2. Bukti konfirmasi review pertama dan hasil revisi pertama ## 11 September 2023 # Species of Aphids Found in Ornamental and Wild Plants in Highland, Pagar Alam, South Sumatra Chandra Irsan^{a*}, Erise Anggraini^{a,b}, Wenny Ramadhani^c Corresponding Author: chandrairsan@fp.unsri.ac.id #### **Abstract** Aphids are one of the crucial pests in the tropical and sub-tropical regions. The presence of aphids in a plant can be very detrimental due to their role as vectors. Aphids exhibit species diversity, but not much information has been reported about the species diversity of aphids associated with essential crops such as ornamental plants. Furthermore, many aphid species were found on plants that were not actually hosts such as wild plants. Therefore, this study reported the species of aphids found in ornamental plants and the wild plants. This study revealed that 15 species of aphids were found in Pagaralam, namely *Aphis gossypii, Uroleucon sp., Toxoptera odinae, Macrosiphum rosae, Aphis citricola, Aphis craccivora, Toxoptera aurantii, Pentalonia nigronervosa, Hystenura sp., Aphis glycine, Greenidae sp., Rhopalosiphum padi, Rhopalosiphum maidis, Hyperomyzus sp. Lipaphis erysimi.* **Keywords**: aphids, ornamental plants, wild plants #### Introduction Aphids are one of the crucial pests in the tropics and sub-tropics, exhibiting various polyphagous, oligophagous, and monophagous characteristics (Kennedy & Stroyan, 1959). One species of aphids can host more than 400 species from 40 families (Blackman & Eastop, 2000). In addition to pests, aphids can also be vectors of plant viral diseases (Gadhave et al., 2020). A single species of aphids can act as a vector for over 150 viruses (Blackman & Eastop, 2000). In tropical areas, aphids can always be found throughout the year due to their parthenogenetic nature of reproduction (Blackman & Eastop, 2017). Aphids consume plant sap, which can deplete essential nutrients for healthy growth (Müller et al., 2001). Moreover, when aphids transmit viral diseases from one plant to another, this can further weaken and stunt the growth of infected plants (Jones, 2022). According to Kinley et al. (2021), aphids cause yield losses directly (35 - 40%) by sucking the plant sap or indirectly (20 - 80%) through viral transmission. Therefore, aphid infestations can can have adverse effects on crop yields and overall plant health (Sarwan Kumar, 2019). Due to their function as vectors, the presence of aphids on a plant can be highly damaging (Jaouannet et al., 2014). They feed by piercing the plant's tissues and consuming its sap, which can reduce the plant's growth and productivity, ultimately leading to weakness and possible death (Chandel et al., 2022). Additionally, as vectors, aphids can transmit a variety of plant diseases. They are as carriers for various plant viruses, and when they move from infected to healthy plants, these viruses can rapidly spread and cause extensive damage (Guo et al., 2019). In addition, the honeydew that aphids secrete can lead to the growth of sooty mold, a black fungus that can prevent sunlight from reaching the plant's leaves, thereby impairing photosynthesis, the process by which plants produce food (Singh & Singh, 2021). Therefore, it is crucial to control aphid populations in gardens and crops. Understanding the species diversity of aphids is fundamental to effective aphid control, as it facilitates the development of measures to keep their populations in check. In addition, understanding the diversity of aphid species can provide valuable insights into potential plant diseases, as different aphid species carry distinct viruses. Methods used to control aphids often encompass various techniques, including the use of natural enemies such as predators (like ladybugs, lacewings, and parasitic wasps) (Singh & Singh, 2021; Völkl et al., 2023), parasitoids (Boivin et al., 2012), entomopathogens (Hullé et al., 2020), the use of essential oils as botanical pesticides to control aphids (Ikbal & Pavela, 2019), and crop rotation techniques (Degani et al., 2019). Regular monitoring of aphid populations and diversity can help in detecting when population sizes may be reaching harmful levels, allowing for prompt implementation of the necessary countermeasures. According to Irsan *et al.* (1998), many aphid species were found on plants that were not their actual hosts. Aphids have one or more secondary, or "alternative," host plants in addition to their primary host plants, which are the types of plants they feed on most frequently (Clarke et al., 2020). An alternative host can also be a collateral host belonging to the same plant family as the primary host, helping crop pests to survive when the primary hosts are unavailable (Sileshi et al., 2008). These secondary hosts may offer less adequate nutrition for insects (Capinera, 2005), However, they may provide a means of survival when primary hosts are unavailable, during certain seasons, or under certain environmental conditions (Kumar et al., 2021). According to Liu et al. (2017), since hibiscus serves as an overwintering host for cotton-specialized aphids but not for cucurbit-specialized aphids, it is evident that host-specialized aphids have refuges during times of food shortage. The life cycles of numerous aphid species exhibit such complexity (Jousselin et al., 2010). They maintain a cycle of host alternation, shifting between their primary hosts (typically a woody plant) and secondary hosts (often herbaceous plants) (Moran, 1992). Weeds pose a continuous threat in both cropped and non–crop areas, providing food, shelter and reproductive sites for various pest organisms (Kumar et al., 2021). This indicates that weeds can serve as alternative hosts for aphids. A study of aphid species on horticultural plants has been conducted (Maharani et al., 2018), However, information about aphid species on ornamental and wild plants has not received as much attention and remains largely unexplored. In South Sumatra, particularly in the highland areas like Pagaralam, there are numerous ornamental and native plants. The research on the diversity of aphid species in ornamental and wild plants has received little attention. Therefore, this study was conducted in Pagaralam, a highland region of South Sumatra, with the aim of obtaining information on the diversity of aphid species found in ornamental and wild plants. The findings from this study can serve as a valuable resource for aphid management. #### Methods The field research employed a purposive and direct observation approach to inventory cultivated or wild plants hosting aphids and collecting aphids. The plant selection process included cultivated plants encompassing fruit, vegetable, and ornamental varieties, as well as wild plants or weeds. The collection and identification of host plants, aphids, and their natural enemies involved systematic searches for the selected plants and subsequent examination for the presence of aphids. Observations were made to all existing plant species to find those colonized by aphids. Any plants colonized by aphids were documented as aphid hosts. Aphids, along with their natural enemies within the aphid colonies, were systematically collected. All components of the collected observations were then identified. Guidelines for finding host plants were written by Blackman & Eastop 1994, 2000; Irsan 1998; Kranz *et al.* 1978). Aphid identification was conducted using identification keys made by Blackman & Eastop (1994, 2000); Heie (1992, 1994, 1995); Irsan (1998); Kranz *et al.* (1978); Martin (1983). Identification of aphid species took place in the Laboratory of Entomology, Faculty of Agriculture, Universitas Sriwijaya. Identification relied on morphological characteristics. The host plants were identified based on identification keys made by van Steenis (1988). The location and size of aphid colonies, morphology of aphids including their shape and color, as well as any symptoms observed in the host plants were recorded, and photographs of the aphid colonies and their host plants were taken. #### **Results** The results showed that 15 aphid species were found in Pagaralam, namely *Aphis gossypii*, *Uroleucon* sp., *Toxoptera odinae*, *Macrosiphum rosae*, *Aphis citricola*, *Aphis craccivora*, *Toxoptera aurantii*, *Pentalonia nigronervosa*, *Hystenura* sp., *Aphis glycine*, *Greenidae* sp., *Rhopalosiphum padi*, *Rhopalosiphum maidis*, *Hyperomyzus* sp. *Lipapis erysimi*. Based on the observation, these aphids were found on various ornamental plants (Table 1). The primary colony locations were generally in flowers, and this study documented these colony locations in ornamental plants (Figure 1). Table 1: Aphid species found in ornamental plants and their colony locations | No | Host Plant | Aphid Species | Colony location | |----|-----------------------|-------------------------|-----------------| | 1 | Aster alpinus | Sitobion luteum | flower | | 2 | Brugmansia suaviolens | Aulacorthum solani | flower | | | | Neomyzus circumflexus | | | | | Myzus persicae | | | 3 | Caladium sp. | <i>Pentalonia</i> sp | flower | | 4 | Cananga odoratum | Aphis gossypii | flower | | 5 | Canna indica | Pentalonia nigronervosa | flower | | 6 | Catharanthus roseus | Aphis citricola | flower | | 7 | Cestrum sp. | Aphis gossypii | flower | | | | Neomyzus circumflexus | | | 8 | Clitoria ternatea | Aphis craccivora | flower | | 9 | Cosmos caudatus | Uroleucon sp. | flower | | 10 | Dahlia Kelvin | Aphis gossypii | flower | | 11 | Dendrobium sp. | Sinemogoura citricola | flower | | 12 | Duranta sp. | Aphis gossypii | flower | | 13 | Helianthus sp. | Aphis glycines | flower | | | | Hyperomyzus sp. | | |----|-----------------------|-----------------------|--------| | 14 | Hibiscus rosasinensis | Aphis gossypii | flower | | 15 | Ixora paludosa | Aphis gossypii, | flower | | | | Toxoptera aurantii | | | 16 | Ixora sp. | Aphis citricola | flower | | | | Aphis gossypii | |
| | | Toxoptera aurantii | | | 17 | Murraya paniculata | Aphis craccivora | flower | | | | Toxoptera citricidus | | | 18 | Mussaenda frondosa | Aphis citricola | flower | | | | Toxoptera odinae | | | 19 | Rosa indica | Macrosiphum rosae | flower | | 20 | Spondiras dulcssoland | Aphis citricola | flower | | | • | Ĥysteroneura setariae | | Fig 1. The location of aphid colonization on various plant parts. a) A. gossypii in D. Kelvin flower b) A. gossypii in H. rosasinensis flower c) A. gossypii in tuberose flower, d) A. craccivora in Clitoria ternatea flower, e) A citricola in Helianthus sp., f) A. aurantii on the M. paniculata flower, g) T. odinae in the S. dulcssoland, h) Uroleucon sp. in chrysanthemums, i) Macrosiphum rosae in R. indica flower, j) Pentalonia nigronervosa in C. indica leaves In addition, this study documented the presence of weeds, which might serve as alternative hosts for aphids (Table 2). The location of aphid colonies also varied, namely on flowers, stalks, plant tops, young leaves and old leaves of wild plants (Figure 2). The presence of specific plants or host plants within a habitat influenced the types of aphids found. Many aphid species are found on a broad range of plants or host plants, while others are highly specialized and are only found on specific plants or host plants. This is closely related to the polyphagous, oligophagous or monophagous nature of aphids (Blackman & Eastop 2000). Table 2: Species of aphids found in wild plants and their colony locations. | No | Host Plant | Aphid species | Colony location | |----|-----------------------------|---|--| | 1 | Ageratum conyzoides | Aphis gossypii | Shoots, young leaves, old leaves, flowers | | 2 | Alternanthera philoxeroides | Aphis gossypii | Shoots, buds | | 3 | Alternanthera sessilis | Aphis gossypii | Shoots, buds | | 4 | Amaranthus gracilis | Aphis craccivora | Flowers, shoots, young leaves, old leaves | | 5 | Blumea lacera | Lipaphis erysimi | Flowers, shoots, and buds | | 6 | Croton hirtus | Aphis gossypii | Flowers, shoots, young leaves, old leaves, young twigs | | 7 | Cynodon dactylon | Schizaphis rotundiventris | Flower, flower stalks | | 8 | Cyperus rotundus | Schizaphis rotundiventris | Flower, flower stalks, leaf axils | | 9 | Cyperus compressus | Schizaphis rotundiventris | Flower, flower stalks, leaf axils | | 10 | Digitaria ciliaris | Hystroneura setariae | Flower, flower stalks | | 11 | Echinocloa crussgali | Hiperomyzus sp. | Young leaves, old leaves | | 12 | Ecliptica prostrata | Aphis gossypii | Shoots, young leaves | | 13 | Eleusin indica | Hysteroneura setariae
Rhopalosiphum maidis | Flower, flower stalks, leaf axils | | 14 | Emilia sonchifolia | Aphis gossypii | Flower, flower stalks, shoots | | 15 | Eragrostis tenella | Hysteroneura setariae | Flower, flower stalks, seeds | | 16 | Euphorbia hirta | Aphis gossypii | Young leaves, old leaves | | 17 | Eupotarium odoratum | Aphis gossypii,
Aphis glycine | Young leaves, old leaves, young twigs | | 18 | Hymenochera acutigluma | Hysteroneura setariae | Flowers, flower stalks, leaf axils | | 19 | Lagerstromea Sp. | Greenidea sp. | Young leaves | | 20 | Lophatherum gracile | Hysteroneura setariae
