KLASIFIKASI TREN TUGAS AKHIR MAHASISWA PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS SRIWIJAYA DARI TAHUN 2019 – 2023 MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION (LDA)

KAMAL, MUHAMMAD RAIHAN AUFA and Arsalan, Osvari (2025) KLASIFIKASI TREN TUGAS AKHIR MAHASISWA PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS SRIWIJAYA DARI TAHUN 2019 – 2023 MENGGUNAKAN METODE LATENT DIRICHLET ALLOCATION (LDA). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021382025128_cover.jpg] Image
RAMA_55201_09021382025128_cover.jpg - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (398kB)
[thumbnail of RAMA_55201_09021382025128.pdf] Text
RAMA_55201_09021382025128.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_TURNITIN.pdf] Text
RAMA_55201_09021382025128_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_01_front_ref.pdf] Text
RAMA_55201_09021382025128_0028068806_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021382025128_0028068806_02.pdf] Text
RAMA_55201_09021382025128_0028068806_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (439kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_03.pdf] Text
RAMA_55201_09021382025128_0028068806_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (428kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_04.pdf] Text
RAMA_55201_09021382025128_0028068806_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (932kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_05.pdf] Text
RAMA_55201_09021382025128_0028068806_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (762kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_06.pdf] Text
RAMA_55201_09021382025128_0028068806_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (241kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_07_ref.pdf] Text
RAMA_55201_09021382025128_0028068806_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (204kB) | Request a copy
[thumbnail of RAMA_55201_09021382025128_0028068806_08_lamp.pdf] Text
RAMA_55201_09021382025128_0028068806_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (190kB) | Request a copy

Abstract

The final project is a critical component of higher education, particularly in computer science and informatics, which continues to evolve rapidly, influencing the direction of academic research. This study aims to classify the trends in final project topics among students of the Informatics Engineering Program at Universitas Sriwijaya during the 2019–2023 period using the Latent Dirichlet Allocation (LDA) method. By applying hyperparameter tuning to a dataset of 2027 data, the LDA model demonstrated an improvement in coherence score from 0.34941 to 0.45613, highlighting its capability to effectively reduce word dimensions. The LDA analysis successfully identified six primary topics, including artificial intelligence, decision support systems, and information security, with visualizations such as word clouds and bar charts illustrating annual topic distributions. The study revealed a shift in research focus, with decision support systems being the dominant topic, while artificial neural networks and data-based algorithms showed increasing relevance. These findings conclude that the application of the LDA method is effective in identifying student research trends and provides valuable insights into the dynamics of final project topics over the analyzed period.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Pembelajaran Informatika
Subjects: Q Science > Q Science (General) > Q1-390 Science (General) > Q223.M517 Science -- Information services. Information storage and retrieval systems --Science.
Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
T Technology > T Technology (General) > T10.5-11.9 Communication of technical information
T Technology > T Technology (General) > T1-995 Technology (General) > T11 General works > T11.3 Technical correspondence
T Technology > T Technology (General) > T10.5-11.9 Communication of technical information > T11 General works > T11.3 Technical correspondence
T Technology > T Technology (General) > T10.5-11.9 Communication of technical information > T11.3 Technical correspondence
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Muhammad Raihan Aufa Kamal
Date Deposited: 24 Sep 2025 02:52
Last Modified: 24 Sep 2025 02:52
URI: http://repository.unsri.ac.id/id/eprint/184593

Actions (login required)

View Item View Item