Variables	Coefficient	Std.	t-Statistics	Probability
		Error		
C	0.820035	0.703570	1.165535	0.2647
D (PCPO)	-5.712165	2.285745	-2.499039	0.0266**
D (BD)	1.395145	3.025837	0.461077	0.6524
D (PBBM)	5.863557	2.368215	2.475940	0.0278**
D (GINI)	-8.312636	4.693110	-1.771243	0.0999*
ECT(-1)	-0.792963	0.255509	-3.103462	0.0084***
R Squared		0.6	69915	
Prob F	0.007274***			
Statistics				

***, **, and * represent statistical significance at 1%, 5%, and 10%, respectively.

Source: Output EViews (2001-2020). ECM: Error correction model

Table 6: Long-term ECM estimation results

Variables	Coefficient	Standard	t-statistics	Probability
		error		
С	-6.110938	19.57744	-0.312142	0.7592
PCPO	-4.414982	2.890605	-1.527356	0.1475
BD	5.139311	1.920145	2.676523	0.0173**
PBBM	10.27249	1.305558	7.868274	0.0000***
GINI	-9.918397	4.342323	-2.284123	0.0374**
R-squared	0.902956			
Prob F	0.0000***			
statistics				

***, ** represent statistical significance at 1%, 5%, and 10%, respectively.

Source: Output EViews (2001-2020). ECM: Error correction model

and vice versa. In the short term, the price of CPO and the competitiveness of CPO can be negatively and significantly correlated for several reasons including, when CPO demand increases and supply remains, prices will rise, and competitiveness will decrease. On the contrary, when demand decreases and supply remains, prices will fall, and competitiveness will increase. CPO competes with other vegetable oils such as soybean oil and sunflower oil. If the price of this oil falls, it will increase its competitiveness and reduce the competitiveness of CPO. This is in line with research conducted by Arias et al. (2020); Ziae and Ali (2021); Jambor and Babu (2016). However, this only has a significant effect on short-term circumstances, in the long-term, the result is that the CPO price has no effect. There is no effect on CPO prices on their competitiveness because CPO prices tend to be relatively stable in the long term, and price fluctuations do not have a significant impact on the demand for these commodities. In addition, CPO is often substituted with other vegetable oils, so changes in its price do not necessarily affect its competitiveness. Overall, while short-term changes in CPO prices can affect its competitiveness, the long-term stability of demand, substitution options, and cost competitiveness make it a competitive commodity.

Biodiesel policy targets aim to reduce imported fossil fuels, diversify energy sources, and reduce GHG emissions. Indonesia has biodiesel blending targets for the transportation and industrial sectors set at 15% in 2015, 20% in 2016 and 30% from 2020 to 2025 (Khatiwada et al., 2021). In the short term, Biodiesel (BD) policy is positively but not significantly correlated. Meanwhile, in the long term, the policy is positive and significant. In the short term, the relationship between biodiesel policy and CPO prices can be positively correlated but not necessarily significant for several reasons: In the short term, market conditions can be very volatile and uncertain, making it difficult to establish a strong and significant relationship between policy and price. Policies may take some time to impact the market, so their effect on CPO prices may not be direct or significant (Dutta et al., 2021). Whereas in the long run, the relationship between biodiesel policy and CPO prices can be positive and significant because in the long run, policies tend to become more stable, reducing market uncertainty and allowing the emergence of a stronger relationship between policy and price. Over time, policies will most likely be implemented more consistently and effectively, leading to a stronger and significant relationship between policy and price. In the long run, market participants can adapt to policies and their influences, which leads to a more stable and predictable relationship between policy and prices. Overall, while the relationship between biodiesel policy and CPO prices may not be significant in the short term, it can be both positive and significant in the long run as policies become more stable, implemented more consistently, and market participants adjust to their influence. This is in line with the research of Von Geibler (2013); Johari et al. (2015); and Rifin et al. (2020). On one hand, the policy has helped to promote the development of the domestic biodiesel industry, which is a key driver of economic growth in Indonesia (Koizumi, 2015; Ewing and Msangi, 2009). The policy requires a mandatory use of biodiesel in transport, with a target of reaching 30% biodiesel blend (B30) in 2020, which has increased the demand for palm oil as the main raw material for biodiesel production (Zahan, 2018). This has boosted the demand for CPO and supported the growth of the CPO industry, which is a major contributor to Indonesia's economy. On the other hand, the biodiesel policy has had negative impacts on the competitiveness of the CPO industry and the environment. Firstly, the mandatory use of biodiesel has resulted in a significant increase in the domestic consumption of CPO, leading to a shortage of supply for export markets and, as a result, higher prices for CPO in the domestic market. This has made it difficult for CPO exporters to compete with other producers in the global market, which has hurt the competitiveness of the industry (Mekhilef et al., 2011, Johari et al., 2015, Ahmad et al., 2011). Secondly, the expansion of the CPO industry has also led to deforestation and loss of biodiversity, which has negative environmental impacts (Taheripour et al., 2019). The expansion of oil palm plantations has been associated with the destruction of rainforests, leading to habitat loss for wildlife, increased greenhouse gas emissions, and soil degradation (Meijaard et al., 2020).