Rhopalosiphum maidis | Young leaves, old leaves, leaf axils | | 21 | Melastoma affine | Aphis gossypii | Shoots, young leaves | | 22 | Mikania mikranta | Aphis gossypii | Shoots, young leaves, old leaves | | | | Aphis glycine | | | 23 | Mimosa invisa | Aphis craccivora | Shoots, pods | | 24 | Mimosa pudica | Aphis craccivora | Shoots, pods, flowers | | 25 | Mimosa vigra | Aphis craccivora | Shoots, pods | | 26 | Oryza rufipogon | Rhopalosiphum padi, | Old leaves, young leaves (pupus), leaf axils | | | | Rhopalosiphum maidis | | | 27 | Oxonopus compressus | Hysteroneura setariae | Flower, flower stalk, leaf axils | | 28 | Paspalum conjugatum | Hysteroneura setariae | Flower, flower stalk, seeds | | 29 | Phylanthus neruri | Aphis citricola | Shoot, young leaves, old leaves, young twigs, petioles | | 30 | Portulaca oleraceae | Aphis craccivora | Shoots, young leaves, flower | | 31 | Physalis angulata | Aphis craccivora,
A. gossypii | Shoots, young leaves, old leaves | | 32 | Rorippa indica | Lipapis erysimi | Flower, fruit, shoots, young leaves | | No | Host Plant | Aphid species | Colony location | |----|-------------------|-----------------|---| | 33 | Sida rhombifolia | Aphis gossypii | Shoots, young leaves, old leaves, fruit/seeds | | 34 | Sonchus arventris | Lipapis erysimi | Young leaves, fruit stalks, flower, fruit | Figure 2. Aphids found on wild plants a) A. gossypii on the weed Ageratum conyzoides, b) A. gossypii on Croton weed hirtus c) A. gossypii on the weed Eupatorium odoratum, d) A. gossypii on plants Pachystochys sp., e) A. gossypii on plants Caladium sp., f) A. gossypii on the weed Alternanthera sessilis, g) A. gossypii in Portulaca oleraceae weeds, h) A. gossypii on the weed Euphorbia hirta, i) A. citricola on the weed Phylantus nerruri, j) A. citricola on Sida rhombifolia weed, k) A. citricola on plants Annona muricata, l) A. citricola on the weed Ludwigia peruviana, m) A. craccivora on Mimosa pudica weed, n) A. craccivora on weeds Amaranthus gracilis, o) A. glycine in Mikania micranta weed, p) Hysteneura sp. in Eleusin weeds, q) Greenidae sp. in kenidai trees (shrubs) indica, r)Hyperomyzus sp. in Echinocloa crusgali Weed, s) L. erysimi on weed sonchus arventris, t) Rhopalosiphum rice on the weed Oryza rufipogon, u)Rhopalosiphum Maidis on the weed Oryza rufipogon. #### **Discussion** The plant species or host plant influences the distribution of aphids. There are aphid species that can be found on a wide range of host plants, which is closely related to the polyphagous nature of aphids, allowing them to colonize many different species of host plants. Host plants can also affect the distribution of aphids, as evidenced by the presence of aphid species exclusively found on certain host plants (Peccoud et al., 2010). But there are some species of aphids found only on one particular host and are not found on other host plants (Döring, 2014). *A. gossypii*, and *Aphis aurantii* have been found on many host plants because both aphids are classified as polyphagous aphids (Margaritopoulos et al., 2006; Piron et al., 2019). Aphids can commonly be found infesting a variety of ornamental plants. They are attracted to these plants due to the rich nutrient content in the plant sap (Wäckers & Van Rijn, 2012). In this present study, some aphid species were found on some ornamental plants in Pagaralam. The location of aphid colonization on the plants varied. On *Adiantum predatum* plants, aphids formed colonies on young leaf stalks and on newly emerging leaves. The aphids displayed brown and black coloration. The aphid colonies found were small, and the colonized plant parts showed no signs of disease. The identification results showed that the aphids were *Neotoxoptera* sp., and notably, they were not associated with ants. On *Aster alpinus*, aphids were found to form colonies on the stems or young leaf shoots, and the colonies were relatively large. The color of the aphids was dark brown to black. The colonized plant parts showed symptoms of stunting. The identification results showed that the aphids were *Uroleucon* sp., and they were associated with ants. On the *Brugmansia suaviolens* (angel's trumpet), *M. persicae* were found on the undersides of old leaves or leaves that have started to turn yellow. The colonies were relatively small. The aphids found were green and large bodies. The colonized plant parts did not show any signs of disease. On *Caladium* sp. (taro) was found one species of aphids: A. gossypii. The aphids formed colonies under the surface of young and older leaves. The occupied leaf areas did not display severe symptoms. The aphids were yellow green to dark green. The wingless adult aphids often had a white, flour-like appearance on their bodies. On the Cananga odoratum (ylang-ylang), colonies of T. aurantii were found on the undersides of the leaves, the shoots, buds, and unopened flower petals. The T. aurantii colonies found were relatively large. Colonized parts, especially shoots, showed signs of stunting. The aphids found were brown to black in color. The colonies of T. aurantii were found to be associated with black ants. Aphids on *C. indica* (Indian shot, African arrowroot) were found to form colonies in the leaf axils and under the leaf surface near the leaf base. The colonies were quite large. The aphids were dark brown to dark red coloring with a medium-sized body. The identification results showed that the aphids were *P. nigronervosa*. The colonies of *P. nigronervosa* were found to be associated with ants. In the *Catharanthus roseus* (periwinkle), *A. citricola* aphids were found. The aphids were yellow-green, sifunculi, and black cauda. The aphids formed colonies on flowers and shoots, and the colonized plant parts did not show any symptoms of disease. On *Cestrum* sp. (Bastard jasmine), aphids formed colonies on the undersides of young leaves, shoots, and within flower parts, especially between petals or flower stalks that had not fully bloomed. The colonies were quite large. The body color of aphids was green to dark green with small to medium-sized bodies. The colonized plant parts, especially leaves, showed stunting symptoms. The identification results showed that the aphids were *A. gossypii*. The aphid colonies found were consistently associated with ants. Aphids on *Clitoria ternatea* were found to form colonies on flower parts, flower crowns, stems and young leaves. The aphids were brown to black in color. Colonized plant parts, especially shoots and young leaves, showed stunting symptoms. The identification results showed that the aphids were *A. craccivora*. These
colonies were consistently associated with ants. On the plant *Cosmos caudatus*, aphids were found on the flower petals. The colonies were not very large. The body color was green and light green. The identification results showed that the aphids were *A. gossypii*, and they were also associated with ants. The aphids on the *Dahlia kelvin plant* formed colonies on unopened flower buds, with a significant population among the blooming petals. The body color was green to dark green. The identification results showed that the aphids were *A. gossypii*. Aphids on *Datura metel* (amethyst) were found to form colonies on the undersides of old leaves. The aphids were medium-sized with a green body color. The colonized plant parts did not show any symptoms of disease. The identification results showed that the aphids were *Myzus ornatus*. The aphid colonies were not associated with ants. Within *Dendrobium* sp., aphid colonies were found on the young leaves. The aphids were yellow, green to dark green. The colonized plants did not show any disease symptoms. The identification results showed that the aphids were *A. gossypii*, and they were associated with ants. On *Duranta* sp. (bonsai), colonies of aphids were located on the undersides of young leaves. The colonized plant parts showed stunting symptoms. The colonies were very large. The aphids were green in color. The identification results showed that the aphids were *A. gossypii*. The aphid colonies were consistently associated with ants. On the *Helianthus annuus* (sunflower) plants, aphid colonies were found between the flower petals. The colonized flowers, especially the crowns, exhibited a tendency to fall off easily. The aphids were green and yellow in color. The colonies were small. The identification results showed that the aphids were *A. gossypii*. These aphid colonies were associated with ants. Aphid colonies on *Helianthus* sp. were found on the undersides of old leaves. These colonies were small in size. The aphids were green with a medium body size. The colonized plant parts did not show any disease symptoms. The identification results showed that the aphids were *M. ornatus*. The aphid colonies were not associated with ants. Within the colonies, mummified aphids that were parasitized by Aphidiidae were found. On the *Hibiscus rosa-sinensis*, aphids ranging in color from yellow to dark green were found. The aphids formed colonies on flower buds, unopened flower crowns, and the undersides of aging leaves. The colonies grew to be very large. The identification results showed that the aphids were *A. gossypii*. The aphid colonies were consistently associated with ants. Two types of aphids were found on the flowering plant *Ixora paludosa*. First, the aphids formed colonies on the undersides of young leaves that were still red or light green and sometimes on flower stalks that had not yet bloomed. The occupied plant parts showed symptoms such as stunted leaf growth, leaf shrinkage, necrotic spots on the leaf surface, and slightly downward-curved leaf edges. The upper leaf surface looked wet and sticky, similar to sugar. The aphids had yellow, green or slightly dark green bodies, with some wingless adults having a powdery white upper surface. The identification results showed that the aphids were A. gossypii, and they were almost always associated with ants. The second type of aphids on *Ixora paludosa* formed colonies under the surface of young and older leaves. The colonies could also be found on newly emerging flowers and leaves. The plant parts occupied by these aphids did not show obvious signs of illness. These aphids were dark red to black, with once-branched stigma and venation in their black wings. The identification results showed that the aphids were *T. aurantii*. These aphids were also associated with ants. In *Ixora* sp. flower plants, two forms of aphids were discovered. These aphids occupied the shoots, young leaves and unopened flowers. The affected plant parts did not show obvious symptoms. The aphids exhibited colors ranging from yellow and green to a slightly darker green. Sometimes the upper surface of the wingless imago's body appeared white, resembling flour. The identification results showed that these aphids were *A. gossypii*. These aphid colonies were almost always associated with ants. Another species of aphids were founded and formed colonies on flower stalks that had not yet bloomed and on newly emerging shoots or leaves. The presence of these aphids on the plant did not induce any symptoms of plant disease. The aphids were yellow or yellowgreen, with black cauda and siphunculi. Their bodies were very small to small in size. The identification results showed that the aphids were *A. citricola*. The colonies of *A. citricola* were also frequently found in association with ants. Two types of aphids were found on *Mussaenda frondos*, each forming colonies in different locations. The first type formed colonies on young leaves, shoots, and flowers. The plant parts they occupied showed no obvious disease symptoms. The aphids were yellow, green, and some with dark green. The identification results showed that the aphids were *A. gossypii*. The second type of aphids formed colonies on the stems or young twigs, appearing densely clustered as if piled up. The aphid colonies could also be found on young leaves, shoots and within flower parts. The plant parts they infested showed no signs of diseases. The aphids were yellow or yellow green, with black cauda and siphunculi. They had tiny to small bodies. The identification results showed that the aphids were *A. citricola*. The results showed that 34 species of wild plants, including weeds, were growing in the yard colonized by aphids. This indicated that multiple species of aphids colonized various host plants. The aphid species colonizing these plants were generally consistent within the same taxon. Ageratum conyzoides was infested by Aphis gossypii. These aphids formed colonies on the flower sections, shoots, lower surfaces of young leaves, or leaves turning yellow. The aphids were green, yellow-green to dark green, often forming large colonies. Alternanthera philoxeroides or alligator grass was also colonized by Aphis gossypii. Small colonies were found on shoots or stems. These aphids had small bodies and were green, ranging from yellow-green to dark green. Alternanthera sessilis was colonized