KLASIFIKASI SAPI TERNAK NORMAL DAN TERINFEKSI LUMPY SKIN DISEASE MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

RAMJA, AQSHAL DINATA and Miraswan, Kanda Januar (2025) KLASIFIKASI SAPI TERNAK NORMAL DAN TERINFEKSI LUMPY SKIN DISEASE MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021282126068_cover.jpg] Image
RAMA_55201_09021282126068_cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (343kB)
[thumbnail of RAMA_55201_09021282126068.pdf] Text
RAMA_55201_09021282126068.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_01_front_ref.pdf] Text
RAMA_55201_09021282126068_0009019002_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (558kB)
[thumbnail of RAMA_55201_09021282126068_TURNITIN.pdf] Text
RAMA_55201_09021282126068_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10MB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_02.pdf] Text
RAMA_55201_09021282126068_0009019002_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (566kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_03.pdf] Text
RAMA_55201_09021282126068_0009019002_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (278kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_04.pdf] Text
RAMA_55201_09021282126068_0009019002_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (441kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_05.pdf] Text
RAMA_55201_09021282126068_0009019002_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (260kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_06.pdf] Text
RAMA_55201_09021282126068_0009019002_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (169kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_07_ref.pdf] Text
RAMA_55201_09021282126068_0009019002_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (168kB) | Request a copy
[thumbnail of RAMA_55201_09021282126068_0009019002_08_lamp.pdf] Text
RAMA_55201_09021282126068_0009019002_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (228kB) | Request a copy

Abstract

Lumpy Skin Disease (LSD) is a contagious disease in cattle that causes significant losses in the livestock sector, making early detection crucial. This study aims to classify cattle into normal and LSD-infected categories using the Convolutional Neural Network (CNN) method with the ResNet50 architecture. The dataset consists of 4000 images, divided into 80% training data, 10% validation data, and 10% testing data. The model was trained to recognize visual features of infected cattle and demonstrated excellent performance, achieving an average accuracy of 96.75%, precision of 96.78%, recall of 96.75%, and F1-score of 96.76%. These results indicate that the ResNet50 CNN architecture is effective for detecting Lumpy Skin Disease in cattle and has the potential to be implemented as an automated diagnostic tool in the livestock industry.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Lumpy Skin Disease, Klasifikasi Citra, CNN, ResNet50, Deteksi Penyakit Ternak
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Aqshal Dinata Ramja
Date Deposited: 04 Jul 2025 03:11
Last Modified: 04 Jul 2025 03:11
URI: http://repository.unsri.ac.id/id/eprint/176748

Actions (login required)

View Item View Item