The price of subsidized fuel oil (diesel) is positively and significantly correlated in both the long and short term. Fuel oil is one of the main elements, even the largest in the components of carrying costs, production, and distribution costs. In the subsidy, the price of diesel fuel oil so that the price is cheaper than the market price has a positive influence on competitiveness due to the Indonesian CPO industry using subsidized fuel in production and transportation. This is an advantage for the Indonesian CPO Industry because it is more efficient in competing with CPO products from other countries. This is supported by the Indrawan (2020) report. Favorable government policies: The Indonesian government provides various incentives and support for the palm oil industry, making it easier for companies to operate and increasing competitiveness. The provision of various subsidies by the Indonesian government is in accordance with a study conducted by Brandi et al. (2013). The Indonesian government subsidizes fuel oil to the industry as part of its economic and energy policy. The reasons for this subsidy include: to support economic growth: By reducing the cost of energy, the government hopes to boost the competitiveness of Indonesian industries, including the palm oil industry, and stimulate economic growth (Dartanto, 2013). However, it is important to note that the subsidized diesel oil policy is not without its drawbacks. The policy can lead to overconsumption of fuel, which can contribute to pollution and harm the environment (Wesseh et al., 2016). Furthermore, the subsidies are costly to the government, which can put a strain on public finances and limit the government's ability to invest in other areas, such as education and healthcare (Javier et al., 2012).

Industrial concentrations are negatively and significantly correlated in both the long and short term. From the results of concentration, it shows that the Indonesian CPO Industry is an industry that is not concentrated. Negative signs indicate that the lower the industry concentration, the higher the competition between CPO industries, which has an impact on the price of Indonesian CPO getting cheaper and has an impact on high competitiveness. The effect of concentration on competitiveness is in line with Aritenang (2021) research. This is not in line with the research conducted by Marković et al. (2019) mentioning that concentrated industries have greater opportunities in International trade. The positive impact of the low concentration level of the CPO industry i.e., Low-concentrated industries can lead to more competition among companies, which can benefit consumers and lead to innovation and lower prices (Kariyasa and Dewi, 2011). This can make the industry more attractive to buyers and increase the demand for CPO. In addition, Low-concentrated industries will be more resilient to economic shocks or changing global market conditions, as smaller companies may be able to adapt more quickly to changing circumstances and find new markets or niches to serve (Curzi et al., 2021).

5. CONCLUSION

Indonesia's CPO industry has a comparative advantage in the international trading market. This is showed through the calculation of more than one RCA value. Indicates that the Indonesian CPO industry can produce and export CPO products and their derivatives at a relatively cheaper cost than other countries so as to increase competitiveness in the international market. In addition, with more stable prices, Indonesia does not

need to import CPO from other countries and is able to meet domestic needs. Based on the ECM estimates, the factors that affect competitiveness in the short term are the price of CPO, solar subsidies, and the concentration of industry, while in the long term the variables that affect are biodiesel policy, subsidized diesel oil and industrial concentration.

The results show that the lack of concentrated CPO industry in Indonesia indicates that there is no gap between large companies and companies with small business scales. A Gini coefficient value close to zero indicates the more dispersed concentration, or close to perfect competition behavior. The less concentrated CPO industry results in a more competitive market and prices. The low concentration of the CPO industry makes competition between companies higher so that it can reduce price levels and affect the competitiveness of CPO.