by Aphis gossypii, forming colonies on shoots, flowers, and fruit. The colonies were typically large, and they were often associated with tiny brown ants. Amaranthus gracilis was infested by Aphis craccivora. These aphids established colonies on shoots, flowers and young and old leaves. They were dark brown to black in color, with shiny black wingless imagoes. Colonies of these aphids were associated with both black and red ants. Blumea lacera was colonized by Lipaphis erysimi aphids. These aphids were bright green, and of medium size. The colonies formed on flowers, flower stalks and the undersides of the leaves at the top. The aphid colonies were not associated with ants. Croton hirtus or fire grass was infested by Aphis gossypii. The aphids were yellow-green to dark green. The colonies were found on the stems, leaves, buds and flowers, often forming large colonies. Cynodon dactylon or Bermuda grass was colonized by Schizaphis rotundiventris. The aphids colonized the flowers, flower stalks and sometimes in the leaf axils of the plant. Small colonies were formed. The aphids were brown to red-brown. They were associated with ants. Cyperus rotundus or nut grass was infested by Schizaphis rotundiventris aphids. The colonies were found on flower stalks, flowers, and leaf axils. The colonies were quite large and associated with both black and red ants. The aphids were dark brown in color. Cyperus compressus or grass puzzle was colonized by Schizaphis rotundiventris aphids, forming colonies in the flowers, flower stalks and sometimes in the axils and leaves of the shoots or buds. Small colonies were observed. Digitaria ciliaris was infested by Hysteroneura setariae aphids, with small colonies scattered on the flowers and flower stalks. These aphids were light brown to brown in color. *Echinocloa crussgali* or water hyacinth plants were colonized by *Hiperomyzus* sp. aphids. These aphids were dark brown to black, and formed large colonies on the undersides of both young and old leaves. The aphid colonies were never found in association with ants. *Ecliptica prostrata* or urang aring was colonized by *Aphis gossypii*, forming small colonies on the shoots and flowers. The aphids were bright green to blackish green. The aphid colonies were also consistently associated with ants. Eleusin indica was colonized by two species of aphids: Hysteroneura setariae and Rhopalosiphum maidis. H. setariae formed colonies in flower parts, flower stalks and leaf axils resulting in quite large colonies. H. setariae body color ranged from red-brown to dark brown. The colonies were consistently associated with ants. The aphids of R. maidis formed colonies in the leaf axils and undersides of leaves and on leaf shoots that had not yet opened. The colonies were not densely packed. The leaf aphids of R. maidis were green in color, with distinct black siphunculi and cauda. These aphids had relatively large bodies with a slightly elongated shape. R. maidis colonies were always associated with ants. The plant Emilia sonchifolia, characterized by its purple flowers, was colonized by Aphis gossypii. The aphids were yellow to green in colour. The colonies formed near flowers, flower stalks, and shoot leaves. Eragrostis tenella was infested by Hysteroneura setariae aphids. The aphids were brown to red-brown. Small colonies formed on flowers near the seeds, with groups of aphids surrounding the plant's seeds. The aphids of H. setariae were consistently associated with ants. Euphorbia hirta or wart grass was colonized by Aphis
gossypii. The aphids formed colonies on the undersides of leaves, resulting in stunted growth of the leaves. The aphids were yellow to dark green in color. A. gossypii colonies on E. hirta plants were consistently associated with ants. Eupotarium odoratum was colonied by both Aphis gossypii and Aphis citricola. A. gossypii formed colonies in the buds, young leaves, old leaves, and young twigs. Young leaves that were colonized by A. gossypii became stunted with an irregular shape. A. gossypii found in this plant showed yellowgreen to dark green in body colour. The colonies of A. citricola formed on the young twigs near the shoots, with these aphids displaying yellow-green coloration and having black siphunculi and cauda. Aphid colonies of both A. gossypii and A. citricola on E. odoratum plants were associated with either black or red ants. Hymenochera acutigluma or hair axis was colonized by Hysteroneura setariae, which formed colonies on the flower stalks and flowers. The colonized parts of the plants did not display any noticeable symptoms. Lagerstromea sp. or kenidai, was infested by Greenidae sp. These aphids had bright green bodies and distinctive elongated siphunculi with thorns. The aphids formed colonies on the undersides of leaves, especially on young leaves. The colonized leaves did not show any disease symptoms. Lophatherum gracile or bamboo grass plants were colonized by two species of aphids: hysteroneura setariae and Rhopalosiphum maidis. The aphids of H. setariae formed colonies on the undersides of leaves, leaf shoots, and leaf axils. The colonized leaves did not show any disease symptoms. H. setariae aphids were brown to red-brown. R. maidis aphids also formed colonies on the undersides of leaves, but the colonies were small. R. maidis aphids were green to bright green in color, with black siphunculi and cauda. It was possible for colonies of the two species of aphids on L. gracile to mix. Melastoma affine was colonized by Aphis gossypi. The colonies formed on shoots, particularly near newly emerging shoots and on newly emerging fruits and flowers. The body colour of aphids ranged from yellow to green. The colonized plant parts did not show any disease symptoms. Mikania miranta was colonized by Aphis gossypii and Aphis glycine. A. gossypii formed colonies on the shoots, especially on the undersides of the leaves, resulting in stunted and curled leaves. A. glycine formed colonies on the branches. The colonies were densely populated. A. Glycine aphids were light green to green in color. The colonized plant parts became distorted. The two species of aphids could mix to form a single colony. Mimosa invisa (cater-grass) was colonized by Aphis craccivora. The aphids of A. craccivora on M. invisa plants formed colonies only on the shoots with small colonies. The aphids appeared dark black with wingless imagoes. Mimosa pudica was observed to be colonized by Aphis craccivora. The aphids formed colonies on shoots, especially young shoots, and occasionally on flowers and pods. The aphids were black and of medium size, resulting in stunted growth of the colonized plant parts. The colonies were quite large. Mimosa vigra was colonized by Aphis craccivora. The colonies of aphids occupied the pods and shoots with small colonies. The nymphs of aphids were black, and wingless adults were shiny black. The colonized plant parts did not show any disease symptoms. Oryza rufipogon was colonized by two species of aphids: Rhopalosiphum rice and Rhopalosiphum maidis. Both aphids colonized the same plant parts, namely the unopened leaves and the leaf axils with large colonies. The two species could be distinguished by their body color. R. maidis appeared green with black sifunculi and cauda, while R. rice appeared white. The colonies of R. maidis and R. rice in O. rufipogon plants were associated with the presence of red ants. Oxonopus compressus or pait grass was colonized by Hysteroneura setariae aphids. The colonies occupied flowers, flower stalks, seeds, and sometimes in the leaf axils. The aphids were brown to dark brown in color. Small colonies were formed, and they were also consistently associated with ants. Paspalum conjugatum was colonized by H. setariae aphids. The colonies occupied flower parts, especially the seeds and flower stalks. Aphids had brown to dark brown bodies. Phylanthus niruri was colonized by Aphis citricola. The colonies formed on the shoots and the undersides of leaves and petioles. The colonized parts became distorted, stunted, and wrinkled. The aphids had yellow bodies with black sifunculi and cauda, and the colonies formed were quite large. Portulaca oleraceae plants were colonized by Aphis craccivora. The aphids of A. craccivora in P. oleraceae plants formed colonies on the undersides of leaves, especially young leaves, shoots and in flowers. The colonized plant parts became stunted, and leaf edges curled downward. The aphids had dark brown to black bodies, with wingless imagoes that appeared glossy black. Physalis angulata plants were colonized by Aphis craccivora. The aphids had dark green to black bodies, with glossy black wingless imagoes. A. craccivora formed colonies on the shoots or near the leaf buds. The colonized plant parts did not show any symptoms of disease. Rorippa indica or mustard land was colonized by Lipaphis erysimi. The colonies formed on the flowers, fruits, flower stalks and the lower surface of leaves. The colonized plant parts showed symptoms such as curling and stunting. Sida rhombifolia or cacabean was colonized by Aphis gossypii. The aphids had green-yellow to green body colors. The colonies formed on the surface of lower leaves, stalks and flower petals. The colonized plant parts, especially the shoots, showed curling. and the leaf edges curled downward. Sonchus arventris plants were colonized by L. erysimi. The aphids had green to whitish green body colours, and the colonies formed on flower stalks, under petals, and on young shoots or leaves. The colonized plant parts became stunted over time. In general, aphids observed on ornamental and wild plants formed colonies. The colonized plant parts typically displayed typical symptoms of damage, but some did not show any symptoms. Generally, the symptoms of the plants caused by aphid colonies were relatively the same, such as stunted growth, abnormal shape, and stunted or curly leaves. These characteristic symptoms serve as indicators of aphid infestations. However, some plants or plant parts did not show symptoms when colonized by aphids. This condition happened because the colonized parts had reached their maximum growth or development. It indicated that the colonized part was not currently undergoing a growth phase. The colonies that did not induce symptoms typically occurred when the colonized leaves had reached their maximum growth or when the leaves and plant parts were old. The old leaves or twigs might not show the typical symptoms associated with aphid infestations. The part of the plant exhibiting characteristic symptoms when colonized by aphids also often experienced a cessation in growth due to the piercing by the aphids. In contrast, the areas surrounding the puncture site continued to grow, resulting in some parts developing normally while others become stunted (Pettersson et al., 2017). This condition could lead to the bending of shoots or young stems, curling of leaves, downward curling of leaf edges, or stunted leaf growth. In this observation, monocot plants or groups of grasses with narrow leaves generally did not display any distinctive symptoms when colonized by aphids. This might be because the growth or development of their leaves differed from that of dicot plants. Therefore, the presence of aphids in monocot plants or plants was often easier to recognize through the presence of ants. If a plant was found to have a significant number of ants, there was a possibility that aphids had colonized the plant (Tegelaar et al., 2012). Therefore, the presence of ants could serve as an indicator of the presence of aphid colonies. Throughout their life cycle, aphids exhibited host alternation by switching between two distinct host plants (Peccoud et al., 2010). They overwintered on woody plants, reproduced in the spring, and migrated to herbaceous plants during the summer before returning to their primary host in the autumn (Yamamoto et al., 2020). This allowed aphids to maximize resource utilization, avoid congestion and competition, evade predators and parasites, circumvent plant defenses, and colonize new areas. Aphids could distribute their population efficiently, thereby avoiding overcrowding, predators and parasites, and plant defenses developing over time through host switching (Yamamoto et al., 2020). This behavior was essential for the survival and environmental adaptation of aphids. Aphids colonized flowers because they may offer an accessible and rich food source, sugary plant sap found in new growth or reproductive parts of plants. Flowers contain nutrient-rich nature (Jakubczyk et al., 2022) and easy access to sap, therefore aphids were attractive to sap the flowers. Some aphid species were drawn to certain colors (Chittka, 2007), while others preferred different types of plants and plant parts (Sorensen, 2009). It's worth noting that different aphid species often had distinct preferences for plant ty(Harrington et al., 2007)pes and parts. Herbs served as an alternative host for aphids in this present study. Aphids consumed sugar-rich liquid in plants, known as "sap". Aphids considered herbs and other green vegetation as abundant food sources. Aphids utilized needle-like mouthparts to penetrate plant tissues and access this fluid (Brożek et al., 2015). Numerous herbs had structural characteristics, such as folds, crevices, and concealed flowering portions (Harrington et al., 2007), that provided aphids with refuge . Due to a symbiotic relationship, the prevalence of aphids and ants was
