PENGARUE ANNEALING TERHADAP KEKERASAR DAR STRUKEUR MEKRÓ BAJA KS 10 SKI YANG TERDEFORMASI PLASTIS

SKRIPSI

Disjokan Untuk Memenuhi Persyaratan Mendapatkan Gelai Sarjana Teknik Di Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya

> Oteb : NUR HASAN SYAIE

> > 03091005098

EMICHTRIAN PENDIDIKANDAN KEBUSA, AA.

UNIVEBSITAS SRIWITANA PAKULIAS TUKATA JURUSAN TEKNIK ROSSIII.

TERKANASAKA S 691.707 Hur P

2014

26165/08708

PENGARUH ANNEALING TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA KS 10 SNI YANG

TERDEFORMASI PLASTIS

SKRIPSI

Diajukan Untuk Memenuhi Persyaratan Mendapatkan Gelar Sarjana Teknik
Di Jurusan Teknik Mesin Fakultas Teknik
Universitas Sriwijaya

Oleh:

NUR HASAN SYAH 03091005098

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN
UNIVERSITAS SRIWIJAYA FAKULTAS TEKNIK
JURUŞAN TEKNIK MESIN
INDRALAYA
2014

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA

SKRIPSI

PENGARUH ANNEALING TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA KS 10 SNI YANG TERDEFORMASI PLASTIS

Oleh:

NUR HASAN SYAH 03091005098

Mengetahui

Ketua Jurusan Teknik Mesin,

Qomarul Hadi, ST, MT. NIP . 19690213 199503 1 001 Dosen Pembimbing,

<u>Dr. Ir. H. Darmawi, MT.</u> NIP. 195806151987031002

UNIVERSITAS SRIWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

Agenda No Diterima Tgl Paraf :017/TA/JA /2019

Vuid so

HALAMAN PENGESAHAN SKRIPSI

Nama

: NUR HASAN SYAH

NIM

: 03091005098

Jurusan

: TEKNIK MESIN

Judul Skripsi

: PENGARUH ANNEALING TERHADAP KEKERASAN

DAN STRUKTUR MIKRO BAJA KS 10 SNI YANG

TERDEFORMASI PLASTIS

Dibuat Tanggal

: 13 NOVEMBER 2013

Selesai Tanggal

: 29 Maret

2014

Mengetahui : Ketua Jurusan Teknik Mesin, Indralaya, April 2014

Diperiksa dan disetujui Oleh: Dosen Pembimbing Skripsi,

Qomarul Hadi, ST, MT. NIP:19690213 199503 1 001

<u>Dr. Ir. H. Darmawi, MT.</u> NIP. 195806151987031002

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS SRIWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

Kampus UNSRI Jl. Raya Prabumulih – Indralaya Ogan Ilir Telp. (0711) 580272

HALAMAN PERNYATAAN ORISINALITAS

Dengan ini menyatakan bahwa mahasiswa berikut ini :

Nama : NUR HASAN SYAH

NIM : 03091005098

Jurusan : TEKNIK MESIN

BidangStudi : MATERIAL

Judul : PENGARUH ANNEALING TERHADAP KEKERASAN DAN

STRUKTUR MIKRO BAJA KS 10 SNI YANG TERDEFORMASI

PLASTIS

Skripsi / Tugas Akhir ini adalah benar hasil karya sendiri dan semua sumber baik yang dikutip maupun dirujuk telah dinyatakan dengan benar dan saya dapat mempertanggung jawabkan bahwa hasil yang saya tulis tidak plagiat.

Demikianlah surat ini dibuat agar dapat dipergunakan sebagaimana mestinya.

Palembang, April 2014

Penulis,

Nur Hasan Syah NIM. 03091005098

MOTO SERTA PERSEMBAHAN

- Berusahalah, jangan sampai terlengah walau sedetik saja, karena
 atas kelengahan kita tak akan bisa dikembalikan seperti semula.
- Genius adalah 1% inspirasidan 99% keringat. Tidak ada yang dapat menggantihan herja heras.
- 🤊 Kegagalan hanya terjadi bila kita menyerah.
- 7 Hari ini harus lebih baik dari hari kemarin dan hari esok adalah harapan.

