BAMBANG SUPRIHATIN, SURYO GURITNO, AND SRI HARYATMI

CONSISTENCY OF THE BOOTSTRAP ESTIMATOR FOR MEAN
 UNDER KOLMOGOROV METRIC
AND ITS IMPLEMENTATION ON DELTA METHOD

1Bambang Suprihatin, 2Suryo Guritno, 3Sri Haryatmi

1University of Sriwijaya
2,3University of Gadjahmada

Abstract. It is known that by Strong Law of Large Number, the sample mean converges almost surely to the population sample . Central Limit Theorem asserts that the distribution of converges to Normal distribution with mean 0 and variance as . In bootstrap view, the key of bootstrap terminology says that the population is to the sample as the sample is to the bootstrap samples. Therefore, when we want to investigate the consistency of the bootstrap estimator for sample mean, we investigate the distribution of contrast to , where is bootstrap version of computed from sample bootstrap . Asymptotic theory of the bootstrap sample mean is useful to study the consistency for many other statistics. Thereupon some authors call as pivotal statistic. Here are two out of some ways in proving the consistency of bootstrap estimator. Firstly, the consistency was under Mallow-Wasserstein metric was studied by Bickel and Freedman [2]. The other consistency is using Kolmogorov metric, which is a part of paper in Singh [9]. In this our paper, we investigate the consistency of mean under Kolmogorov metric comprehensively and use this result to study the consistency of bootstrap variance using delta Method. The accuracy of the bootstrap estimator using Edgeworth expansion is discussed as well. Results of simulations show that the bootstrap gives good estmates of standard error, which agree to the theory. All results of Monte Carlo simulations are also presented in regard to yield apparent conclusions.

Keywords and phrases: Bootstrap, consistency, Kolmogorov metric, delta method, Edgeworth expansion, Monte Carlo simulations

1. INTRODUCTION

Some questions are usually arise in study of estimation of the unknown parameter involves the estimation: (1) what estimator should be used or choosen? (2) having choosen to use particular , is this estimator consistent to the population parameter ? (3) how accurate is as an estimator of ? The bootstrap is a general methodology for answering the second and third questions. Consistency theory is needed to ensure that the estimator is consistent to the actual parameter as desired.

Consider the parameter is the population mean. The consistent estimator for is the sample mean . The consistency theory is then extended to the consistency of bootstrap estimator for mean. According to the bootstrap terminology, if we want to investigate the consistency of bootstrap estimator for mean, we investigate the distribution of and . We will investigate the consistency of bootstrap under Kolmogorov metric which is defined as

The consistency of bootstrap estimator for mean is then applied to study the consistency of bootstrap estmate for variance using delta method. We describe the consistency of bootstrap estimates for mean and variance. Section 2 reviews the consistency of bootstrap estimate for mean under Kolmogorov metric. Section 3 deal with the consistency of bootstrap estimate for variance using delta method. Section 4 discuss the results of Monte Carlo simulations involve bootstrap standard errors and density estmation for mean and variance. Section 5, is the last section, briefly describes concluding remarks of the paper.

2. CONSISTENCY OF BOOTSTRAP ESTIMATOR FOR MEAN

Let be a random sample of size n from a population with common distribution F and let be the specified random variable or statistic of interest, possibly depending upon the unknown distribution F. Let denote the empirical distribution function of , i.e., the distribution putting probability 1/n at each of the points . The bootstrap method is to approximate the distribution of under F by that of under whrere denotes a bootstrapping random sample of size n from .

We start with definition of consistency. Let F and G be two distribution functions on sample space X. Let be a metric on the space of distribution on X. For i.i.d from F, and a given functional , let

,

.

We say that the bootstrap is consistent (strongly) under for T if

Let functional T is defined as where and are sample mean and population mean respectively. Bootstrap version of T is , where is boostrapping sample mean. Bootstrap method is a device for estimating by . We will investigate the consistency of bootstrap under Kolmogorov metric which is defined as

 =

We state some theorems and lemma which are needed to show that

Theorem 1 (KHINTCHINE-KOLMOGOROV CONVERGENCE THEOREM) Suppose are independent with mean 0 such that . Then, a.s., i.e. converges a.s. to .

