OPTIMASI FUZZY TSUKAMOTO DALAM MENENTUKAN PREDIKSI HASIL TINGKAT RISIKO PENYAKIT JANTUNG MENGGUNAKAN ALGORITMA ARTIFICIAL BEE COLONY

PRATAMA, BENEDIKTUS GALIH and Rini, Dian Palupi (2025) OPTIMASI FUZZY TSUKAMOTO DALAM MENENTUKAN PREDIKSI HASIL TINGKAT RISIKO PENYAKIT JANTUNG MENGGUNAKAN ALGORITMA ARTIFICIAL BEE COLONY. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021382126143_cover.jpeg] Image
RAMA_55201_09021382126143_cover.jpeg - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (395kB)
[thumbnail of RAMA_55201_09021382126143.pdf] Text
RAMA_55201_09021382126143.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_TURNITIN.pdf] Text
RAMA_55201_09021382126143_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_01_front_ref.pdf] Text
RAMA_55201_09021382126143_0023027804_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021382126143_0023027804_02.pdf] Text
RAMA_55201_09021382126143_0023027804_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (466kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_03.pdf] Text
RAMA_55201_09021382126143_0023027804_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (792kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_04.pdf] Text
RAMA_55201_09021382126143_0023027804_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (741kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_05.pdf] Text
RAMA_55201_09021382126143_0023027804_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (462kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_06.pdf] Text
RAMA_55201_09021382126143_0023027804_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (214kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_07_ref.pdf] Text
RAMA_55201_09021382126143_0023027804_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (213kB) | Request a copy
[thumbnail of RAMA_55201_09021382126143_0023027804_08_lamp.pdf] Text
RAMA_55201_09021382126143_0023027804_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (174kB) | Request a copy

Abstract

Heart disease is a common health problem. If not treated promptly, heart disease can have various impacts on a person's health, even causing death. To be able to prevent heart disease early, a method is needed that can determine whether a person is at risk of heart disease or not. This study can provide information about the risk of heart disease by determining predictions using the Fuzzy Tsukamoto method with Artificial Bee Colony optimization. The data studied amounted to 40 data, originating from the Heart Disease Dataset taken from Kaggle. To determine the prediction, 5 risk factor variables were used, namely age, cholesterol, blood sugar, blood pressure, and maximum heart rate. The results of the study showed a decrease in error value using Artificial Bee Colony optimization, namely with a MAPE (Mean Absolute Percentage Error) value from 42.43% to 36.28%. These results indicate that the Fuzzy Tsukamoto method optimized with Artificial Bee Colony can determine the prediction of the level of heart disease risk well.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Penyakit Jantung, Fuzzy Inference System Tsukamoto, Artificial Bee Colony
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Benediktus Galih Pratama
Date Deposited: 04 Aug 2025 05:24
Last Modified: 04 Aug 2025 05:24
URI: http://repository.unsri.ac.id/id/eprint/182205

Actions (login required)

View Item View Item