PEMANTAUAN POLA PERILAKU LALU LINTAS BERBASIS JARINGAN CCTV BERDASARKAN TEKNOLOGI ANALISIS DATA MENGGUNAKAN YOLOV8 DENGAN ALGORITMA HIERARCHICAL CLUSTERING

SITEPU, HESTY NOVIA BR SITEPU and Sukemi, Sukemi and Oklilas, Ahmad Fali (2025) PEMANTAUAN POLA PERILAKU LALU LINTAS BERBASIS JARINGAN CCTV BERDASARKAN TEKNOLOGI ANALISIS DATA MENGGUNAKAN YOLOV8 DENGAN ALGORITMA HIERARCHICAL CLUSTERING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011382025118_Cover.jpg] Image
RAMA_56201_09011382025118_Cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (184kB)
[thumbnail of RAMA_56201_09011382025118.pdf] Text
RAMA_56201_09011382025118.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11MB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_TURNITIN..pdf] Text
RAMA_56201_09011382025118_TURNITIN..pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201 _01_front_ref.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201 _01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (725kB)
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_02.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_03.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_04.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_05.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (98kB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_06_ref.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (133kB) | Request a copy
[thumbnail of RAMA_56201_09011382025118_0003126604_0015107201_07_lamp.pdf] Text
RAMA_56201_09011382025118_0003126604_0015107201_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy

Abstract

This study presents the design of a traffic behavior monitoring system based on CCTV networks by comparing two algorithmic approaches: YOLOv8 for real-time object detection and Hierarchical Clustering for unsupervised object grouping without prior labeling. The system is developed to automatically identify behavioral patterns in traffic, such as violations involving riders not wearing helmets. Image and video data were collected from several strategic locations in Palembang and processed through stages of annotation, model training, and performance evaluation. The YOLOv8 model demonstrated high accuracy based on evaluation metrics including confusion matrix, precision, recall, and F1-score. Meanwhile, the Hierarchical Clustering results were visualized through dendrograms, serving as a comparative reference to the YOLOv8-based classification. The findings indicate that integrating both supervised and unsupervised methods offers complementary insights and can serve as a foundation for developing more robust, data-driven traffic surveillance systems.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Pemantauan lalu lintas,YOLOv8,Hierarchical Clustering,Deteksi Pelanggaran,CCTV,Kota Palembang
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Hesty Novia Br Sitepu
Date Deposited: 31 Jul 2025 03:16
Last Modified: 31 Jul 2025 03:16
URI: http://repository.unsri.ac.id/id/eprint/181844

Actions (login required)

View Item View Item