Kronecker Lemma Suppose and . Then implies .

Proof. Set and Then, and Write

 =

 = =

 = □

Theorem 2 (POLYA’S THEOREM) If , where F is a continuous distribution function, then

Theorem 3 (BERRY-ESSEN) Let be i.i.d. with , Then there exists a universal constant C, not depending on n or the distribution of the , such that

Theorem 4 (ZYGMUND-MARCINKIEWICZ SLLN) Suppose are i.i.d. and for some 0 < p < 1. Then, a.s.
Proof. This is consequence of the corrolary following Theorem 1 and Kronecker lemma, as desired. 									 □

 Now we show the consistency of under Kolmogorov metric, which is based on Sigh [9] and DasGupta [4]. We can write that

 =

 =

 	=

 = say.

By Polya’s theorem, we conclude that . Also, by SLLN, we obtain a.s., and by the continuous mapping theorem, a.s. Hence, we conclude that a.s. Finally, by the Berry-Essen theorem,

 =

 = .

Since , it is clear that a.s. In the first term, let and take p = 2/3, by Zygmund-Marcinkiewicz SLLN yields

 a.s. as .

Thus, a.s. and hence a.s.

Since and a.s we could infer that , where is bootstrap version of . On the other hand, according to the terminology of bootstrap, we conclude that almost surely as a.s. Moreover, by Theorem 2.7 of van der Vaart [10] we conclude the crux result i.e. . Then, a question arises about the use the bootstrap whether the bootstrap has any advantages when a Central Limit Theorem is already available. For our case, suppose . Then and under Kolmogorov metric almost surely. So, we have two approximations to , i.e. and . The bootstrap approximation is theoretically more accurate than the approximation provided by the Central Limit Theorem. This is caused by the fact that normal distribution is symmetric such that the Central Limit Theorem can not capture information about the skewness a the finite sample distribution of , whereas the bootstrap approximation does so. Thus, the bootstrap can be used in correcting for skewness, as an Edgeworth expansion would do. Babu and Singh [1] discussed the accuracy of bootstrap using one term Edgeworth expansion. Hutson and Ernst [8] studied the exact bootstrap for mean and suggest the bootstrap for variance of an L-estmator.

Since , then Edgeworth expansion for T is

,

where is the standard normal distribution function and p is polynomial with coefficients depending on cumulants of . In the comprehensive studies, Hall (1992) showed that denotes a function whose Fourier-Stieltjes transform where can be derived from Hermite’s polynomials and satisfies . The bootstrap estimate of H admits an analogous expansion

,

where is obtained from p on replacing unknowns by their bootstrap estimate. According to Davison and Hinkley [5], the estimate in the coefficients of are typically distant from their respective value in p, and so . Hall [7] also showed that whence . Thus we can deduce that is generally of size not . Hence, . Consistency of the bootstrap sample mean is useful to study the consistency for many other statistics, see e.g. van der Vaart [10] and Cheng and Huang [3].

3. CONSISTENCY OF BOOTSTRAP ESTIMATE FOR VARIACE USING DELTA METHOD

The delta method consists of using a Taylor expansion to approximate a random vector of the form by the polynomial in . This method is useful to deduce the limit law of from that of . This method is also valid in bootstrap view, which is given in the following theorem.

Theorem 5 (DELTA METHOD FOR BOOTSTRAP) Let be a measurable map defined and continously differentiable in a neighborhood of . Let be random vectors taking their values in the domain of that converge almost surely to . If and conditionally almost surely, then both and conditionally almost surely.

Let = is the population mean, and then is the sample mean. The SLLN asserts that a.s. and . The resulting of Section 2 shows that . Based on the consistency of the bootstrap for the sample mean we investigate the consistency of the bootstrap for the unbiased sample variance using delta method. Again, the SLLN asserts that unbiased sample variance converges almost surely to . Let is the bootstrap estimate for the sample variance, the counterpart of . Set . The question is the converges a.s. to ? We see that equals to and equals to for the map . Thus, according to Theorem 5 we conclude that converges to conditionally almost surely. Furthermore, where T is a normal distribution.