frequently correlated. Aphids produced a delicious substance known as honeydew as a waste product, which ants found highly attractive as a food source (Nelson & Mooney, 2022). The honeydew contained an abundance of sugars, extracted by aphids from the plant juice (Detrain et al., 2010). Ants were drawn to this nutrient-rich food source and would often 'farm' aphids for it. In exchange for honeydew, ants provided aphids with protection from other insects and predators, such as ladybugs, lacewing larvae, and parasitic wasps (Karami-jamour et al., 2018). Certain species of ants would transport aphids to new host plants for improved foraging opportunities, ensuring that aphids had a continuous food source (Giannetti et al., 2021). Honeydew not only nourished the ant colony, but its high sugar content also supported the development of their fungus farms (in certain species) and provided energy for the growth of their own progeny (Biedermann & Vega, 2020). #### References Biedermann, P. H. W., & Vega, F. E. (2020). Ecology and evolution of insect–fungus mutualisms. *Annual Review of Entomology*, 65, 431–455. - Blackman, R. L., & Eastop, V. F. (2000). *Aphids on the world's crops: an identification and information guide.* (Issue Ed. 2). John Wiley & Sons Ltd. - Blackman, R. L., & Eastop, V. F. (2017). Taxonomic issues. In *Aphids as crop pests* (pp. 1–36). CABI Wallingford UK. - Boivin, G., Hance, T., & Brodeur, J. (2012). Aphid parasitoids in biological control. *Canadian Journal of Plant Science*, 92(1), 1–12. - Brożek, J., Mróz, E., Wylężek, D., Depa, Ł., & Węgierek, P. (2015). The structure of extremely long mouthparts in the aphid genus Stomaphis Walker (Hemiptera: Sternorrhyncha: Aphididae). *Zoomorphology*, 134, 431–445. - Capinera, J. L. (2005). Relationships between insect pests and weeds: an evolutionary perspective. *Weed Science*, 53(6), 892–901. - Chandel, R. S., Chandla, V. K., Verma, K. S., & Pathania, M. (2022). *Chapter 21 Insect pests of potato in India: biology and management* (A. Alyokhin, S. I. Rondon, & Y. B. T.-I. P. of P. (Second E. Gao (eds.); pp. 371–400). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-821237-0.11001-7 - Chittka, Æ. L. (2007). Visual ecology of aphids-a critical review on the role of colours in host finding Visual ecology of aphids a critical review on the role of colours in host finding. June 2014. https://doi.org/10.1007/s11829-006-9000-1 - Clarke, R., Kehoe, M. A., Broughton, S., & Jones, R. A. C. (2020). Host plant a ffi liations of aphid vector species found in a remote tropical environment. *Virus Research*, 281(December 2019), 197934. https://doi.org/10.1016/j.virusres.2020.197934 - Degani, E., Leigh, S. G., Barber, H. M., Jones, H. E., Lukac, M., Sutton, P., & Potts, S. G. (2019). Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. *Agriculture, Ecosystems & Environment*, 285, 106625. - Detrain, C., Verheggen, F. J., Diez, L., Wathelet, B., & Haubruge, E. (2010). Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts. *Physiological Entomology*, *35*(2), 168–174. - Döring, T. F. (2014). How aphids find their host plants, and how they don't. *Annals of Applied Biology*, 165(1), 3–26. https://doi.org/https://doi.org/10.1111/aab.12142 - Gadhave, K. R., Gautam, S., Rasmussen, D. A., & Srinivasan, R. (2020). Aphid transmission of Potyvirus: the largest plant-infecting RNA virus genus. *Viruses*, 12(7), 773. - Giannetti, D., Mandrioli, M., Schifani, E., Castracani, C., Spotti, F. A., Mori, A., & Grasso, D. A. (2021). First report on the acrobat ant Crematogaster scutellaris storing live aphids in its oak-gall nests. *Insects*, *12*(2), 108. - Guo, H., Gu, L., Liu, F., Chen, F., Ge, F., & Sun, Y. (2019). Aphid-borne Viral Spread Is Enhanced by Virus-induced Accumulation of Plant Reactive Oxygen Species 1. *Plant Physiol*, *179*(January), 143–155. https://doi.org/10.1104/pp.18.00437 - Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hulle, M., Maurice, D., Rounsevell, M. D., Cocu, N., & Consortium, E. U. E. (2007). Environmental change and the phenology of European aphids. *Global Change Biology*, 13(8), 1550–1564. - Hullé, M., Chaubet, B., Turpeau, E., & Simon, J.-C. (2020). Encyclop'Aphid: A website on aphids and their natural enemies. *Entomologia Generalis*, 40(1). - Ikbal, C., & Pavela, R. (2019). Essential oils as active ingredients of botanical insecticides against aphids. *Journal of Pest Science*, 92, 971–986. - Jakubczyk, K., Koprowska, K., Gottschling, A., & Janda-Milczarek, K. (2022). Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete's Dietary Supplement. *Nutrients*, *14*(12). https://doi.org/10.3390/nu14122470 - Jaouannet, M., Rodriguez, P. A., Thorpe, P., Lenoir, C. J. G., & Macleod, R. (2014). Plant immunity in plant aphid interactions. *Front Plant Sci.*, 5(December), 1–10. https://doi.org/10.3389/fpls.2014.00663 - Jones, R. A. C. (2022). Alteration of plant species mixtures by virus infection: Managed pastures the forgotten dimension. *Plant Pathology*, 71(6), 1255–1281. - Jousselin, E., Gwenaelle, G., & Armelle, C. D. A. (2010). Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus. *BMC Evolutionary Biology*, *10*(1). https://doi.org/10.1186/1471-2148-10-295 - Karami-jamour, T., Mirmoayedi, A., Zamani, A., & Khajehzadeh, Y. (2018). The impact of ant attendance on protecting Aphis gossypii against two aphidophagous predators and it's role on the intraguild predation between them. *Journal of Insect Behavior*, 31, 222–239. - Kennedy, J. S., & Stroyan, H. L. G. (1959). Biology of aphids. *Annual Review of Entomology*, 4(1), 139–160. - Kinley, C., Banu, A. N., Raut, A. M., Wahengbam, J., & Jamtsho, T. (2021). A review on past, present and future approaches for Aphids management. *Journal of Entomological Research*, 45(2), 336–346. https://doi.org/10.5958/0974-4576.2021.00053.0 - Kumar, Sarwan. (2019). Aphid-Plant Interactions: Implications for Pest Management. In M. T. Oliveira, F. Candan, & A. Fernandes-Silva (Eds.), *Plant Communities and Their Environment* (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.84302 - Kumar, Sushil, Bhowmick, M. K., & Ray, P. (2021). Weeds as alternate and alternative hosts of crop pests. *Indian Journal of Weed Science*, 53(1), 14–29. https://doi.org/10.5958/0974-8164.2021.00002.2 - Liu, X. D., Xu, T. T., & Lei, H. X. (2017). Refuges and host shift pathways of host-specialized aphids Aphis gossypii. *Scientific Reports*, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02248-4 - Maharani, Y., Hidayat, P., Rauf, A., & Maryana, N. (2018). Short communication: New records of aphid species subfamily aphidinae (Hemiptera: Aphididae) in West Java, Indonesia. *Biodiversitas*, 19(2), 460–465. https://doi.org/10.13057/biodiv/d190219 - Margaritopoulos, J. T., Tzortzi, M., Zarpas, K. D., Tsitsipis, J. A., & Blackman, R. L. (2006). Morphological discrimination of Aphis gossypii (Hemiptera: Aphididae) populations feeding on Compositae. *Bulletin of Entomological Research*, *96*(2), 153–165. https://doi.org/10.1079/ber2005410 - Moran, N. A. (1992). The Evolution of Aphid Life Cycles. *Annual Review of Entomology*, 37(1), 321–348. https://doi.org/10.1146/annurev.en.37.010192.001541 - Müller, C. B., Williams, I. S., & Hardie, J. (2001). The role of nutrition, crowding and interspecific interactions in the development of winged aphids. *Ecological Entomology*, 26(3), 330–340. - Nelson, A. S., & Mooney, K. A. (2022). The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. *Annual Review of* - *Ecology, Evolution, and Systematics*, *53*, 379–402. - Peccoud, J., Simon, J.-C., von Dohlen, C., Coeur d'acier, A., Plantegenest, M., Vanlerberghe-Masutti, F., & Jousselin, E. (2010). Evolutionary history of aphid-plant associations and their role in aphid diversification. *Comptes Rendus Biologies*, 333(6), 474–487. https://doi.org/https://doi.org/10.1016/j.crvi.2010.03.004 - Pettersson, J., Tjallingii, W. F., & Hardie, J. (2017). Host-plant selection and feeding. In *Aphids as crop pests* (pp. 173–195). CABI Wallingford UK. - Piron, P., de Haas, M., & Sonnemans, M. (2019). The presence of Aphis (Toxoptera) aurantii (Homoptera: Aphididae) in the Netherlands. *Entomologische Berichten*, 79(5), 162–164. - Sileshi, G., Schroth, G., Rao, M. R., & Girma, H. (2008). Weeds, diseases, insect pests and tri-trophic interactions in tropical agroforestry. *Ecological Basis of Agroforestry*, 73–94. - Singh, R., & Singh, G. (2021). Aphids. Polyphagous Pests of Crops, 105–182. - Sorensen, J. T. (2009). *Chapter 8 Aphids* (V. H. Resh & R. T. B. T.-E. of I. (Second E. Cardé (eds.); pp. 27–31). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374144-8.00008-4 - Tegelaar, K., Hagman, M., Glinwood, R., Pettersson, J., & Leimar, O. (2012). Ant–aphid mutualism: the influence of ants on the aphid summer cycle. *Oikos*, *121*(1), 61–66. https://doi.org/https://doi.org/10.1111/j.1600-0706.2011.19387.x - Völkl, W., Mackauer, M., Pell, J. K., & Brodeur, J. (2023). Predators, parasitoids and pathogens. In *CABI Books*. CABI Books. https://doi.org/10.1079/9780851998190.0187 - Wäckers, F. ., & Van Rijn, P. . (2012). Pick and mix: selecting flowering plants to meet the requirements of target biological control insects. *Biodiversity and Insect Pests: Key Issues for Sustainable Management*, 9(April), 139–165. https://doi.org/10.1002/9781118231838.ch9 - Yamamoto, T., Hattori, M., & Itino, T. (2020). Seasonal Migration in the Aphid Genus Stomaphis (Hemiptera: Aphididae): Discovery of Host Alternation Between Woody Plants in Subfamily Lachninae. 20. https://doi.org/10.1093/jisesa/ieaa103 # **COVERING LETTER** Dear Editor-in-Chief, | I herewith enclosed a research article, |
---| | The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor). | | ☐ The submission file is in OpenOffice, Microsoft Word (DOC, not DOCX), or RTF document file format. | | The text is single-spaced; uses a 10-point font; employs italics, rather than underlining (except with URL addresses); and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end. | | ☐ The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines. | | Most of the references come from current scientific journals (c. 80% published in the last 10 years), except for taxonomic papers. | | Where available, DOIs for the references have been provided. | | When available, a certificate for proofreading is included. | | SUBMISSION CHECKLIST | | Ensure that the following items are present: | | The first corresponding author must be accompanied with contact details: E-mail address | | Full postal address (incl street name and number (location), city, postal code, state/province, country) | | Phone and facsimile numbers (incl country phone code) | | All necessary files have been uploaded, and contain: Keywords | | Running titles | | All figure captions | | All tables (incl title and note/description) | | Further considerations Manuscript has been "spell & grammar-checked" Better, if it is revised by a professional science editor or a native English speaker | | References are in the correct format for this journal | | All references mentioned in the Reference list are cited in the text, and vice versa | | Colored figures are only used if the information in the text may be losing without those images | | Charts (graphs and diagrams) are drawn in black and white images; use shading to differentiate | | Title: | | | |---|--|--| | Species of Aphids Found in Ornamental and Wild Plan | ts in Highland, Pagar Alam, South Sumatra | | | Author(s) name: | | | | Chandra Irsan ^{a*} , Erise Anggraini ^{a,b} , Siti Herlinda ^a , | Wenny Ramadhani ^c , M. Umar Harun ^d , | | | Address (Fill in your institution's name and address, your personal cellular ph a Department of Plant Pests and Diseases, Faculty of Agriculture Sumatra, Indones b Agroecotehcnology Study Program, Faculty of Indralaya, Ogan Ilir, South St c Plant Quarantine, Palembang, S d Department of Agronomy, Faculty of Agriculture, Universitation | e, Universitas Sriwijaya, Indralaya, Ogan Ilir, South
ia
Agriculture, Universitas Sriwijaya,
umatra, Indonesia