Karya kecil ini ku persembahkan untuk:

Atas rasa syukurkukepda ALLAH SWI

- Senyum bangga kedua orang tuaku (AYAH dan IBU)
 Dan adik-adikku Tercinta
- My Big family
 - Teman-temanseperjuangan(TM 09)
 - Almamaterku (Universitas Sriwijaya)

ABSTRAK

baja yang diterima dari pabrik sebenarnya telah terdeformasi plastis terlebih dahulu pada saat proses pembuatannya. Hal ini menimbulkan adanya tegangan sisa pada baja yang diterima dari pabrik tadi. Berdasarkan uraian tersebut diperlukan penelitian untuk mengetahui pengaruh deformasi plastis yang terjadi pada baja terhadap kekerasan dan struktur mikronya.Pada penelitian ini akan diuji hubungan antara struktur mikro dengan kekerasan baja. Nilai rata-rata kekerasan pada spesimen non annealing yang lebih tinggi yaitu 37,1 HRA dibandingkan spesimen dengan proses annealing yaitu 22,9 HRA. Kekerasan tertinggi di peroleh dari spesimen yang terdeformasi plastis setelah pengujian bending (bagian tekan) dengan nilai rata-rata kekerasan 53,9 HRA. Nilai rata-rata kekerasan terendah diperoleh pada spesimen annealing yaitu 22,9 HRA.

Kata kunci: Baja karbon rendah, *Annealing*, *Non annealing*, Deformasi plastis, uji kekerasan, uji bending, struktur mikro.

ABSTRACT

The as received mild steel has already plastically deformed when manufactured. This process has created the residual stress in the steel. On the base of this occassion, it require the study of the influence of the deformation to the hardness and microstructure of the steel when deformed and when annealed. The average hardness of non annealed steel is 37.1 HRA and the hardness of annealed steel is 22.9 HRA. The highest hardness found at the steel with bend deformation (compressive part) 53.9 HRA and the lowest hardness at annealed steel 22.9 HRA.

Keywords: Low carbon steel, Annealing, Non annealing, Plastic deformation, Tensile test, bending test, microstructure.

KATA PENGANTAR

Assalamu'alaikum wr.wb

Segala puji dan syukur penulis ucapkan kehadirat Allah SWT yang telah melimpahkan segala rahmat, karunia, dan anugrah-Nya sehingga skripsi ini dapat diselesaikan tepat pada waktunya. Skripsi ini merupakan salah satu syarat bagi seorang mahasiswa untuk menyelesaikan studi di Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya.

Dalam kesempatan ini penulis menyampaikan banyak terima kasih kepada semua pihak yang telah banyak membantu hingga akhirnya penulis dapat menyelesaikan skripsi ini, adapun pihak tersebut :

- 1. Allah SWT atas segala limpahan rahmat-Nya.
- 2. Bapak Prof. Dr. Ir. H Taufik Toha, DEA selaku dekan Fakultas Teknik Universitas Sriwijaya.
- 3. Bapak Qomarul Hadi, S.T. M.T. Ketua Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya.
- Bapak. Ir.Dyos Santoso, M.T Sekretaris Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya.
- Bapak Dr. Ir. H. Darmawi, MT, selaku dosen pembimbing skripsi yang telah banyak membantu dalam menyelesaikan skripsi ini.
- 6. Bapak Al Antoni Akhmad, S.T. M.T. selaku dosen pembimbing akedemik yang telah banyak memberi saran bagi penulis.
- 7. Staf Pengajar di Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya yang telah banyak memberikan ilmu, pengetahuan, dan wawasan.
- 8. Staf Administrasi di Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya Kak Ian, Kak Sapril, Bu Tetra, Kak Iwan, dan Ventri.
- Keluarga Penulis, Ayah dan ibu atas harapan doa dan dukungannya hingga yang selalu memberikan dukungan mental, materil, dan spiritual, serta doa dan kasih yang berlimpah.

- 10. Adik-adik ku tercinta yang selalu membantuku dan menyemangati selalu.
- Bapak Yatno, Selaku koordinator Lab. Metallurgi jurusan teknik mesin Universitas Sriwijaya Indralaya
- 12. Sahabat seperjuangan di mobil kijang Rahmat, Abang Reski, Solihin, Yansi, Sueb, dan sahabat yang selalu membantu selama proses kuliah Dimas, Alil, Kicin, Ega, Nopriadi, Yenky, Iwan, Yudha, Okta, Imam dan seluruh teman-teman teknik mesin khususnya angkatan 2009 yang tidak bisa saya sebutkan satu persatu.
- 13. Keluarga Besar Fakultas Teknik Unsri.
- 14. Seluruh keluarga besar sivitas akademika Universitas Sriwijaya.