4. RESULTS OF MONTE CARLO SIMULATIONS

The simulation is conducted using S-Pus and the sample is twenty marks of statistics test for 20 students are taken as follows: 80, 90, 75, 50, 85, 85, 45, 65, 50, 95, 70, 90, 35, 45, 50, 75, 70, 95, 60, 70. It is obvious that sample mean = 69.0 with standard error 18.4. Efron and Tibshirani [6] suggested to conduct simulations using at least B equals 50 for standard errors and that 1000 for confidence intervals due to give good approximations. Using the number of bootstrap samples B = 2000, the resulting of simulation gives = 69.12 with estimate for standard error 18.1, which is a good approximation. Figure 1 depicts the densities estimation for the distribution of and , respectively. From the figure, we could infer that the distributions for both statistics are approximately normal.
 [image:]

Figure 1 Left panel: Plot of Density Estimation for , Right panel: Plot of Density Estimation for

5. CONCLUDING REMARK

A number of points arise from the consideration of Section 2, 3, and 4, amongst which we note as follows.
1.

Since a.s. and a.s., according to the bootstrap terminology, we conclude that is a consistent estimator for .
2.

So far, by using delta method we have shown that unbiased bootstrap sample variance a.s., and it is obvious that for biased version . Accordingly, both and are consistent estimators for .
3. Resulting of Monte Carlo simulation show that the bootstrap estimators are good approximations, as represented by their standard errors and plot of densities estimation.

REFERENCES

[1] BABU, G. J. AND SINGH, K. On one term Edgeworth correction by Efron’s bootstrap, Sankhya, 46, 219-232, 1984.

[2] BICKEL, P. J. AND FREEDMAN, D. A. Some asymptotic theory for the bootstrap, Ann. Statist., 9, 1996-1217, 1981.

[3] CHENG, G. AND HUANG, J. Z. Bootstrap consistency for general semiparametric M-estimation, Ann. Statist., 5, 2884-2915, 2010.

[4] DASGUPTA, A. Asymptotic Theory of Statistics and Probability, Springer, New York, 2008.

[5] DAVISON, A. C. AND HINKLEY, D. V. Bootstrap Methods and Their Application, Cambridge University Press, Cambridge, 2006.

[6] EFRON, B. AND TIBSHIRANI, R. Bootstrap methods for standard errors, confidence intervals, and others measures of statistical accuracy, Statistical Science, 1, 54-77, 1986.

[7] HALL, P. The Bootstrap and Edgeworth Expansion, Springer-Verlag, New York, 1992.

[8] HUTSON, A. D. AND ERNST, M. D. The exact bootstrap mean and variance of an L-estimator, J. R. Statist. Soc, 62, 89-94, 2000.

[9] SINGH, K. On the asymptotic accuracy of Efron’s bootstrap, Ann. Statist., 9, 1187-1195, 1981.

[10] VAN DER VAART, A. W. Asymptotic Statistics, Cambridge University Press, Cambridge, 2000.

AUTHORS:

BAMBANG SUPRIHATIN: University of Sriwijaya, email: bambangs@unsri.ac.id,
SURYO GURITNO: University of Gadjahmada, email: Guritno0@mailcity.com,
SRI HARYATMI: University of Gadjahmada, email: s_kartiko@yahoo.com

2010 Mathematics Subject Classification: 62F40
image2.wmf
m

image41.wmf
(

)

¥

<

å

n

n

X

var

oleObject53.bin

image42.wmf
¥

<

å

n

n

X

oleObject54.bin

image43.wmf
å

=

=

n

i

i

n

X

S

1

oleObject55.bin

image44.wmf
å

¥

=

1

n

n

X

oleObject56.bin

image45.wmf
0

>

n

a

oleObject57.bin

oleObject2.bin

image46.wmf
¥

­

n

a

oleObject58.bin

image47.wmf
¥

<

å

n

n

n

a

X

oleObject59.bin

image48.wmf
å

=

®

n

j

n

j

a

X

1

0

oleObject60.bin

image49.wmf
å

=

=

n

i

i

i

n

a

X

b

1

oleObject61.bin

image50.wmf
.