Sumatera, Indonesia | | | For possibility publication on the journal: (fill in <i>Biodiversitas</i> or <i>Nusantara Bioscience</i> or <i>mention the others</i>) | | | | Biodiversitas Journal of Biological Diversity | Nusantara Bioscience | | | Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia | Asian Journal of Agriculture | | | ☐ Asian Journal of Ethnobiology | Asian Journal of Forestry | | | Asian Journal of Natural Product Biochemistry | Asian Journal of Tropical Biotechnology | | | ☐ International Journal of Bonorowo Wetlands | Cell Biology and Development | | | ☐ Indo Pacific Journal of Ocean Life | International Journal of Tropical Drylands | | | Novelty: (state your claimed novelty of the findings versus current knowledge) This paper described the alternative host of aphids in high land, Sout of insect pest could be beneficial resource for basic control of aphids. | th Sumatera. The knowledge regarding the alternative | | | Statements: | | | | This manuscript has not been published and is not under considerate type of publication (including web hosting) either by me or any of my Author(s) has been read and agree to the Ethical Guidelines. | | | | List of five potential reviewers (Fill in names of five potential reviewers that agree to review your have Scopus ID and come from different institution with the authors; | | | | 1. Dr. Koko Dwi Sutanti (email:ksutanto@ksu.edu.sa | | | | Dr. Lau Wei Hong (email: <u>lauweih@upm.edu.my</u>) Prof. Dr. Dra. Asni Johari, M.Si. | | | | 4. Dr. Mahesh Gunasena (mahesh.gunasena@gmail.com) | | | | 5. Dr. Hasber Salim (hasbersalim@usm.my | | | | | | | | Place and date: Palembang, 5 October 2023 | | | | Sincerely yours, | | | | (fill in your name, no need scanned autograph) | | | | Dr. Chandra Irsan | | | # 11 12 # Species of Aphids Found in Ornamental and Wild Plants in Highland, Pagar Alam, South Sumatra Chandra Irsan^{a*}, Erise Anggraini^{a,b}, Siti Herlinda^a, Wenny Ramadhani^c, M. Umar Harun^d, ^a Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Sriwijaya, Indralaya, Ogan Ilir, South Sumatra, Indonesia ^bAgroecotehcnology Study Program, Faculty of Agriculture, Universitas Sriwijaya, Kode Pos 30962 Indralaya, Ogan Ilir, South Sumatra, Indonesia, Kode Pos 30962 ^c Plant Quarantine, Palembang, Sumatera, Indonesia d Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya, Indralaya, Ogan Ilir, South Sumatra, Indonesia, Kode Pos 30962 Corresponding Author: chandrairsan@fp.unsri.ac.id, Abstract Aphids are one of the crucial pests in the tropical and sub-tropical regions. The presence of aphids in a plant can be 13 14 very detrimental due to their role as vectors. Aphids exhibit species diversity, but not much information has been reported 15 about the species diversity of aphids associated with essential crops such as ornamental plants. Furthermore, many aphid 16 17 species were found on plants that were not actually hosts such as wild plants. Therefore, this study reported the species of 18 aphids found in ornamental plants and the wild plants. This study revealed that 15 species of aphids were found in Pagaralam, namely Aphis gossypii, Uroleucon sp., Toxoptera odinae, Macrosiphum rosae, Aphis citricola, Aphis 19 20 craccivora, Toxoptera aurantii, Pentalonia nigronervosa, Hystenura sp., Aphis glycine, Greenidae sp., 21 22 > 24 25 > 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 23 Rhopalosiphum padi, Rhopalosiphum maidis, Hyperomyzus sp. Lipaphis erysimi. **Keywords**: aphids, ornamental plants, wild plants Running title: Aphids Found in Ornamental and Wild Plants INTRODUCTION Aphids are one of the crucial pests in the tropics and sub-tropics, exhibiting various polyphagous, oligophagous, and monophagous characteristics (Kennedy & Stroyan, 1959). One species of aphids can host more than 400 species from 40 families (Bass et al., 2014). In addition to pests, aphids can also be vectors of plant viral diseases (Gadhave et al., 2020). Aphids can transmit 275 viruses (Ertunc, 2020). In tropical areas, aphids can always be found throughout the year due to their parthenogenetic nature of reproduction (Blackman & Eastop, 2017). Aphids consume young leaves sap, which can deplete essential nutrients for healthy growth (Cao et al., 2018). Moreover, when aphids transmit viral diseases from one plant to another, this can further weaken and stunt the growth of infected plants (Jones, 2022). According to Kinley et al. (2021), aphids cause yield losses directly (35 - 40%) by sucking the plant sap or indirectly (20 - 80%) through viral transmission. Therefore, aphid infestations can can have adverse effects on crop yields and overall plant health (Sarwan Kumar, 2019). Due to their function as vectors, the presence of aphids on a plant can be highly damaging (Jaouannet et al., 2014). They feed by piercing the plant's tissues and consuming its sap, which can reduce the plant's growth and productivity, ultimately leading to weakness and possible death (Chandel et al., 2022). Additionally, as vectors, aphids can transmit a variety of plant diseases. They are as carriers for various plant viruses, and when they move from infected to healthy plants, these viruses can rapidly spread and cause extensive damage (Guo et al., 2019). In addition, the honeydew that aphids secrete can lead to the growth of sooty mold, a black fungus that can prevent sunlight from reaching the plant's leaves, thereby impairing photosynthesis, the process by which plants produce food (Singh & Singh, 2021). Therefore, it is crucial to control aphid populations in gardens and crops. Understanding the species diversity of aphids is fundamental to effective aphid control, as it facilitates the development of measures to keep their populations in check. In addition, understanding the diversity of aphid species can provide valuable insights into potential plant diseases, as different aphid species carry distinct viruses. Methods used to control aphids often encompass various techniques, including the use of natural enemies such as predators (like ladybugs, lacewings, and parasitic wasps) (Singh & Singh, 2021; Völkl et al., 2023), parasitoids (Boivin et al., 2012), entomopathogens (Hullé et al., 2020), the use of essential oils as botanical pesticides to control aphids (Ikbal & Pavela, 2019), and crop rotation techniques (Degani et al., 2019). Regular monitoring of aphid populations and diversity can help in detecting when population sizes may be reaching harmful levels, allowing for prompt implementation of the necessary countermeasures. Many aphid
species were found on plants that were not their actual hosts (Peccoud et al., 2010). Aphids have one or more secondary, or "alternative," host plants in addition to their primary host plants, which are the types of plants they feed on most frequently (Clarke et al., 2020). An alternative host can also be a collateral host belonging to the same plant family as the primary host, helping crop pests to survive when the primary hosts are unavailable (Kumar et al., 2021). These secondary hosts may offer less adequate nutrition for insects (Mo & Smilanich, 2023), However, they may provide a means of survival when primary hosts are unavailable, during certain seasons, or under certain environmental conditions (Kumar et al., 2021). According to Liu et al. (2017), since hibiscus serves as an overwintering host for cotton-specialized aphids but not for cucurbit-specialized aphids, it is evident that host-specialized aphids have refuges during times of food shortage. The life cycles of numerous aphid species exhibit such complexity (Jousselin et al., 2010). They maintain a cycle of host alternation, shifting between their primary hosts (typically a woody plant) and secondary hosts (often herbaceous plants) (Yamamoto et al., 2020). Weeds pose a continuous threat in both cropped and non-crop areas, providing food, shelter and reproductive sites for various pest organisms (Kumar et al., 2021). This indicates that weeds can serve as alternative hosts for aphids. A study of aphid species on horticultural plants has been conducted (Maharani et al., 2018), However, information about aphid species on ornamental and wild plants has not received as much attention and remains largely unexplored. In South Sumatra, particularly in the highland areas like Pagar Alam, there are numerous ornamental and native plants. The research on the diversity of aphid species in ornamental and wild plants has received little attention. Therefore, this study was conducted in Pagar Alam, a highland region of South Sumatra, with the aim of obtaining information on the diversity of aphid species found in ornamental and wild plants. The findings from this study can serve as a valuable resource for aphid management. #### MATERIALS AND METHODS The field research employed a purposive and direct observation approach to inventory cultivated or wild plants hosting aphids and collecting aphids. The plant selection process included cultivated plants encompassing fruit, vegetable, and ornamental varieties, as well as wild plants or weeds. The collection and identification of host plants, aphids, and their natural enemies involved systematic searches for the selected plants and subsequent examination for the presence of aphids. Observations were made to all existing plant species to find those colonized by aphids. Any plants colonized by aphids were documented as aphid hosts. Aphids, along with their natural enemies within the aphid colonies, were systematically collected. All components of the collected observations were then identified. Aphid identification was conducted using identification keys (Blackman & Eastop, 2008). Identification of aphid species took place in the Laboratory of Entomology, Faculty of Agriculture, Universitas Sriwijaya. Identification relied on morphological characteristics. The host plants were identified using weed identification hand book (Kallas, 2010; Meuninck, 2023; Naidu, 2012). The location and size of aphid colonies, morphology of aphids including their shape and color, as well as any symptoms observed in the host plants were recorded, and photographs of the aphid colonies and their host plants were taken. ### RESULT AND DISCUSSION #### Result The results showed that 15 aphid species were found in Pagaralam, namely *Aphis gossypii*, *Uroleucon* sp., *Toxoptera odinae*, *Macrosiphum rosae*, *Aphis citricola*, *Aphis craccivora*, *Toxoptera aurantii*, *Pentalonia nigronervosa*, *Hystenura* sp., *Aphis glycine*, *Greenidae* sp., *Rhopalosiphum padi*, *Rhopalosiphum maidis*, *Hyperomyzus* sp. *Lipapis erysimi*. Based on the observation, these aphids were found on various ornamental plants (Table 1). The primary colony locations were generally in flowers, and this study documented these colony locations in ornamental plants (Figure 1). Table 1: Aphid species found in ornamental plants and their colony locations. | No Host Plant | | Aphid Species | Colony location | | |---------------|--|--|------------------|--| | 1 2 | Aster alpinus
Brugmansia suaviolens | Sitobion luteum
Aulacorthum solani
Neomyzus circumflexus
Myzus persicae | flower
flower | | | 3 | Caladium sp. | Pentalonia sp | flower | | | 4 | Cananga odoratum | Aphis gossypii | flower | | | 5 | Canna indica | Pentalonia nigronervosa | flower | | | 6 | Catharanthus roseus | Aphis citricola | flower | | | 7 | Cestrum sp. | Aphis gossypii
Neomyzus circumflexus | flower | | | 8 | Clitoria ternatea | Aphis craccivora | flower | | | 9 | Cosmos caudatus | Uroleucon sp. | flower | | | 10 | Dahlia Kelvin | Aphis gossypii | flower | | | 11 | Dendrobium sp. | Sinemogoura citricola | flower | | | 12 | Duranta sp. | Aphis gossypii | flower | | | 13 | Helianthus sp. | Aphis glycines
Hyperomyzus sp. | | | | 14 | Hibiscus rosasinensis | Aphis gossypii | flower | | | 15 | Ixora paludosa | Aphis gossypii,
Toxoptera aurantii | flower | | | 16 | Ixora sp. | Aphis citricola
Aphis gossypii
Toxoptera aurantii | flower | | | 17 | Murraya paniculata | Aphis craccivora flow
Toxoptera citricidus | | | | 18 | Mussaenda frondosa | Aphis citricola flower Toxoptera odinae | | | | 19 | Rosa indica | Macrosiphum rosae flower | | | | 20 | Spondiras dulcssoland | Aphis citricola flower
Hysteroneura setariae | | | Fig 1. The location of aphid colonization on various plant parts. a) A. gossypii in D. Kelvin flower b) A. gossypii in H. rosasinensis flower c) A. gossypii in tuberose flower, d) A. craccivora in Clitoria ternatea flower, e) A citricola in Helianthus sp., f) A. aurantii on the M. paniculata flower, g) T. odinae in the S. dulcssoland, h) Uroleucon sp. in chrysanthemums, i) Macrosiphum rosae in R. indica flower, j) Pentalonia nigronervosa in C. indica leaves In addition, this study documented the presence of weeds, which might serve as alternative hosts for aphids (Table 2). The location of aphid colonies also varied, namely on flowers, stalks, plant tops, young leaves and old leaves of wild plants (Figure 2). The presence of specific plants or host plants within a habitat influenced the types of aphids found. Many aphid species are found on a broad range of plants or host plants, while others are highly specialized and are only found on specific plants or host plants. This is closely related to the polyphagous, oligophagous or monophagous nature of aphids (Blackman & Eastop 2000). | No | Host Plant | Aphid species | Colony location | |----|-----------------------------|---|---| | 1 | Ageratum conyzoides | Aphis gossypii | Shoots, young leaves, old leaves, flowers | | 2 | Alternanthera philoxeroides | Aphis gossypii | Shoots, buds | | 3 | Alternanthera sessilis | Aphis gossypii | Shoots, buds | | 4 | Amaranthus gracilis | Aphis craccivora | Flowers, shoots, young leaves, old leaves | | 5 | Blumea lacera | Lipaphis erysimi | Flowers, shoots, and buds | | 6 | Croton hirtus | Aphis gossypii | Flowers, shoots, young leaves, old leaves young twigs | | 7 | Cynodon dactylon | Schizaphis rotundiventris | Flower, flower stalks | | 8 | Cyperus rotundus | Schizaphis rotundiventris | Flower, flower stalks, leaf axils | | 9 | Cyperus compressus | Schizaphis rotundiventris | Flower, flower stalks, leaf axils | | 10 | Digitaria ciliaris | Hystroneura setariae | Flower, flower stalks | | 11 | Echinocloa crussgali | Hiperomyzus sp. | Young leaves, old leaves | | 12 | Ecliptica prostrata | Aphis gossypii | Shoots, young leaves | | 13 | Eleusin indica | Hysteroneura setariae