Dalam penulisan skripsi ini, mungkin terdapat kekurangan, oleh karena itu kritik dan saran serta masukan yang bersifat membangun sangat Penulis diharapkan untuk membantu dalam perbaikan.

Penulis mengharapkan semoga skripsi dengan judul "Pengaruh Annealing Terhadap Kekerasan dan Struktur Mikro Baja KS 10 SNI Yang Terdeformasi Plastis" dapat berguna dan memberikan manfaat untuk kemajuan ilmu pengetahuan dan teknologi serta menjadi referensi bagi yang akan mengkaji deformasi plastis dan proses perlakuan panas di masa yang akan datang.

Wassalamu'alaikum wr.wb

Indralaya, April 2014

Penulis

UPT PERPUSTAKAAN UNIVERSITAS SRIWIJAYA

NO. DAFTAR:

141554

TANGGAL :

0 5 MAY 2014

DAFTAR ISI

	Halamar
HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
HALAMAN PERNYATAAN ORISINALITAS	iv
HALAMAN MOTTO DAN PERSEMBAHAN	v
ABSTRAK	vi
KATA PENGANTAR	vii
DAFTAR ISI	ix xi
DAFTAR GAMBAR	
DAFTAR TABEL	xiii
DAFTAR SIMBOL	xiv
DAD 1 DENDALIHI HAN	
BAB 1 PENDAHULUAN 1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	4
1.5 Manfaat Penelitian	4
1.6 Sistematika Penulisan	5
1.0 bistomatika i changan	
BAB 2 TINJAUAN PUSTAKA	
2.1 Baja Karbon	6
2.2 Proses Pembentukan Baja	7
2.3 Sifat-Sifat Material Logam	9
2.4 Pengaruh Unsur- Unsur Pada Baja Karbon	11
2.5 Struktur Mikro	12
2.6 Perlakuan Panas	16
2.7 Proses Annealing	16
2.8 Temperatur Dan Lama Pemanasn Annealing	19
2.9 Deformasi Plastis	20
2.10 Dislokasi	21
2.11 Pengerasan Regangan (Strain Hardening)	23
2.12 Pengaruh Annealing Terhadap Sifat Keras Material	24
2.13 Pengaruh Struktur Mikro Terhadap Sifat Keras	25
2.14 Uji Tarik	26
2.15 Uji bending	27
2.16 Pengujian Kekeraşan (Rockwell)	28
2.17 Pengujian Struktur Mikro	29

BAB 3 METODE PENELIȚIAN	
3.1 Diagram Alir Penelitian	30
3.2 Tempat dan Waktu Penelitian	31
3.3 Alat dan Bahan	31
3.4 Prosedur Penelitian	32
3.4.1 Persiapan Bahan	32
3.4.2 Proses Pemanasan Annealing	32
3.4.3 Pengujian Kekerasan	33
3.4.4 Pengujian Tarik	35
3.4.5 Pengujian Bending	37
3.4.6 Pengujian Struktur Mikro	37
3.5 Langkah- Langkah Pengujian	38
BAB 4 ANALISA DAN PEMBAHASAN	
4.1 Data Hasil Pengujian Komposisi Kimia	41
4.2 Data Hasil Pengujian Kekerasan Rockwell (A)	41
4.3 Data Hasil Pengujian Lengkung (Bending)	55
4.4 Data Hasil Pengujian Tarik	60
4.5 Data Hasil Pengujian Struktur Mikro	73
BAB 5 KESIMPULAN DAN SARAN	
5.1 Kesimpulan	79
5.2 Saran	80
DAFTAR PUSTAKA	
LAMPIRAN	