0

0

0

=

=

b

a

oleObject62.bin

image3.wmf
(

)

m

-

X

n

image51.wmf
¥

<

®

¥

b

b

n

oleObject63.bin

image52.wmf
(

)

.

1

-

-

=

n

n

n

n

b

b

a

X

oleObject64.bin

image53.wmf
(

)

å

å

=

-

=

-

=

n

j

j

j

j

n

n

j

j

n

b

b

a

a

X

a

1

1

1

1

1

oleObject65.bin

image54.wmf
(

)

å

å

=

-

=

-

n

j

j

j

n

j

j

j

n

b

a

b

a

a

1

1

1

1

oleObject66.bin

image55.wmf
(

)

å

å

=

-

-

=

-

+

n

j

j

j

n

j

j

j

n

n

b

a

b

a

a

b

1

1

1

1

1

oleObject67.bin

oleObject3.bin

image56.wmf
(

)

å

å

=

-

=

-

-

-

+

n

j

j

j

n

j

j

j

n

n

b

a

b

a

a

b

1

1

1

1

1

1

oleObject68.bin

image57.wmf
(

)

å

=

-

-

-

-

n

j

j

j

j

n

n

a

a

b

a

b

1

1

1

1

oleObject69.bin

image58.wmf
.

0

=

-

®

¥

¥

b

b

oleObject70.bin

image59.wmf
F

F

d

n

¾

®

¾

oleObject71.bin

image60.wmf
(

)

(

)

.

0

sup

¥

®

®

-

n

as

x

F

x

F

n

x

oleObject72.bin

image4.wmf
2

s

oleObject73.bin

image61.wmf
(

)

,

1

m

=

X

E

oleObject74.bin

image62.wmf
(

)

2

1

s

=

X

Var

oleObject75.bin

image63.wmf
.

3

1

¥

<

-

m

X

E

and

oleObject76.bin

image64.wmf
i

X

oleObject77.bin

image65.wmf
(

)

(

)

.

sup

3

3

1

n

X

E

C

x

x

X

n

P

x

s

m

s

m

-

×

£

F

-

÷

÷

ø

ö

ç

ç

è

æ

£

-

oleObject4.bin

oleObject78.bin

image66.wmf
K

,

,

,

2

1

X

X

X

oleObject79.bin

image67.wmf
(

)

¥

<

p

X

E

oleObject80.bin

image68.wmf
0

/

1

®

p

n

n

S

oleObject81.bin

image69.wmf
Boot

H

oleObject82.bin

image70.wmf
(

)

Boot

n

Boot

H

H

K

H

,

image5.wmf
¥

®

n

oleObject83.bin

image71.wmf
(

)

(

)

x

T

P

x

T

P

n

n

F

x

£

-

£

*

*

sup

oleObject84.bin

image72.wmf
÷

÷

ø

ö

ç

ç

è

æ

£

-

÷

ø

ö

ç

è

æ

£

s

x

s

T

P

x

T

P

n

n

F

x

*

*

sup

s

s

oleObject85.bin

image73.wmf
÷

÷

ø

ö

ç

ç

è

æ

£

-

÷

ø

ö

ç

è

æ

F

+

÷

ø

ö

ç

è

æ

F

-

÷

ø

ö

ç

è

æ

F

+

÷

ø

ö

ç

è

æ

F

-

÷

ø

ö

ç

è

æ

£

s

x

s

T

P

s

x

s

x

x

x

x

T

P

n

n

F

x

*

*

sup

s

s

s

s

oleObject86.bin

image74.wmf
÷

÷

ø

ö

ç

ç

è

æ

£

-

÷

ø

ö

ç

è

æ

F

+

÷

ø

ö

ç

è

æ

F

-

÷

ø

ö

ç

è

æ

F

+

÷

ø

ö

ç

è

æ

F

-

÷

ø

ö

ç

è

æ

£

£

s

x

s

T

P

s

x

s

x

x

x

x

T

P

n

x

x

n

F

x

*

*

sup

sup

sup

s

s

s

s

oleObject87.bin

image75.wmf
,

n

n

n

C

B

A

+

+

oleObject5.bin

oleObject88.bin

image76.wmf
0

®

n

A

oleObject89.bin

image77.wmf
2

2

s

®

s

oleObject90.bin

image78.wmf
s

®

s

oleObject91.bin

image79.wmf
0

®

n

B

oleObject92.bin

image80.wmf
(

)