Nationally, the B30 policy has many benefits for Indonesia. From an economic point of view, the use of biodiesel, which is a mixture of diesel fuel, has an impact on reducing oil imports so as not to reduce the country's foreign exchange reserves. The large absorption of CPO as a feedstock for biodiesel due to the B30 policy has implications for palm oil stocks in the global market to be maintained (no oversupply). The implication is that international prices of palm oil are stable and tend to increase. Another implication is that the biodiesel policy can maintain domestic CPO prices so that they are stable and do not fall, supply added value through down streaming the agricultural industry, save the country's foreign exchange and trade balance, provide job opportunities, and maintain energy security. In addition, the increase in CPO production has an impact on increasing CPO demand, thereby increasing competitiveness in international trade. Therefore, while Indonesia's biodiesel policy has had positive impacts on the domestic economy and the development of the biodiesel industry, policymakers must also consider the negative impacts on the competitiveness of the CPO industry and the environment. It is important to strike a balance between economic growth, social welfare, and environmental sustainability to ensure that the benefits of the policy are realized without harming the competitiveness of the CPO industry or the environment.

The fact that the CPO industry that uses subsidized diesel oil in the production and transportation process has an impact on its price that is cheaper than the market price, which has a difference of an average of 66% if on average from 2001-2020 so that this affects the increase in competitiveness. In terms of policy making, the efficiency of fuel oil consumption in the industrial sector and other sectors needs to be improved. In addition, the high dependence on fuel oil in energy consumption needs to be corrected through the substitution of fuel oil with non-fuel oil energy sources. Although this policy is felt to be unfair to the public, the provision of subsidies by the Indonesian government is a form of protecting the domestic industry so that solar subsidies show positive results for the increasing competitiveness of the Indonesian CPO industry. Overall, the subsidized diesel oil policy in Indonesia is intended to support the country's industrial competitiveness, but policymakers must carefully balance the benefits of the policy against its potential costs and drawbacks.

REFERENCES

- Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K. (2011), Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1), 584-593.
- Ali, A. (2019), Malaysia's palm oil export to India. Indian-Pacific Journal of Accounting and Finance, 3(4), 25-37.
- Ansonfino, A., Zusmelia, Z., Dahen, L.D., Puteri, Y.E. (2021), Diamond model and competition of rubber export markets: Evidence from Sumatra economic growth center. Agris on-Line Papers in Economics and Informatics, 13(1), 15-27.
- Arias, E.R.L., de la Puente Pacheco, M.A., Arias, J.L. (2020), An examination of palm oil export competitiveness through pricenominal exchange rate. International Trade Journal, 34(5), 495-509.
- Aritenang, A.F. (2021), The contribution of foreign investment and industrial concentration to firm competitiveness in Jakarta Megacity. Cities, 113, 103152.
- Ballasam, B. (1965), Trade liberalization and revealed comparative advantage. The Manchester School, 33(2), 92-193.
- Baumeister, C., Kilian, L. (2016), Understanding the decline in the price of oil since June 2014. Journal of the Association of Environmental and Resource Economists, 3(1), 131-158.
- Brandi, C., Cabani, T., Hosang, C., Schirmbeck, S., Westermann, L., Wiese, H. (2013), Sustainability Certification in the Indonesian Palm Oil Sector. German Development Institute (Issue 74). Available from: https://www.die-gdi.de/uploads/media/studies_74.pdf
- Carter, C., Finley, W., Fry, J., Jackson, D., Willis, L. (2007), Palm oil markets and future supply. European Journal of Lipid Science and Technology, 109(4), 307-314.
- Cho, D.S., Moon, H.C. (2003), Evoluasi Teori Daya Saing from Adam Smith to Michael Porter. Erly Suandy Pertama: Salemba Empat.
- Curzi, D., Garrone, M., Olper, A. (2021), Import competition and firm markups in the food industry. American Journal of Agricultural Economics, 103(4), 1433-1453.
- Dartanto, T. (2013), Reducing fuel subsidies and the implication on fiscal balance and poverty in Indonesia: A simulation analysis. Energy Policy, 58(2), 117-134.
- De Marchi, V., Di Maria, E., Micelli, S. (2013), Environmental strategies, upgrading and competitive advantage in global value chains. Business Strategy and the Environment, 22(1), 62-72.
- Dutta, A., Bouri, E., Saeed, T., Vo, X.V. (2021), Crude oil volatility and the biodiesel feedstock market in Malaysia during the 2014 oil price decline and the COVID-19 outbreak. Fuel, 292, 120221.
- Ewing, M., Msangi, S. (2009), Biofuels production in developing countries: Assessing tradeoffs in welfare and food security. Environmental Science and Policy, 12(4), 520-528.
- Guerrieri, P., Caffarelli, F.V. (2012), Trade openness and international fragmentation of production in the European Union: The new divide? Review of International Economics, 20(3), 535-551.
- Halimatussadiah, A., Nainggolan, D., Yui, S., Moeis, F.R., Siregar, A.A. (2021), Progressive biodiesel policy in Indonesia: Does the Government's economic proposition hold? Renewable and Sustainable Energy Reviews, 150, 111431.
- Harahap, F., Silveira, S., Khatiwada, D. (2019), Cost competitiveness of palm oil biodiesel production in Indonesia. Energy, 170, 62-72.
- Hospes, O. (2014), Marking the success or end of global multi-stakeholder governance? The rise of national sustainability standards in Indonesia and Brazil for palm oil and soy. Agriculture and Human Values, 31(3), 425-437.
- Indrawan, R. (2020), Aturan Direvisi, Sektor Pertambangan dan Perkebunan Dilarang Gunakan Solar Bersubsidi. Dunia Energi. Available from: https://www.dunia-energi.com/aturan-direvisi-sektor-pertambangan-dan-perkebunan-dilarang-gunakan-solar-bersubsidi

