REGRESI MORFOLOGI SINYAL ELEKTROKARDIOGRAM BERBASIS LONG-SHORT TERM MEMORY

AGUSANTARA, PRIMA PUTRA and Nurmaini, Siti (2025) REGRESI MORFOLOGI SINYAL ELEKTROKARDIOGRAM BERBASIS LONG-SHORT TERM MEMORY. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011482326002_cover.jpg]
Preview
Image
RAMA_56201_09011482326002_cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (291kB) | Preview
[thumbnail of RAMA_56201_09011482326002.pdf] Text
RAMA_56201_09011482326002.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_TURNITIN.pdf] Text
RAMA_56201_09011482326002_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_01_front_ref.pdf] Text
RAMA_56201_09011482326002_0002085908_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_56201_09011482326002_0002085908_02.pdf] Text
RAMA_56201_09011482326002_0002085908_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_03.pdf] Text
RAMA_56201_09011482326002_0002085908_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_04.pdf] Text
RAMA_56201_09011482326002_0002085908_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_05.pdf] Text
RAMA_56201_09011482326002_0002085908_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (519kB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_06_ref.pdf] Text
RAMA_56201_09011482326002_0002085908_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (972kB) | Request a copy
[thumbnail of RAMA_56201_09011482326002_0002085908_07_lamp.pdf] Text
RAMA_56201_09011482326002_0002085908_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (930kB) | Request a copy

Abstract

Penelitian ini bertujuan untuk mengembangkan model yang dapat melakukan regresi posisi anotasi R-Peak pada beat sinyal. Dataset yang digunakan dalam penelitian ini adalah data dari Lobachevsky University Electrocardiography Database (LUDB) dengan menggunakan lead ii. Model dikembangkan menggunakan arsitektur Long Short-Term Memory (LSTM) yang terdiri dari Masking layer, dua lapisan LSTM masing-masing dengan 64 unit, Dropout layer sebesar 25% untuk regularisasi, Layer Normalization, serta dua lapisan Dense untuk regresi. Model dikompilasi menggunakan Huber Loss dengan nilai delta 0.1 dan optimizer Adam dengan learning rate sebesar 0.001. Proses pelatihan menggunakan batch size sebesar 16 dan dilakukan selama maksimum 100 epoch, dengan implementasi early stopping dan reduce learning rate untuk mencegah overfitting. Hasil evaluasi menunjukkan bahwa model memiliki performa prediksi yang baik, dengan nilai Mean Absolute Error (MAE) pada data latih sebesar ±14,43 sampel, pada data validasi sebesar ±9,16 sampel, dan pada data unseen sebesar ±11,10 sampel. Hasil evaluasi ini menunjukkan bahwa model LSTM yang telah dibangun tidak hanya mampu mempelajari pola dari data latih tetapi juga dapat mempertahankan ketepatan prediksi ketika model bertemu sinyal baru yang belum dikenali.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Electrocardiogram, Deep Learning, Regresi, Long-Short Term Memory
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Prima Putra Agusantara
Date Deposited: 12 Sep 2025 08:34
Last Modified: 12 Sep 2025 08:34
URI: http://repository.unsri.ac.id/id/eprint/183875

Actions (login required)

View Item View Item