(

)

2

/

3

*

1

3

*

1

var

X

n

X

X

E

C

C

n

F

n

n

-

×

£

image6.wmf
(

)

X

X

n

-

*

oleObject93.bin

image81.wmf
3

3

1

1

ns

n

X

X

C

n

i

n

×

-

×

å

=

oleObject94.bin

image82.wmf
3

2

/

3

3

1

3

1

s

n

X

n

X

C

n

i

n

÷

ø

ö

ç

è

æ

-

+

-

×

£

å

=

m

m

oleObject95.bin

image83.wmf
÷

÷

ø

ö

ç

ç

è

æ

-

+

-

å

=

n

i

n

n

X

X

n

s

C

1

3

3

1

2

/

3

3

1

m

m

oleObject96.bin

image84.wmf
m

®

X

oleObject97.bin

image85.wmf
0

3

3

®

-

s

n

X

n

m

oleObject6.bin

oleObject98.bin

image86.wmf
3

1

m

-

=

X

Y

i

oleObject99.bin

image87.wmf
å

å

=

=

®

=

-

n

i

n

i

i

p

Y

n

X

n

1

1

/

1

3

1

2

/

3

0

1

1

m

oleObject100.bin

image88.wmf
¥

®

n

oleObject101.bin

image89.wmf
0

®

+

+

n

n

n

C

B

A

oleObject102.bin

image90.wmf
(

)

0

,

®

Boot

n

H

H

K

oleObject7.bin

oleObject103.bin

image91.wmf
(

)

(

)

2

,

0

s

m

N

X

n

d

¾

®

¾

-

oleObject104.bin

oleObject105.bin

image92.wmf
(

)

(

)

2

*

*

,

0

s

N

X

X

n

d

¾

®

¾

-

oleObject106.bin

image93.wmf
2

*

s

oleObject107.bin

image94.wmf
2

s

oleObject108.bin

image7.wmf
*

X

image95.wmf
X

X

®

*

oleObject109.bin

image96.wmf
m

®

X

oleObject110.bin

image97.wmf
m

®

*

X

oleObject111.bin

oleObject112.bin

image98.wmf
(

)

(

)

2

,

0

s

m

N

X

n

d

¾

®

¾

-

oleObject113.bin

image99.wmf
(

)

0

,

®

Boot

n

H

H

K

oleObject8.bin

oleObject114.bin

oleObject115.bin

image100.wmf
(

)

s

/

x

F

oleObject116.bin

oleObject117.bin

oleObject118.bin

image101.wmf
(

)

(

)

2

,

0

s

m

N

X

n

T

d

¾

®

¾

-

=

oleObject119.bin

image102.wmf
(

)

(

)

(

)

(

)

(

)

1

2

/

1

/

/

/

)

(

-

-

+

+

F

=

£

=

n

O

x

x

p

n

x

x

T

P

x

H

p

s

f

s

s

oleObject120.bin

image8.wmf
X

image103.wmf
F

oleObject121.bin

image104.wmf
m

-

X

oleObject122.bin

image105.wmf
)

(

x

p

oleObject123.bin

image106.wmf
ò

¥

¥

-

-

=

,

)

(

)

(

2

/

2

t

itx

e

it

r

x

dp

e

oleObject124.bin

image107.wmf
)

(

it

r

oleObject125.bin

oleObject9.bin

image108.wmf
(

)

)

(

)

(

/

x

x

H

dx

d

r

n

f

-

=

-

oleObject126.bin

image109.wmf
2

/

2

/

2

2

)

1

(

)