- Ismail, N.W., Kamal, S.N.M., Firdaus, M., Hariri, N.M. (2022), Export demand of palm oil in Malaysia: Analysis using ardl approach. Asian Journal of Agriculture and Rural Development, 12(3), 157-163.
- Jambor, A., Babu, S. (2016), Competitiveness of global: Agriculture policy lessons for food security. In: Competitiveness of Global Agriculture: Policy Lessons for Food Security. Washington, D.C: International Food Policy Research Institute.
- Jamilah, J., Zahara, H., Kembaren, E.T., Budi, S., Nurmala, N. (2022), Market share analysis and export performance of Indonesian crude palm oil in the EU market. International Journal of Energy Economics and Policy, 12(2), 218-225.
- Javier, F., Del, A., Coady, D., Gillingham, R. (2012), The unequal benefits of fuel subsidies: A review of evidence for developing countries. World Development, 40(11), 2234-2248.
- Johari, A., Nyakuma, B.B., Nor, S.H.M., Mat, R., Hashim, H., Ahmad, A., Zakaria, Z.Y., Abdullah, T.A.T. (2015), The challenges and prospects of palm oil based biodiesel in Malaysia. Energy, 81, 255-261.
- Juhász, A., Wagner, H. (2013), An analysis of hungarian agri-food export competitiveness. Studies in Agricultural Economics, 115(3), 150-156.
- Kariyasa, K., Dewi, Y.A. (2011), Convergence of market concentration: Evidence from Czech food processing sectors. Journal of Gender, Agriculture and Food Security, 1(3), 1-22.
- Kharin, S. (2019), Horizontal price transmission on the Russian dairy market: Nonlinear approach. Agris on-Line Papers in Economics and Informatics, 11(3), 45-54.
- Kharina, A., Malins, C., Searle, S. (2016), Biofuels Policy in Indonesia: Overview and status Report. In: The International Council on Clean Transportation: Washington, DC, USA.
- Khatiwada, D., Palmén, C., Silveira, S. (2021), Evaluating the palm oil demand in Indonesia: Production trends, yields, and emerging issues. Biofuels, 12(2), 135-147.
- Koizumi, T. (2015), Biofuels and food security. Renewable and Sustainable Energy Reviews, 52, 829-841.
- Krugman, P. (2011), The profession and the crisis. Eastern Economic Journal, 37(3), 307-312.
- Krugman, P.R., Obstfeld, M., Melitz, M.J. (2012), International Economics Theory and Policy. 9th ed. London: Pearson.
- Kumar, S., Shrestha, P., Salam, P.A. (2013), A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts. Renewable and Sustainable Energy Reviews, 26, 822-836.
- Lipczynski, J., Wilson, J., Goddard, J. (2017), Industrial Organization: Competition, Strategy, and Policy. 5th ed. United Kingdom: Pearson.
- Manik, Y., Leahy, J., Halog, A. (2013), Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. International Journal of Life Cycle Assessment, 18(7), 1386-1392.
- Marković, M., Krstić, B., Rađenović, Ž. (2019), Export competitiveness of the Serbian agri-food sector on the EU market. Ekonomika Poljoprivrede, 66(4), 941-953.
- Meijaard, E., Brooks, T.M., Carlson, K.M., Slade, E.M., Garcia-Ulloa, J., Gaveau, D.L.A., Ser, J., Lee, H., Santika, T., Juffe-Bignoli, D., Struebig, M.J., Wich, S.A., Ancrenaz, M., Koh, L.P., Zamira, N., Abrams, J.F., Prins, H.H.T., Sendashonga, C.N. (2020), The environmental impacts of palm oil in context. Nature Plants, 6, 1418-1426.
- Mekhilef, S., Siga, S., Saidur, R. (2011), A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews, 15(4), 1937-1949.
- Porter, M. (1990), The Competitive Advantage of Nations. New York: The MacMillan Press Ltd.
- Mofijur, M., Masjuki, H.H., Kalam, M.A., Rahman, S.M.A., Mahmudul, H.M. (2015), Energy scenario and biofuel policies and