DAFTAR GAMBAR

Gambar	Penergia	Ialaman
	Diagram Fe- Fe3C	19
Gambar 2.2	Kurva Tegangan- Regangan Logam Ulet	21
Gambar 2.3	Dislokasi Sisi (a) dan Dislokasi Ulir (b)	23
Gambar 2.4	Dislokasi Campuran	23
Gambar 2.5	Pengaruh Annealing Terhadap Kekerasan	25
Gambar 3.1	Diagram Alir Penelitian	30
Gambar 3.2	Contoh Spesimen Baja karbon rendah besi polos KS 10 SNI	32
Gambar 3.3	Tungku Pemanas	32
Gambar 3.4	Mesin Uji Kekerasan Rockwell	34
Gambar 3.5	Titik Pengujian Kekerasan Setelah Uji Bending (bagian tarik)	34
Gambar 3.6	Titik Pengujian Kekerasan Setelah Uji Bending (bagian tekan)	35
Gambar 3.7	Titik Pengujian Kekerasan Setelah Uji Tarik	35
Gambar 3.8	Mesin Uji Tarik dan Bending	36
Gambar 3.9	Alat Uji Struktur Mikro	38
Gambar 4.1	Nilai Kekerasan Pada Spesimen Non Annealing	45
Gambar 4.2	Nilai Kekerasan Pada Spesimen Non Annealing + Tarik	46
Gambar 4.3	Nilai Kekerasan Pada Spesimen Non Annealing + Bending (bagia	an
	tarik)	47
Gambar 4.4	Nilai Kekerasan Pada Spesimen Non Annealing + Bending (bagia	
	tekan)	48
Gambar 4.5	Nilai Kekerasan Pada Spesimen Annealing	49
Gambar 4.6	Nilai Kekerasan Pada Spesimen Annealing + Tarik	50
Gambar 4.7	Nilai Kekerasan Pada Spesimen Annealing + Bending (bagian	
	tarik)	51
Gambar 4.8	Nilai Kekerasan Pada Spesimen Annealing + Bending (bagian	
	tekan)	52
Gambar 4.9	Grafik Perbandingan Nilai Kekerasan	53
	Perbandingan Nilai Rata-rata Kekerasan	54
Gambar 4.11		59
Gambar 4.12	Perbandingan Nilai Rata-rata Tegangan Lenkung	60
Gambar 4.13	Grafik Uji Tarik (NonAnnealing) Pada Spesimen Pengujian 1	61
Gambar 4.14	Grafik Uji Tarik (NonAnnealing) Pada Spesimen Pengujian 2	62
Gambar 4.15	Grafik Uji Tarik (NonAnnealing) Pada Spesimen Pengujian 3	62
Gambar 4.16	Grafik Uji Tarik (Annealing) Pada Spesimen Pengujian 1	63
Gambar 4.17	Grafik Uji Tarik (Annealing) Pada Spesimen Pengujian 2	63
Gambar 4.18	Grafik Uji Tarik (Annealing) Pada Spesimen Pengujian 3	64
Gambar 4.19	Grafik Tegangan-Regangan Spesimen Non Annealing Pada	
Comb 400	Spesimen Pengujian 1	68
Gambar 4.20	Grafik Tegangan-Regangan Spesimen Non Annealing Pada	
	Spesimen Pengujian 2	68

Gambar 4.21	Grafik Tegangan-Regangan Spesimen Non Annealing Pada	
	Spesimen Pengujian 3	69
Gambar 4.22	Grafik Tegangan-Regangan Spesimen Annealing Pada Spesimen	
	Pengujian 1	69
Gambar 4.23	Grafik Tegangan-Regangan Spesimen Annealing Pada Spesimen	
	Pengujian 2	70
Gambar 4.24	Grafik Tegangan-Regangan Spesimen Annealing Pada Spesimen	
	Pengujian 1	70
Gambar 4.25	Grafik Nilai Tegangan-Regangan Rata-Rata Pengujian Tarik	71
Gambar 4.26	Diagram Persentase Regangan	72
Gambar 4.27	Diagram Rata-rata Persentase Regangan	72
Gambar 4.28	Gambar (a) struktur mikro spesimen non annealing, Gambar (b)	
	struktur mikro spesimen annealing. Perbesaran 200X	74
Gambar 4.29	Gambar (a) struktur mikro spesimen setelah uji tarik (non	
	annealing), Gambar (b) struktur mikro spesimen setelah uji tarik	
	(annealing). Perbesaran 200X	75
Gambar 4.30	Gambar (a) Struktur mikro spesimen setelah uji bending (bagian	
	tarik) non annealing, gambar (b) Struktur mikro spesimen setelah	
	uji bending (bagian tarik) annealing. Perbesaran 200X	76
Gambar 4.31	Gambar (a) Struktur mikro spesimen setelah uji bending (bagian	
	tekan) non annealing, gambar (b) Struktur mikro spesimen setelah	
	uji bending (bagian tekan) annealing. Perbesaran 200X	77