(

x

n

n

x

n

n

e

dx

d

e

x

H

-

-

-

=

oleObject127.bin

image110.wmf
(

)

(

)

(

)

(

)

(

)

1

2

/

1

*

ˆ

/

ˆ

/

ˆ

ˆ

/

)

(

ˆ

-

-

+

+

F

=

£

=

n

O

x

x

p

n

x

X

x

T

P

x

H

p

s

f

s

s

oleObject128.bin

image111.wmf
p

ˆ

oleObject129.bin

oleObject130.bin

image112.wmf
(

)

2

/

1

-

n

O

p

image9.wmf
*

X

oleObject131.bin

image113.wmf
(

)

2

/

1

ˆ

-

=

-

n

O

p

p

p

oleObject132.bin

image114.wmf
(

)

2

/

1

ˆ

-

=

-

n

O

p

s

s

oleObject133.bin

image115.wmf
=

-

)

(

)

(

ˆ

x

H

x

H

oleObject134.bin

image116.wmf
(

)

(

)

(

)

1

/

ˆ

/

-

+

F

-

F

n

O

x

x

p

s

s

oleObject135.bin

image117.wmf
(

)

(

)

s

s

/

ˆ

/

x

x

F

-

F

oleObject10.bin

oleObject136.bin

image118.wmf
2

/

1

-

n

oleObject137.bin

image119.wmf
1

-

n

oleObject138.bin

image120.wmf
(

)

(

)

(

)

2

/

1

*

-

=

£

-

£

n

O

x

T

P

X

x

T

P

p

oleObject139.bin

image121.wmf
(

)

n

T

f

oleObject140.bin

image122.wmf
(

)

(

)

(

)

L

+

-

¢

+

q

q

f

q

f

n

T

oleObject11.bin

oleObject141.bin

image123.wmf
q

-

n

T

oleObject142.bin

image124.wmf
(

)

(

)

q

f

f

-

n

T

oleObject143.bin

image125.wmf
q

-

n

T

oleObject144.bin

image126.wmf
m

k

Â

®

Â

:

f

oleObject145.bin

image127.wmf
q

image10.wmf
q

oleObject146.bin

image128.wmf
n

q

ˆ

oleObject147.bin

image129.wmf
f

oleObject148.bin

image130.wmf
q

oleObject149.bin

image131.wmf
(

)

T

n

d

n

¾

®

¾

-

q

q

ˆ

oleObject150.bin

image132.wmf
(

)

T

n

d

n

¾

®

¾

-

q

q

ˆ

ˆ

*

oleObject12.bin

oleObject151.bin

image133.wmf
(

)

(

)

(

)

(

)

T

n

d

n

q

f

q

f

q

f

¢

¾

®

¾

-

ˆ

oleObject152.bin

image134.wmf
(

)

(

)

(

)

(

)

T

n

d

n

n

q

f

q

f

q

f

¢

¾

®

¾

-

ˆ

ˆ

*

oleObject153.bin

oleObject154.bin

image135.wmf
m

oleObject155.bin

image136.wmf
X

n

=

q

ˆ

oleObject156.bin

image11.wmf
q

ˆ

image137.wmf
q

q

®

n

ˆ

oleObject157.bin

image138.wmf
(

)

(

)

2

,

0

s

m

N

X

n

d

¾

®

¾

-

oleObject158.bin

image139.wmf
(

)

(

)

2

*

,

0

s

N

X

X

n

d

¾

®

¾

-

oleObject159.bin

image140.wmf
(

)

å

=

-

-

=

n

i

i

X

X

n

s

1

2

2

1

1

oleObject160.bin

image141.wmf
2

s

oleObject161.bin

oleObject13.bin

image142.wmf
(

)

å

=

-

-

=

n

i

i

X

X

n

s

1

2

*

*

*

2

1

1

oleObject162.bin

image143.wmf
2

s

oleObject163.bin

image144.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

-

-

=

å

å

å

=

2

*

2

*

1

2

*

*

*

2

1

1

n

X

n

X

n

n

n

X

X

n

n

s

i

i

n

i

i

oleObject164.bin

image145.wmf
*

2

s

oleObject165.bin

image146.wmf
2

s

oleObject166.bin

image12.wmf
q

ˆ

oleObject167.bin

image147.wmf
f

oleObject168.bin

image148.wmf
*

2

s

oleObject169.bin

oleObject170.bin

image149.wmf
(

)