- targets in ASEAN countries. Renewable and Sustainable Energy Reviews, 46, 51-61.
- Naidu, L., Moorthy, R. (2021), A review of key sustainability issues in malaysian palm oil industry. Sustainability (Switzerland), 13(19), 131910839.
- Naylor, R.L., Higgins, M.M. (2017), The political economy of biodiesel in an era of low oil prices. Renewable and Sustainable Energy Reviews, 77, 695-705.
- Nesti, L., Tan, F. (2017), The competitiveness crude palm oil product of West Sumatra in domestic and world market. Reports on Economics and Finance, 3(1), 37-43.
- Nurfatriani, F., Ramawati, R., Sari, G.K., Saputra, W., Komarudin, H. (2022), Oil palm economic benefit distribution to regions for environmental sustainability: Indonesia's revenue-sharing scheme. Land, 1 1(9), 1452.
- Othman, N., Subri, M.T., Leylawati, J. (2022), On the duration of trade competitiveness: The case of the Malaysian palm-based oleochemical industry. SSRN Electronic Journal, 8, e11903.
- Othman, N., Tahir, M.S. (2022), On the duration of trade competitiveness: The case of the Malaysian palm-based oleochemical industry. SSRN Electronic Journal, 8, e11903.
- Petrenko, C., Paltseva, J., Searle, S. (2016), Ecological Impacts of Palm Oil Expansion in Indonesia. Washington, US: International Council on Clean Transportation. p1-21.
- Purba, J.H.V. (2020), Does Chinese vegetable oil consumption have positive implications for the Indonesia-China trade balance? Integrated Journal of Business and Economics, 4(1), 36.
- Ramadhani, T.N., Santoso, R.P. (2019), Competitiveness analyses of Indonesian and Malaysian palm oil exports. Economic Journal of Emerging Markets, 11(1), 46-58.
- Rifin, A., Feryanto, F., Herawati, H., & Harianto, H. (2020), Assessing the impact of limiting Indonesian palm oil exports to the European Union. Journal of Economic Structures, 9(1), 26.
- Rostow, W. (1960), The Stages of Economic Growth: A Non-Communist Manifesto. United Kingdom: Cambridge University Press.
- Rosyadi, F.H., Mulyo, J.H., Perwitasari, H., Darwanto, D.H. (2021), Export intensity and competitiveness of Indonesia's crude palm oil to main destination countries. Agricultural Economics (Czech Republic), 67(5), 189-199.
- Ruggeri, A., Samoggia, A. (2018), Twitter communication of agrifood chain actors on palm oil environmental, socio-economic, and health sustainability. Journal of Consumer Behaviour, 17(1), 75 02
- Sheng Goh, C., & Teong Lee, K. (2010). Will biofuel projects in Southeast Asia become white elephants? Energy Policy, 38(8), 3847–3848.
- Shimizu, H., Desrochers, P. (2012), The health, environmental and