DAFTAR TABEL

Tabel		Halaman
Tabel 2.1	Skala Kekerasan Rockwell	28
Tabel 4.1	Hasil Uji Komposisi Kimia Besi Polos KS 10 SNI	41
Tabel 4.2	Hasil Uji Kekerasan Rockwell (A)	42
Tabel 4.3	Data Hasil Pengujian Bending	55
Tabel 4.4	Data Hasil Pengujian Tarik	61
Tabel 4.5	Data Hasil Perhitungan Tegangan dan Regangan	67
Tabel 5.1	Perbandingan Nilai Rata-rata Kekerasan	80

DAFTAR SIMBOL

- σ_y = Tegangan yield (Kgf/mm²)
- $\sigma_{\rm u}$ = Tegangan ultimate (Kgf/mm²)
- $\sigma_f = \text{Tegangan patah } (\text{Kgf/}mm^2)$
- $\sigma_l = \text{Tegangan lengkung } (\text{Kgf/mm}^2)$
- ε = Persentase regangan (%)
- P = Beban yang di terima spesimen (KgF)
- A = Luas penampang spesimen (mm^2)
- l_0 = Panjang awal spesimen (mm)
- l_i = Panjang akhir spesimen (mm)
- ΔL = Pertambahan panjang (mm)

BAB 1

PENDAHULUAN

1.1 Latar belakang

Besi dan baja paling banyak dipakai sebagai bahan industri yang merupakan sumber sangat besar, dimana sebagian ditentukan oleh nilai ekonominya, tetapi yang paling penting karena sifat-sifatnya yang bervariasi, yaitu bahwa bahan tersebut mempunyai sifat dari yang paling lunak dan mudah dibuat sampai yang paling keras dan tajam pun untuk pisau pemotong dapat dibuat, atau apa saja dengan bentuk apapun dapat dibuat dengan proses pengecoran. Dari unsur besi berbaga bentuk struktur logam dapat diubah, inilah sebabnya mengapa besi dan baja disebut bahan yang kaya dengan sifat – sifat. Pembahasan dimulai dengan struktur mikro besi dan baja, dimana unsur paduan utamanya adalah karbon. (Surdia, 1999)

Dalam penggunaannya pada bidang teknik diharuskan memilih bahan logam yang sesuai dengan keperluan aplikasi dalam hal kekuatan, kekerasan, kekuatan lelah, ketahan korosi dan sebagainya sehingga dalam pemakaiannya akan memberikan hasil yang paling optimal. Sifat-sifat yang diperlukan di dalam aplikasi sangat dipengaruhi oleh struktur bahan tersebut, sedangkan struktur yang terbentuk dipengaruhi oleh komposisi kimia, teknik atau proses pembuatan serta proses perlakuan panas yang diberikan kepada logam tersebut.

Bijih besi dari tambang biasanya masih bercampur dengan pasir, tanah liat, dan batu-batuan lainnya. Untuk kelancaran pengolahan bongkahan bijih tersebut

dipecahkan dengan mesin pemecah, kemudian disortir antara bijih besi dan bebatuan dengan tromol magnit. Pekerjaan selanjutnya adalah mencuci bijih besi tersebut dan mengelompokkan menurut besarnya, bijih-bijih halus dan butir-butir yang kecil diaglomir di dalam dapur sinter atau di rol hingga bola-bola yang dapat dipakai kembali sebagai isi dapur. Setelah bijih besi dipanggang di dalam dapur panggang agar kering dan unsur-unsur yang mudah menjadi gas keluar dari bijih besi kemudian dibawa ke dapur tinggi untuk diolah menjadi besi kasar. Besi kasar dari hasil proses dapur tinggi, kemudian diproses lanjut dengan menggunakan berbagai macam proses seperti proses konverter, proses siemen martin, proses basic oxygen furnace dan proses lainnya untuk dijadikan berbagai jenis baja. Selanjutnya baja akan di bentuk dengan proses pengerolan menjadi bentuk pelat tebal (bloom), batangan (billet) atau pelat (slab).