Rhopalosiphum maidis | Flower, flower stalks, leaf axils | | 14 | Emilia sonchifolia | Aphis gossypii | Flower, flower stalks, shoots | | 15 | Eragrostis tenella | Hysteroneura setariae | Flower, flower stalks, seeds | | 16 | Euphorbia hirta | Aphis gossypii | Young leaves, old leaves | | 17 | Eupotarium odoratum | Aphis gossypii,
Aphis glycine | Young leaves, old leaves, young twigs | | 18 | Hymenochera acutigluma | Hysteroneura setariae | Flowers, flower stalks, leaf axils | | 19 | Lagerstromea Sp. | Greenidea sp. | Young leaves | | 20 | Lophatherum gracile | Hysteroneura setariae
Rhopalosiphum maidis | Young leaves, old leaves, leaf axils | | 21 | Melastoma affine | Aphis gossypii | Shoots, young leaves | | 22 | Mikania mikranta | Aphis gossypii | Shoots, young leaves, old leaves | | | | Aphis glycine | | | 23 | Mimosa invisa | Aphis craccivora | Shoots, pods | | 24 | Mimosa pudica | Aphis craccivora | Shoots, pods, flowers | | 25 | Mimosa vigra | Aphis craccivora | Shoots, pods | | 26 | Oryza rufipogon | Rhopalosiphum padi, | Old leaves, young leaves (pupus), leaf axils | | | | Rhopalosiphum maidis | | | 27 | Oxonopus compressus | Hysteroneura setariae | Flower, flower stalk, leaf axils | | 28 | Paspalum conjugatum | Hysteroneura setariae | Flower, flower stalk, seeds | | 29 | Phylanthus neruri | Aphis citricola | Shoot, young leaves, old leaves, young twig petioles | | 30 | Portulaca oleraceae | Aphis craccivora | Shoots, young leaves, flower | | 31 | Physalis angulata | Aphis craccivora,
A. gossypii | Shoots, young leaves, old leaves | | 32 | Rorippa indica | Lipapis erysimi | Flower, fruit, shoots, young leaves | | 33 | Sida rhombifolia | Aphis gossypii | Shoots, young leaves, old leaves, fruit/seeds | | 34 | Sonchus arventris | Lipapis erysimi | Young leaves, fruit stalks, flower,
fruit | Figure 2. Aphids found on wild plants a) A. gossypii on the weed Ageratum conyzoides, b) A. gossypii on Croton weed hirtus c) A. gossypii on the weed Eupatorium odoratum, d) A. gossypii on plants Pachystochys sp., e) A. gossypii on plants Caladium sp., f) A. gossypii on the weed Alternanthera sessilis, g) A. gossypii in Portulaca oleraceae weeds, h) A. gossypii on the weed Euphorbia hirta, i) A. citricola on the weed Phylantus nerruri, j) A. citricola on Sida rhombifolia weed, k) A. citricola on plants Annona muricata, l) A. citricola on the weed Ludwigia peruviana, m) A. craccivora on Mimosa pudica weed, n) A. craccivora on weeds Amaranthus gracilis, o) A. glycine in Mikania micranta weed, p) Hysteneura sp. in Eleusin weeds, q) Greenidae sp. in kenidai trees (shrubs) indica, r)Hyperomyzus sp. in Echinocloa crusgali Weed, s) L. erysimi on weed sonchus arventris, t) Rhopalosiphum rice on the weed Oryza rufipogon, u)Rhopalosiphum Maidis on the weed Oryza rufipogon. #### Discussion The plant species or host plant influences the distribution of aphids. There are aphid species that can be found on a wide range of host plants, which is closely related to the polyphagous nature of aphids, allowing them to colonize many different species of host plants. Host plants can also affect the distribution of aphids, as evidenced by the presence of aphid species exclusively found on certain host plants (Peccoud et al., 2010). But there are some species of aphids found only on one particular host and are not found on other host plants (Döring, 2014). *A. gossypii*, and *Aphis aurantii* have been found on many host plants because both aphids are classified as polyphagous aphids (Margaritopoulos et al., 2006; Alotaibi et al., 2023). Aphids can commonly be found infesting a variety of ornamental plants. They are attracted to these plants due to the rich nutrient content in the plant sap (Wäckers & Van Rijn, 2012). In this present study, some aphid species were found on some ornamental plants in Pagaralam. The location of aphid colonization on the plants varied. On *Adiantum predatum* plants, aphids formed colonies on young leaf stalks and on newly emerging leaves. The aphids displayed brown and black coloration. The aphid colonies found were small, and the colonized plant parts showed no signs of disease. The identification results showed that the aphids were *Neotoxoptera* sp., and notably, they were not associated with ants. On *Aster alpinus*, aphids were found to form colonies on the stems or young leaf shoots, and the colonies were relatively large. The color of the aphids was dark brown to black. The colonized plant parts showed symptoms of stunting. The identification results showed that the aphids were *Uroleucon* sp., and they were associated with ants. On the *Brugmansia suaviolens* (angel's trumpet), *M. persicae* were found on the undersides of old leaves or leaves that have started to turn yellow. The colonies were relatively small. The aphids found were green and large bodies. The colonized plant parts did not show any signs of disease. On *Caladium* sp. (taro) was found one species of aphids: *A. gossypii*. The aphids formed colonies under the surface of young and older leaves. The occupied leaf areas did not display severe symptoms. The aphids were yellow green to dark green. The wingless adult aphids often had a white, flour-like appearance on their bodies. On the *Cananga odoratum* (ylang-ylang), colonies of *T. aurantii* were found on the undersides of the leaves, the shoots, buds, and unopened flower petals. The *T. aurantii* colonies found were relatively large. Colonized parts, especially shoots, showed signs of stunting. The aphids found were brown to black in color. The colonies of *T. aurantii* were found to be associated with black ants. Aphids on *C. indica* (Indian shot, African arrowroot) were found to form colonies in the leaf axils and under the leaf surface near the leaf base. The colonies were quite large. The aphids were dark brown to dark red coloring with a medium-sized body. The identification results showed that the aphids were *P. nigronervosa*. The colonies of *P. nigronervosa* were found to be associated with ants. In the *Catharanthus roseus* (periwinkle), *A. citricola* aphids were found. The aphids were yellow-green, sifunculi, and black cauda. The aphids formed colonies on flowers and shoots, and the colonized plant parts did not show any symptoms of disease. On *Cestrum* sp. (Bastard jasmine), aphids formed colonies on the undersides of young leaves, shoots, and within flower parts, especially between petals or flower stalks that had not fully bloomed. The colonies were quite large. The body color of aphids was green to dark green with small to medium-sized bodies. The colonized plant parts, especially leaves, showed stunting symptoms. The identification results showed that the aphids were *A. gossypii*. The aphid colonies found were consistently associated with ants. Aphids on *Clitoria ternatea* were found to form colonies on flower parts, flower crowns, stems and young leaves. The aphids were brown to black in color. Colonized plant parts, especially shoots and young leaves, showed stunting symptoms. The identification results showed that the aphids were *A. craccivora*. These colonies were consistently associated with ants. On the plant *Cosmos caudatus*, aphids were found on the flower petals. The colonies were not very large. The body color was green and light green. The identification results showed that the aphids were *A. gossypii*, and they were also associated with ants. The aphids on the *Dahlia kelvin plant* formed colonies on unopened flower buds, with a significant population among the blooming petals. The body color was green to dark green. The identification results showed that the aphids were *A. gossypii*. Aphids on *Datura metel* (amethyst) were found to form colonies on the undersides of old leaves. The aphids were medium sized with a green body color. The colonized plant parts did not show any symptoms of disease. The identification results showed that the aphids were *Myzus ornatus*. The aphid colonies were not associated with ants. Within *Dendrobium* sp., aphid colonies were found on the young leaves. The aphids were yellow, green to dark green. The colonized plants did not show any disease symptoms. The identification results showed that the aphids were *A. gossypii*, and they were associated with ants. On *Duranta* sp. (bonsai), colonies of aphids were located on the undersides of young leaves. The colonized plant parts showed stunting symptoms. The colonies were very large. The aphids were green in color. The identification results showed that the aphids were *A. gossypii*. The aphid colonies were consistently associated with ants. On the *Helianthus annuus* (sunflower) plants, aphid colonies were found between the flower petals. The colonized flowers, especially the crowns, exhibited a tendency to fall off easily. The aphids were green and yellow in color. The colonies were small. The identification results showed that the aphids were *A. gossypii*. These aphid colonies were associated with ants. Aphid colonies on *Helianthus* sp. were found on the undersides of old leaves. These colonies were small in size. The aphids were green with a medium body size. The colonized plant parts did not show any disease symptoms. The identification results showed that the aphids were *M. ornatus*. The aphid colonies were not associated with ants. Within the colonies, mummified aphids that were parasitized by Aphidiidae were found. On the *Hibiscus rosa-sinensis*, aphids ranging in color from yellow to dark green were found. The aphids formed colonies on flower buds, unopened flower crowns, and the undersides of aging leaves. The colonies grew to be very large. The identification results showed that the aphids were *A. gossypii*. The aphid colonies were consistently associated with ants. Two types of aphids were found on the flowering plant *Ixora paludosa*. First, the aphids formed colonies on the undersides of young leaves that were still red or light green and sometimes on flower stalks that had not yet bloomed. The occupied plant parts showed symptoms such as stunted leaf growth, leaf shrinkage, necrotic spots on the leaf surface, and slightly downward-curved leaf edges. The upper leaf surface looked wet and sticky, similar to sugar. The aphids had yellow, green, or slightly dark green bodies, with some wingless adults having a powdery white upper surface. The identification results showed that the aphids were *A. gossypii*, and they were almost always associated with ants. The second type of aphids on *Ixora paludosa* formed colonies under the surface of young and older leaves. The colonies could also be found on newly emerging flowers and leaves. The plant parts occupied by these aphids did not show obvious signs of illness. These aphids were dark red to black, with once-branched stigma and venation in their black wings. The identification results showed that the aphids were *T. aurantii*. These aphids were also associated with ants. In *Ixora* sp. flower plants, two forms of aphids were discovered. These aphids occupied the shoots, young leaves and unopened flowers. The affected plant parts did not show obvious symptoms. The aphids exhibited colors ranging from yellow and green to a slightly darker green. Sometimes the upper surface of the wingless imago's body appeared white, resembling flour. The identification results showed that these aphids were *A. gossypii*. These aphid colonies were almost always associated with ants. Another species of aphids was founded and formed colonies on flower stalks that had not yet bloomed and on newly emerging shoots or leaves. The presence of these aphids on the plant did not induce any symptoms of plant disease. The aphids were yellow or yellow green, with black cauda and siphunculi. Their bodies were very small to