- economic benefits of palm oil. In: IEM's Economic Note. Available from: https://www.institutmolinari.org/wp-content/uploads/2012/09/note0912 en.pdf
- Singagerda, F.S., Hendrowati, T.Y., Sanusi, A. (2018), Indonesia growth of economics and the industrialization biodiesel based CPO. International Journal of Energy Economics and Policy, 8(5), 319-334.
- Taheripour, F., Hertel, T.W., Ramankutty, N. (2019), Market-mediated responses confound policies to limit deforestation from oil palm expansion in. Proceedings of the National Academy of Sciences, 116(38), 1903476116.
- Tandra, H., Suroso, A.I., Syaukat, Y., Najib, M. (2022), The determinants of competitiveness in global palm oil trade. Economies, 10(6), 132.
- Varkkey, H., Tyson, A., Choiruzzad, S.A.B. (2018), Palm oil intensification and expansion in Indonesia and Malaysia: Environmental and sociopolitical factors influencing policy. Forest Policy and Economics, 92, 148-159.
- Von Geibler, J. (2013), Market-based governance for sustainability in value chains: Conditions for successful standard setting in the palm oil sector. Journal of Cleaner Production, 56, 39-53.
- Wesseh, P.K., Lin, B., Atsagli, P. (2016), Environmental and welfare assessment of fossil-fuels subsidies removal: A computable general equilibrium analysis for Ghana. Energy, 116, 1172-1179.
- Wibowo, R.P., Sumono, S., Khaliqi, M., Maryunianta, Y. (2021), Analyzing global competitiveness of Indonesian palm oil. IOP Conference Series: Earth and Environmental Science, 892(1), 012094.
- Wilden, R., Gudergan, S.P., Nielsen, B.B., Lings, I. (2013), Dynamic capabilities and performance: Strategy, structure and environment. Long Range Planning, 46(1-2), 72-96.
- Worley, A., Krastev, P.G., Li, B. (2008), Nuclear constraints on the moments of inertia of neutron stars. The Astrophysical Journal, 685(1), 390-399.
- Zahan, K.A. (2018), Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(8), 1-25.
- Zakaria, Z., Rahim, A.R.A., Aman, Z. (2020), Issues and challenges of oil palm cooperatives towards greater sustainability: A proposal of conceptual framework. International Journal of Academic Research in Business and Social Sciences, 10(1), 46-69.
- Zdráhal, I., Verter, N., Lategan, F. (2020), Agris on-line papers in economics and informatics products mapping' of South Africa's Agri-food trade with the EU28 and Africa, XII(4), 133-149.
- Ziae, S.M., Ali, I. (2021), Commodity exports and macroeconomic performance: The case of palm oil in Malaysia. Cogent Economics and Finance, 9(2), 1-16.
- Zulqarnain, Yusoff, M.H.M., Ayoub, M., Jusoh, N., Abdullah, A.Z. (2020), The challenges of a biodiesel implementation program in Malaysia. Processes, 8(10), 1244.

Competitiveness, Market Structure, and Energy Policies: A Case Study of the World's Largest Crude Palm Oil Exporter

ORIGINAL	LITY REPORT			
SIMILAR	% RITY INDEX	8% INTERNET SOURCES	8% PUBLICATIONS	2% STUDENT PAPERS
PRIMARY	SOURCES			
1	Submitte Student Paper	ed to University	of Sousse	2%
2	d-nb.info			1 %
3	palmoilii Internet Source			1 %
4	reposito Internet Source	ry.unsri.ac.id		1 %
5	Submitte Student Paper	ed to University	of Hull	1 %
6	"Analysis in west S	ti, Firwantan, P s of prospects o Sumatra provinc arth and Enviro	f crude palm o ce", IOP Confe	oil (CPO) erence
7	www.ab	academies.org		1 %
8	biblio.ug	jent.be		

Internet Source

1	
	%

pearl.plymouth.ac.uk
Internet Source

1%

Lisa Nesti, Firwan Tan. "The competitiveness crude palm oil product of West Sumatra in domestic and world market", Reports on Economics and Finance, 2017

1 %

Publication

M Khaliqi, T C Pane, R B M I Fatoni.
"Indonesian tuna position in the international market", IOP Conference Series: Earth and Environmental Science, 2019

1 %

Publication

Exclude quotes On

Exclude matches

< 1%

Exclude bibliography On