Pada dasarnya baja terdiri dari baja karbon rendah yang mengandung kurang dari 0,25 % karbon, baja karbon sedang yang mengandung unsur karbon antara 0,25-0,60% karbon, dan baja karbon tinggi yang mengandung 0,60 -1,7 % karbon.

Pada penelitian ini akan diuji hubungan antara struktur mikro dengan kekerasan baja. Di sini akan diteliti baja karbon rendah ditinjau dari struktur mikro dan kekerasnnya. Struktur mikro dapat berubah karena proses deformasi. Oleh sebab itu pada penelititan ini baja akan di deformasi dan dilihat perubahan struktur mikro juga akan diukur kekerasannya.

Pertama baja keadaan awal (as received) akan di uji kekerasan dan dilihat struktur mikronya. Kemudian akan di berikan perlakuan panas anealling dengan

temperature 910°C dalam waktu 15 menit. Baja yang ter-anil kemudian akan diuji kekerasan dan struktur mikronya. Selanjutnya Baja akan di deformasi dengan memberikan 2 pembebanan yang berbeda yaitu pembebanan tarik, dan pembebanan lengkung. Kemudian akan di uji kembali struktur mikro dan kekerasan baja yang sudah terdeformasi plastis. Selanjutnya akan di bandingkan struktur mikro dan kekerasan antara baja keadaan awal (as received), baja keadaan ter-anil, dan baja yang terdeformasi plastis.

1.2 Rumusan Masalah

Untuk mempermudah melakukan penelitian ini, maka di rumuskan beberapa rumusan masalah yang menjadi acuan dalam penelitian ini. Adapun rumusan masalah tersebut antara lain :

- 1. Bagaimana perubahan struktur mikro yang terjadi pada baja karbon rendah setelah di berikan 2 pembebanan yang berbeda?
- Bagaimana pengaruh proses annealing yang di berikan pada baja karbon rendah selama 15 menit dengan temperatur 910°C?
- 3. Bagaimana kekerasan baja yang terdeformasi plastis setelah di berikan 2 pembebanan yang berbeda?
- 4. Bagaimana struktur mikro baja yang terdeformasi plastis akibat di berikan 2 pembebanan yang berbeda?

1.3 Batasan Masalah

Dari banyaknya permasalahan yang timbul maka diperlukan pembatasan masalah. Adapun batasan masalah dalam penelitian ini, antara lain :

- 1. Baja karbon yang di gunakan adalah baja karbon rendah besi polos KS 10 SNI.
- Perlakuan panas dilakukan annealing dilakukan selama 15 menit dengan temperatur 910°C.
- 3. Pembebanan yang di berikan yaitu tarik dan lengkung
- 4. Perbandingan kekerasan dan struktur mikro antara baja yang terdeformasi plastis akibat pembebanan bending dan tarik (baik non annealing maupun dengan annealing), baja as received (non annealing), dan dalam kondisi setelah proses perlakuan panas (annealing).

1.4 Tujuan Penelitian

Tujuan utama yang hendak di capai dari penelitian ini adalah:

- Untuk menguji hubungan antara struktur mikro dan kekerasan pada baja karbon rendah pada keadaan awal (as received) dan pada keadaan terdeformasi plastis.
- 2. Untuk mengetahui pengaruh perlakuan panas *annealing* yang di berikan terhadap baja karbon rendah.
- Untuk mengetahui pengaruh pembebanan-pembebanan yang di berikan terhadap baja karbon rendah.

1.5 Manfaat Penelitian

Adapun manfaat yang diharapkan dalam penelitian ini, diantaranya:

 Mengetahui perubahan kekerasan dan struktur mikro baja karbon rendah dari keadaan as received menjadi keadaan terdeformasi plastis.

- Mengetahui perubahan kekerasan dan struktur mikro baja karbon rendah karena perlakuan panas annealing.
- 3. Menguji pengetahuan yang di dapat secara teoritis bahwa terdapat kaitan antara struktur mikro dengan kekerasan baja.

1.6 Sistematika Penulisan

Pada penelitian ini, penulis membuat sistematika penulisan yang terdiri dari beberapa bab, dimana pada setiap bab tersebut terdapat urutan uraian-uraian yang mencakup pembahasan skripsi ini secara keseluruhan.