small. The identification results showed that the aphids were A. citricola. The colonies of A. citricola were also frequently found in association with ants. 245 246 247 248 249250 251 252 253 254 255 256 257258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 Two types of aphids were found on *Mussaenda frondos*, each forming colonies in different locations. The first type formed colonies on young leaves, shoots, and flowers. The plant parts they occupied showed no obvious disease symptoms. The aphids were yellow, green, and some with dark green. The identification results showed that the aphids were *A. gossypii*. The second type of aphids formed colonies on the stems or young twigs, appearing densely clustered as if piled up. The aphid colonies could also be found on young leaves, shoots and within flower parts. The plant parts they infested showed no signs of diseases. The aphids were yellow or yellow green, with black cauda and siphunculi. They had tiny to small bodies. The identification results showed that the aphids were *A. citricola*. The results showed that 34 species of wild plants, including weeds, were growing in the yard colonized by aphids. This indicated that multiple species of aphids colonized various host plants. The aphid species colonizing these plants were generally consistent within the same taxon. Ageratum conyzoides was infested by Aphis gossypii. These aphids formed colonies on the flower sections, shoots, lower surfaces of young leaves, or leaves turning yellow. The aphids were green, yellow-green to dark green, often forming large colonies. Alternanthera philoxeroides or alligator grass was also colonized by Aphis gossypii. Small colonies were found on shoots or stems. These aphids had small bodies and were green, ranging from yellow-green to dark green. Alternanthera sessilis was colonized by Aphis gossypii, forming colonies on shoots, flowers, and fruit. The colonies were typically large, and they were often associated with tiny brown ants. Amaranthus gracilis was infested by Aphis craccivora. These aphids established colonies on shoots, flowers and young and old leaves. They were dark brown to black in color, with shiny black wingless imagoes. Colonies of these aphids were associated with both black and red ants. Blumea lacera was colonized by Lipaphis erysimi aphids. These aphids were bright green, and of medium size. The colonies formed on flowers, flower stalks and the undersides of the leaves at the top. The aphid colonies were not associated with ants. Croton hirtus or fire grass was infested by Aphis gossypii. The aphids were yellow-green to dark green. The colonies were found on the stems, leaves, buds and flowers, often forming large colonies. Cynodon dactylon or Bermuda grass was colonized by Schizaphis rotundiventris. The aphids colonized the flowers, flower stalks and sometimes in the leaf axils of the plant. Small colonies were formed. The aphids were brown to red-brown. They were associated with ants. Cyperus rotundus or nut grass was infested by Schizaphis rotundiventris aphids. The colonies were found on flower stalks, flowers, and leaf axils. The colonies were quite large and associated with both black and red ants. The aphids were dark brown in color. Cyperus compressus or grass puzzle was colonized by Schizaphis rotundiventris aphids, forming colonies in the flowers, flower stalks and sometimes in the axils and leaves of the shoots or buds. Small colonies were observed. Digitaria ciliaris was infested by Hysteroneura setariae aphids, with small colonies scattered on the flowers and flower stalks. These aphids were light brown to brown in color. Echinocloa crussgali or water hyacinth plants were colonized by *Hiperomyzus* sp. aphids. These aphids were dark brown to black and formed large colonies on the undersides of both young and old leaves. The aphid colonies were never found in association with ants. Ecliptica prostrata or urang aring was colonized by Aphis gossypii, forming small colonies on the shoots and flowers. The aphids were bright green to blackish green. The aphid colonies were also consistently associated with ants. Eleusin indica was colonized by two species of aphids: Hysteroneura setariae and Rhopalosiphum maidis. H. setariae formed colonies in flower parts, flower stalks and leaf axils resulting in quite large colonies. H. setariae body color ranged from red brown to dark brown. The colonies were consistently associated with ants. The aphids of R. maidis formed colonies in the leaf axils and undersides of leaves and on leaf shoots that had not yet opened. The colonies were not densely packed. The leaf aphids of R. maidis were green in color, with distinct black siphunculi and cauda. These aphids had relatively large bodies with a slightly elongated shape. *R. maidis* colonies were always associated with ants. The plant *Emilia sonchifolia*, characterized by its purple flowers, was colonized by *Aphis gossypii*. The aphids were yellow to green in colour. The colonies formed near flowers, flower stalks, and shoot leaves. Eragrostis tenella was infested by Hysteroneura setariae aphids. The aphids were brown to red brown. Small colonies formed on flowers near the seeds, with groups of aphids surrounding the plant's seeds. The aphids of H. setariae were consistently associated with ants. Euphorbia hirta or wart grass was colonized by Aphis gossypii. The aphids formed colonies on the undersides of leaves, resulting in stunted growth of the leaves. The aphids were yellow to dark green in color. A. gossypii colonies on E. hirta plants were consistently associated with ants. Eupotarium odoratum was colonied by both Aphis gossypii and Aphis citricola. A. gossypii formed colonies in the buds, young leaves, old leaves, and young twigs. Young leaves that were colonized by A. gossypii became stunted with an irregular shape. A. gossypii found in this plant showed yellow-green to dark green in body colour. The colonies of A. citricola formed on the young twigs near the shoots, with these aphids displaying yellow-green coloration and having black siphunculi and cauda. Aphid colonies of both A. gossypii and A. citricola on E. odoratum plants were associated with either black or red ants. Hymenochera acutigluma or hair axis was colonized by Hysteroneura setariae, which formed colonies on the flower stalks and flowers. The colonized parts of the plants did not display any noticeable symptoms. Lagerstromea sp. or kenidai, was infested by Greenidae sp. These aphids had bright green bodies and distinctive elongated siphunculi with thorns. The aphids formed colonies on the undersides of leaves, especially on young leaves. The colonized leaves did not show any disease symptoms. Lophatherum gracile or bamboo grass plants were colonized by two species of aphids: hysteroneura setariae and Rhopalosiphum maidis. The aphids of H. setariae formed colonies on the undersides of leaves, leaf shoots, and leaf axils. The colonized leaves did not show any disease symptoms. H. setariae aphids were brown to red-brown. R. maidis aphids also formed colonies on the undersides of leaves, but the colonies were small. R. maidis aphids were green to bright green in color, with black siphunculi and cauda. It was possible for colonies of the two species of aphids on L. gracile to mix. Melastoma affine was colonized by Aphis gossypi. The colonies formed on shoots, particularly near newly emerging shoots and on newly emerging fruits and flowers. The body colour of aphids ranged from yellow to green. The colonized plant parts did not show any disease symptoms. Mikania miranta was colonized by Aphis gossypii and Aphis glycine. A. gossypii formed colonies on the shoots, especially on the undersides of the leaves, resulting in stunted and curled leaves. A. glycine formed colonies on the branches. The colonies were densely populated. A. Glycine aphids were light green to green in color. The colonized plant parts became distorted. The two species of aphids could mix to form a single colony. Mimosa invisa (cater-grass) was colonized by Aphis craccivora. The aphids of A. craccivora on M. invisa plants formed colonies only on the shoots with small colonies. The aphids appeared dark black with wingless imagoes. Mimosa pudica was observed to be colonized by Aphis craccivora. The aphids formed colonies on shoots, especially young shoots, and occasionally on flowers and pods. The aphids were black and of medium size, resulting in stunted growth of the colonized plant parts. The colonies were quite large. Mimosa vigra was colonized by Aphis craccivora. The colonies of aphids occupied the pods and shoots with small colonies. The nymphs of aphids were black, and wingless adults were shiny black. The colonized plant parts did not show any disease symptoms. Oryza rufipogon was colonized by two species of aphids: Rhopalosiphum rice and Rhopalosiphum maidis. Both aphids colonized the same plant parts, namely the unopened leaves and the leaf axils with large colonies. The two species could be distinguished by their body color. R. maidis appeared green with black sifunculi and cauda, while R. rice appeared white. The colonies of *R. maidis* and *R. rice* in *O. rufipogon* plants were associated with the presence of red ants. *Oxonopus compressus* or *pait* grass was colonized by *Hysteroneura setariae* aphids. The colonies occupied flowers, flower stalks, seeds, and sometimes in the leaf axils. The aphids were brown to dark brown in color. Small colonies were formed, and they were also consistently associated with ants. Paspalum conjugatum was colonized by H. setariae aphids. The colonies occupied flower parts, especially the seeds and flower stalks. Aphids had brown to dark brown bodies. Phylanthus niruri was colonized by Aphis citricola. The colonies formed on the shoots and the undersides of leaves and petioles. The colonized parts became distorted,
stunted, and wrinkled. The aphids had yellow bodies with black sifunculi and cauda, and the colonies formed were quite large. Portulaca oleraceae plants were colonized by Aphis craccivora. The aphids of A. craccivora in P. oleraceae plants formed colonies on the undersides of leaves, especially young leaves, shoots and in flowers. The colonized plant parts became stunted, and leaf edges curled downward. The aphids had dark brown to black bodies, with wingless imagoes that appeared glossy black. Physalis angulata plants were colonized by Aphis craccivora. The aphids had dark green to black bodies, with glossy black wingless imagoes. A. craccivora formed colonies on the shoots or near the leaf buds. The colonized plant parts did not show any symptoms of disease. Rorippa indica or mustard land was colonized by Lipaphis erysimi. The colonies formed on the flowers, fruits, flower stalks and the lower surface of leaves. The colonized plant parts showed symptoms such as curling and stunting. Sida rhombifolia or cacabean was colonized by Aphis gossypii. The aphids had green-yellow to green body colors. The colonies formed on the surface of lower leaves, stalks and flower petals. The colonized plant parts, especially the shoots, showed curling, and the leaf edges curled downward. Sonchus arventris plants were colonized by L. erysimi. The aphids had green to whitish green body colours, and the colonies formed on flower stalks, under petals, and on young shoots or leaves. The colonized plant parts became stunted over time. In general, aphids observed on ornamental and wild plants formed colonies. The colonized plant parts typically displayed typical symptoms of damage, but some did not show any symptoms. Generally, the symptoms of the plants caused by aphid colonies were relatively the same, such as stunted growth, abnormal shape, and stunted or curly leaves. These characteristic symptoms serve as indicators of aphid infestations. However, some plants or plant parts did not show symptoms when colonized by aphids. This condition happened because the colonized parts had reached their maximum growth or development. It indicated that the colonized part was not currently undergoing a growth phase. The colonies that did not induce symptoms typically occurred when the colonized leaves had reached their maximum growth or when the leaves and plant parts were old. The old leaves or twigs might not show the typical symptoms associated with aphid infestations. The part of the plant exhibiting characteristic symptoms when colonized by aphids also often experienced a cessation in growth due to the piercing by the aphids. In contrast, the areas surrounding the puncture site continued to grow, resulting in some parts developing normally while others become stunted (Pettersson et al., 2017). This condition could lead to the bending of shoots or young stems, curling of leaves, downward curling of leaf edges, or stunted leaf growth. In this observation, monocot plants or groups of grasses with narrow leaves generally did not display any distinctive symptoms when colonized by aphids. This might be because the growth or development of their leaves differed from that of dicot plants. Therefore, the presence of aphids in monocot plants or plants was often easier to recognize through the presence of ants. If a plant was found to have a significant number of ants, there was a possibility that aphids had colonized the plant (Tegelaar et al., 2012). Therefore, the presence of ants could serve as an indicator of the presence of aphid colonies. Throughout their life cycle, aphids exhibited host alternation by switching between two distinct host plants (Peccoud et al., 2010). They overwintered on woody plants, reproduced in the