ANALISIS EKSTRAKSI FITUR TIME-FREQUENCY DOMAIN UNTUK DETEKSI INFARK MIOKARD MENGGUNAKAN MACHINE LEARNING

AZ ZAHRAH, SANIA FATIMAH and Nurmaini, Siti (2025) ANALISIS EKSTRAKSI FITUR TIME-FREQUENCY DOMAIN UNTUK DETEKSI INFARK MIOKARD MENGGUNAKAN MACHINE LEARNING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011282126052_cover.pdf] Image
RAMA_56201_09011282126052_cover.pdf - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (988kB)
[thumbnail of RAMA_56201_09011282126052.pdf] Text
RAMA_56201_09011282126052.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_TURNITIN.pdf] Text
RAMA_56201_09011282126052_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_01_front_ref.pdf] Text
RAMA_56201_09011282126052_0002085908_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011282126052_0002085908_02.pdf] Text
RAMA_56201_09011282126052_0002085908_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (327kB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_03.pdf] Text
RAMA_56201_09011282126052_0002085908_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (567kB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_04.pdf] Text
RAMA_56201_09011282126052_0002085908_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (913kB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_05.pdf] Text
RAMA_56201_09011282126052_0002085908_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (244kB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_06_ref.pdf] Text
RAMA_56201_09011282126052_0002085908_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (210kB) | Request a copy
[thumbnail of RAMA_56201_09011282126052_0002085908_07_lamp.pdf] Text
RAMA_56201_09011282126052_0002085908_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (729kB) | Request a copy

Abstract

The healthcare industry in Indonesia is rapidly developing, particularly in addressing myocardial infarction (heart attack), a medical emergency that requires prompt detection. Common examinations such as ECG, blood tests, and clinical symptom analysis still rely heavily on manual assessment, which can be time-consuming. As a solution, a Machine Learning (ML)-based approach offers more efficient and automated detection. This study aims to improve the accuracy and efficiency of myocardial infarction detection by extracting features from ECG signals using time-frequency domain methods, namely STFT and DWT, and applying the SVM algorithm for classification. The results show an accuracy of 82% without denoising and 80% with denoising. This method has proven to be effective in identifying myocardial infarction from ECG signals compared to conventional methods.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Infark Miokard, Elektrokardiogram, Ekstraksi Fitur, Domain Waktu-Frekuensi, Machine Learning
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Sania Fatimah Az Zahrah
Date Deposited: 21 Jul 2025 05:47
Last Modified: 21 Jul 2025 05:47
URI: http://repository.unsri.ac.id/id/eprint/179336

Actions (login required)

View Item View Item