- BAB 1 : Merupakan pendahuluan yang berisi latar belakang, pembatasan masalah, tujuan dan manfaat dari penulisan, metode penelitian dan sistematika penulisan.
- BAB 2 : Berisikan dasar teori yang melandasi dilakukannya penelitian ini.
- BAB 3 : Berisikan metodelogi penelitian.
- BAB 4 : Berisikan uraian mengenai analisa data yang diperoleh dari eksperimental yang dilakukan dan pembahasan.
- BAB 5 : Berisikan kesimpulan dan saran.

DAFTAR PUSTAKA

- Adha Wigo, 2003, Studi Pengaruh Proses Annealing Terhadap Sifat Kekerasan Dan Struktur Mikro Pada Golok Galonggong, Universitas Sriwijaya. Indralaya.
- Amstead B.H., Ostwald Phiip F, Begeman Myron L, 1993, Teknologi Mekanik jilid 1 edisi ke tujuh, Jakarta, Erlangga
- ASM Handbook International, *The Materials Information Company*, Volume 4 of the ASM Handbook Heat Treating was launched in Detroit (1991).
- Chandra H, Pratiwi DK, 2009, *Modul Praktikum Material Teknik Laboratorium Metalurgi*, Universitas Sriwijaya, Indralaya
- Daryus Asyari, 2008, Diktat Kuliah Proses Produksi, Universitas Darma Persada, Jakarta.
- Gafur Hendri Abdul, 2006, Pengaruh Temperatur Austenisasi Terhadap Kekerasan, Struktur Mikro, Dan Laju Korosi Pada Baja Karbon Rendah, Universitas Sriwijaya, Indralaya.
- Harahap, Sundari Hariyati, 2008, Penentuan Persentase Pembentukan Fasa Austenit Pada Transformasi Bainit Baja Mangan (FeMn) Dengan Validasi Michrohardness Pada Temperatur 500°C, Universitas Sumatera Utara, Medan.
- Khaeridho, 2010, Metalurgi Fisik Teori Dislokas,. Universitas Gunadharma, Bekasi.
- Karuniawan IP, 2007, Perbedaan Nilai Kekerasan Pada Proses Double Hardening Dengan Media Pendingin Air Dan Oli Sae 20 Pada Baja Karbon Rendah, Universitas Negeri Semarang.
- Masyrukan, 2006, Penelitian Sifat Fisis dan Mekanis Baja Karbon Rendah Akibat Pengaruh Proses Pengarbonan dari Arang Kayu Jati, Universitas Muhammadiyah, Surakarta.
- Pratama, 2011, Analisa Sifat Mekanik Komposit Bahan Kampas Rem Dengan Penguat Fly As,. Universitas Hasanuddin, Makassar.
- Ridwan Muhammad, 2012, Pembuatan Komposit Menggunakan Matrik Limbah Plastik Diperkuat Serat Kaca, Universitas Sriwijaya, Indralaya.

- Rina Dwi Yani, Tri Pratomo, dan Hendro Cahyono, 2008, *Pengaruh Perlakuan Panas Terhadap Struktur Mikro Logam ST 60*, Politeknik Negeri Pontianak.
- Ronald, 2004, Proteksi Katodik Pada Baja Karbon Rendah Terdeformasi Plastis, Universitas Sriwijaya, Indralaya.
- Rusdi Jam An, 2001, Pengaruh Temperatur dan Waktu Proses Temper Pada Baja Karbon Medium Terhadap Sifat Mekanik, Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Palembang.
- Sukoco, 2011, Annealing pada Bilah Perunggu Gamelan untuk Mengurangi Retak dan Sifat Keras, Universitas Janabadra, Yogyakarta.
- Surdia Tata, Saito Shinroku, 1999, *Pengetahuan Bahan Teknik cetakan keempat*, Jakarta, PT. Pradniya Pramita.
- Yuwono Ahmad Herman, 2009, Buku Paduan Praktikum Karakterisasi Material 1 Pengujian Merusak (Destructive Testing), Universitas Indonesia.
- http://ardra.biz/sain-teknologi/metalurgi/perlakuan-panas-logam/proses-anil-annealing. diakses tanggal 1 oktober 2013.
- http://www.scribd.com/doc/102427453/bab1-besi-dan-baja. di akses tanggal 31 september 2013.