spring, and migrated to herbaceous plants during the summer before returning to their primary host in the autumn (Yamamoto et al., 2020). This allowed aphids to maximize resource utilization, avoid congestion and competition, evade predators and parasites, circumvent plant defenses, and colonize new areas. Aphids could distribute their population efficiently, thereby avoiding overcrowding, predators and parasites, and plant defenses developing over time through host switching (Yamamoto et al., 2020). This behavior was essential for the survival and environmental adaptation of aphids. Aphids colonized flowers because they may offer an accessible and rich food source, sugary plant sap found in new growth or reproductive parts of plants. Flowers contain nutrient-rich nature (Jakubczyk et al., 2022) and easy access to sap, therefore aphids were attractive to sap the flowers. Some aphid species were drawn to certain colors (Chittka, 2007), while others preferred different types of plants and plant parts (Sorensen, 2009). It's worth noting that different aphid species often had distinct preferences for plant ty(Harrington et al., 2007)pes and parts. Herbs served as an alternative host for aphids in this present study. Aphids consumed sugar-rich liquid in plants, known as "sap". Aphids considered herbs and other green vegetation as abundant food sources. Aphids utilized needle-like mouthparts to penetrate plant tissues and access this fluid (Brożek et al., 2015). Numerous herbs had structural characteristics, such as folds, crevices, and concealed flowering portions (Harrington et al., 2007), that provided aphids with refuge . Due to a symbiotic relationship, the prevalence of aphids and ants was frequently correlated. Aphids produced a delicious substance known as honeydew as a waste product, which ants found highly attractive as a food source (Nelson & Mooney, 2022). The honeydew contained an abundance of sugars, extracted by aphids from the plant juice (Detrain et al., 2010). Ants were drawn to this nutrient-rich food source and would often 'farm' aphids for it. In exchange for honeydew, ants provided aphids with protection from other insects and predators, such as ladybugs, lacewing larvae, and parasitic wasps (Karami-jamour et al., 2018). Certain species of ants would transport aphids to new host plants for improved foraging opportunities, ensuring that aphids had a continuous food source (Giannetti et al., 2021). Honeydew not only nourished the ant colony, but its high sugar content also supported the development of their fungus farms (in certain species) and provided energy for the growth of their own progeny (Biedermann & Vega, 2020). CONCLUSION 15 species of aphids were found in ornamental and wild plants in Pagaralam, namely *Aphis gossypii*, *Uroleucon* sp., *Toxoptera odinae*, *Macrosiphum rosae*, *Aphis citricola*, *Aphis craccivora*, *Toxoptera aurantii*, *Pentalonia nigronervosa*, *Hystenura* sp., *Aphis glycine*, *Greenidae* sp., *Rhopalosiphum padi*, *Rhopalosiphum maidis*, *Hyperomyzus* sp. *Lipaphis erysimi*. **ACKNOWLEDGMENTS** The authors thank Universitas Sriwijaya, that supported this research. 400 REFERENCES Alotaibi, N. J., Alsufyani, T., M, N. H., & Almalki, M. A. (2023). Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis. *Insects*. https://doi.org/https://doi.org/10.3390/insects14070589 Bass, C., Puinean, A. M., Zimmer, C. T., Denholm, I., Field, L. M., Foster, S. P., Gutbrod, O., Nauen, R., Slater, R., & Williamson, M. S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. *Insect Biochemistry and Molecular Biology*, 51, 41–51. https://doi.org/10.1016/j.ibmb.2014.05.003 Biedermann, P. H. W., & Vega, F. E. (2020). Ecology and evolution of insect-fungus mutualisms. Annual Review of - 407 Entomology, 65, 431–455. https://doi.org/https://doi.org/10.1146/annurev-ento-011019-024910 - Blackman, R. L., & Eastop, V. F. (2008). Aphids on the world's herbaceous plants and shrubs, 2 volume set. John Wiley & Sons. - Blackman, R. L., & Eastop, V. F. (2017). Taxonomic issues. In Aphids as crop pests (pp. 1–36). CABI Wallingford UK. - Boivin, G., Hance, T., & Brodeur, J. (2012). Aphid parasitoids in biological control. *Canadian Journal of Plant Science*, 92(1), 1–12. https://doi.org/DOI: 10.4141/cjps2011-045 - Brożek, J., Mróz, E., Wylężek, D., Depa, Ł., & Węgierek, P. (2015). The structure of extremely long mouthparts in the aphid genus Stomaphis Walker (Hemiptera: Sternorrhyncha: Aphididae). *Zoomorphology*, 134, 431–445. https://doi.org/https://doi.org/10.1007/s00435-015-0266-7 - Cao, H., Zhang, Z., Wang, X., & Liu, T. (2018). Nutrition versus defense: Why Myzus persicae (green peach aphid) prefers and performs better on young leaves of cabbage. *PloS One*, *13*(4), 1–16. https://doi.org/10.1371/journal.pone.0196219 - Chandel, R. S., Chandla, V. K., Verma, K. S., & Pathania, M. (2022). *Chapter 21 Insect pests of potato in India: biology and management* (A. Alyokhin, S. I. Rondon, & Y. B. T.-I. P. of P. (Second E. Gao (eds.); pp. 371–400). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-821237-0.11001-7 - Chittka, Æ. L. (2007). Visual ecology of aphids-a critical review on the role of colours in host finding Visual ecology of aphids a critical review on the role of colours in host finding. June 2014. https://doi.org/10.1007/s11829-006-9000-1 - Clarke, R., Kehoe, M. A., Broughton, S., & Jones, R. A. C. (2020). Host plant a ffi liations of aphid vector species found in a remote tropical environment. *Virus Research*, 281(December 2019), 197934. https://doi.org/10.1016/j.virusres.2020.197934 - Degani, E., Leigh, S. G., Barber, H. M., Jones, H. E., Lukac, M., Sutton, P., & Potts, S. G. (2019). Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. *Agriculture*, *Ecosystems* & *Environment*, 285, 106625. https://doi.org/10.1016/j.agee.2019.106625 - Detrain, C., Verheggen, F. J., Diez, L., Wathelet, B., & Haubruge, E. (2010). Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts. *Physiological Entomology*, *35*(2),
168–174. https://doi.org/DOI: 10.1111/j.1365-3032.2010.00730.x - Döring, T. F. (2014). How aphids find their host plants, and how they don't. *Annals of Applied Biology*, 165(1), 3–26. https://doi.org/https://doi.org/10.1111/aab.12142 - Ertunc, F. (2020). *Chapter 46 Emerging Plant Viruses* (M. M. B. T.-E. and R. V. P. Ennaji (ed.); pp. 1041–1062). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819400-3.00046-6 - Gadhave, K. R., Gautam, S., Rasmussen, D. A., & Srinivasan, R. (2020). Aphid transmission of Potyvirus: the largest plant-infecting RNA virus genus. *Viruses*, *12*(7), 773. https://doi.org/doi: 10.3390/v12070773 - Giannetti, D., Mandrioli, M., Schifani, E., Castracani, C., Spotti, F. A., Mori, A., & Grasso, D. A. (2021). First report on the acrobat ant Crematogaster scutellaris storing live aphids in its oak-gall nests. *Insects*, *12*(2), 108. https://doi.org/https://doi.org/10.3390/insects12020108 - Guo, H., Gu, L., Liu, F., Chen, F., Ge, F., & Sun, Y. (2019). Aphid-borne Viral Spread Is Enhanced by Virus-induced Accumulation of Plant Reactive Oxygen Species 1. *Plant Physiol*, 179(January), 143–155. https://doi.org/10.1104/pp.18.00437 - Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hulle, M., Maurice, D., Rounsevell, M. D., Cocu, N., & Consortium, E. U. E. (2007). Environmental change and the phenology of European aphids. *Global Change Biology*, *13*(8), 1550–1564. https://doi.org/DOI: 10.1111/j.1365-2486.2007.01394.x - Hullé, M., Chaubet, B., Turpeau, E., & Simon, J.-C. (2020). Encyclop'Aphid: A website on aphids and their natural enemies. *Entomologia Generalis*, 40(1). https://doi.org/DOI: 10.1127/entomologia/2019/0867 - Ikbal, C., & Pavela, R. (2019). Essential oils as active ingredients of botanical insecticides against aphids. *Journal of Pest Science*, 92, 971–986. https://doi.org/DOI: 10.1007/s10340-019-01089-6 - Jakubczyk, K., Koprowska, K., Gottschling, A., & Janda-Milczarek, K. (2022). Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete's Dietary Supplement. *Nutrients*, 14(12). https://doi.org/10.3390/nu14122470 - Jaouannet, M., Rodriguez, P. A., Thorpe, P., Lenoir, C. J. G., & Macleod, R. (2014). Plant immunity in plant aphid interactions. *Front Plant Sci.*, 5(December), 1–10. https://doi.org/10.3389/fpls.2014.00663 - Jones, R. A. C. (2022). Alteration of plant species mixtures by virus infection: Managed pastures the forgotten dimension. *Plant Pathology*, 71(6), 1255–1281. https://doi.org/DOI: 10.1111/ppa.13571 - Jousselin, E., Gwenaelle, G., & Armelle, C. D. A. (2010). Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus. *BMC Evolutionary Biology*, 10(1). https://doi.org/10.1186/1471-2148-10-295 - Kallas, J. (2010). Edible wild plants. Gibbs Smith. 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 457 458 Karami-jamour, T., Mirmoayedi, A., Zamani, A., & Khajehzadeh, Y. (2018). The impact of ant attendance on protecting Aphis gossypii against two aphidophagous predators and it's role on the intraguild predation between them. *Journal of Insect Behavior*, *31*, 222–239. https://doi.org/DOI: 10.1007/s10905-018-9670-4 - Kennedy, J. S., & Stroyan, H. L. G. (1959). Biology of aphids. *Annual Review of Entomology*, 4(1), 139–160. - Kinley, C., Banu, A. N., Raut, A. M., Wahengbam, J., & Jamtsho, T. (2021). A review on past, present and future approaches for Aphids management. *Journal of Entomological Research*, 45(2), 336–346. https://doi.org/10.5958/0974-4576.2021.00053.0 - Kumar, Sarwan. (2019). Aphid-Plant Interactions: Implications for Pest Management. In M. T. Oliveira, F. Candan, & A. Fernandes-Silva (Eds.), *Plant Communities and Their Environment* (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.84302 - Kumar, Sushil, Bhowmick, M. K., & Ray, P. (2021). Weeds as alternate and alternative hosts of crop pests. *Indian Journal of Weed Science*, 53(1), 14–29. https://doi.org/10.5958/0974-8164.2021.00002.2 - Liu, X. D., Xu, T. T., & Lei, H. X. (2017). Refuges and host shift pathways of host-specialized aphids Aphis gossypii. *Scientific Reports*, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02248-4 - Maharani, Y., Hidayat, P., Rauf, A., & Maryana, N. (2018). Short communication: New records of aphid species subfamily aphidinae (Hemiptera: Aphididae) in West Java, Indonesia. *Biodiversitas*, 19(2), 460–465. https://doi.org/10.13057/biodiv/d190219 - Margaritopoulos, J. T., Tzortzi, M., Zarpas, K. D., Tsitsipis, J. A., & Blackman, R. L. (2006). Morphological discrimination of Aphis gossypii (Hemiptera: Aphididae) populations feeding on Compositae. *Bulletin of Entomological Research*, 96(2), 153–165. https://doi.org/10.1079/ber2005410 - Meuninck, J. (2023). Basic Illustrated Edible Wild Plants and Useful Herbs. Rowman & Littlefield. - Mo, C., & Smilanich, A. M. (2023). Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding ef fi ciency in a specialist insect herbivore. *Frontiers in Physiology*, *14*(February), 1–10. https://doi.org/10.3389/fphys.2023.1127670 - Naidu, V. (2012). Hand book on weed identification. Dr. VSGR Naidu. - Nelson, A. S., & Mooney, K. A. (2022). The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. *Annual Review of Ecology, Evolution, and Systematics*, 53, 379–402. https://doi.org/https://doi.org/10.1146/annurev-ecolsys-102220-014840 - Peccoud, J., Simon, J.-C., von Dohlen, C., Coeur d'acier, A., Plantegenest, M., Vanlerberghe-Masutti, F., & Jousselin, E. (2010). Evolutionary history of aphid-plant associations and their role in aphid diversification. *Comptes Rendus Biologies*, 333(6), 474–487. https://doi.org/https://doi.org/10.1016/j.crvi.2010.03.004 - Pettersson, J., Tjallingii, W. F., & Hardie, J. (2017). Host-plant selection and feeding. In *Aphids as crop pests* (pp. 173–195). CABI Wallingford UK. https://doi.org/DOI: 10.1079/9780851998190.0087 - Singh, R., & Singh, G. (2021). Aphids. *Polyphagous Pests of Crops*, 105–182. https://doi.org/DOI: 10.1007/978-981-15-8075-8 3 - Sorensen, J. T. (2009). *Chapter 8 Aphids* (V. H. Resh & R. T. B. T.-E. of I. (Second E. Cardé (eds.); pp. 27–31). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374144-8.00008-4 - Tegelaar, K., Hagman, M., Glinwood, R., Pettersson, J., & Leimar, O. (2012). Ant–aphid mutualism: the influence of ants on the aphid summer cycle. *Oikos*, *121*(1), 61–66. https://doi.org/https://doi.org/10.1111/j.1600-0706.2011.19387.x - Völkl, W., Mackauer, M., Pell, J. K., & Brodeur, J. (2023). Predators, parasitoids and pathogens. In *CABI Books*. CABI Books. https://doi.org/10.1079/9780851998190.0187 - Wäckers, F. ., & Van Rijn, P. . (2012). Pick and mix: selecting flowering plants to meet the requirements of target biological control insects. *Biodiversity and Insect Pests: Key Issues for Sustainable Management*, 9(April), 139–165. https://doi.org/10.1002/9781118231838.ch9 - Yamamoto, T., Hattori, M., & Itino, T. (2020). Seasonal Migration in the Aphid Genus Stomaphis (Hemiptera: Aphididae): Discovery of Host Alternation Between Woody Plants in Subfamily Lachninae. 20. https://doi.org/10.1093/jisesa/ieaa103