(

)

2

1

,

x

y

n

n

y

x

-

-

=

f

oleObject171.bin

oleObject172.bin

oleObject173.bin

oleObject14.bin

image150.wmf
(

)

T

s

s

n

d

¾

®

¾

-

2

*

2

oleObject174.bin

image151.wmf
X

oleObject175.bin

image152.wmf
*

X

oleObject176.bin

image153.wmf
(

)

X

X

n

-

*

oleObject177.bin

image154.wmf
(

)

2

*

2

s

s

n

-

oleObject178.bin

oleObject15.bin

image155.emf
-60

-40

-20

0

20

40

60

0.000

0.005

0.010

0.015

0.020

sqrt(n) * (mean.boot - mean.sample)

-1000

-500

0

500

1000

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

sqrt(n) * (var.boot - var.sample)

-60 -40 -20 0 20 40 60

0.000

0.005

0.010

0.015

0.020

sqrt(n) * (mean.boot - mean.sample)

-1000 -500 0 500 1000

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

sqrt(n) * (var.boot - var.sample)

oleObject179.bin

oleObject180.bin

image156.wmf
m

®

X

oleObject181.bin

image157.wmf
X

X

®

*

oleObject182.bin

image158.wmf
*

X

oleObject183.bin

image159.wmf
m

oleObject16.bin

oleObject184.bin

image160.wmf
2

*

2

s

s

®

oleObject185.bin

image161.wmf
(

)

n

X

X

s

n

i

i

å

=

-

=

1

2

*

*

*

2

ˆ

oleObject186.bin

image162.wmf
*

2

s

oleObject187.bin

image163.wmf
*

2

ˆ

s

oleObject188.bin

image164.wmf
2

s

oleObject17.bin

oleObject189.bin

oleObject18.bin

oleObject19.bin

image13.wmf
å

=

=

=

n

i

i

X

n

X

1

1

ˆ

q

oleObject20.bin

image14.wmf
(

)

m

-

X

n

oleObject21.bin

image15.wmf
(

)

X

X

n

-

*

oleObject22.bin

image16.wmf
(

)

(

)

(

)

(

)

.

sup

*

x

X

X

n

P

x

X

n

P

n

F

F

x

£

-

-

£

-

m

oleObject23.bin

image17.wmf

oleObject24.bin

image18.wmf
(

)

n

X

X

X

,

,

,

2

1

K

oleObject25.bin

image19.wmf
(

)

F

X

X

X

T

n

;

,

,

,

2

1

K

oleObject26.bin

image20.wmf
n

F

oleObject27.bin

oleObject28.bin

image21.wmf
n

X

X

X

,

,

,

2

1

K

oleObject29.bin

oleObject30.bin

image22.wmf
(

)

n

n

F

X

X

X

T

;

,

,

,

*

*

2

*

1

K

oleObject31.bin

image23.wmf
n

F

oleObject32.bin

image24.wmf
(

)

*

*

2

*

1

,

,

,

n

X

X

X

K

oleObject33.bin

image25.wmf
n

F

oleObject34.bin

image26.wmf
(

)

G

F

,

r

oleObject35.bin

oleObject36.bin

oleObject37.bin

image27.wmf
(

)

(

)

x

F

X

X

X

T

P

x

H

n

F

n

£

=

;

,

,

,

)

(

2

1

K

oleObject38.bin

image28.wmf
(

)

(

)

x

F

X

X

X

T

P

x

H

n

n

Boot

£

=

;

,

,

,

)

(

*

*

2

*

1

*

K

oleObject39.bin

image29.wmf
r

oleObject40.bin

image30.wmf
(

)

.

.

0

,

s

a

H

H

Boot

n

®

r

oleObject41.bin

image31.wmf
(

)

(

)

m

-

=

X

n

F

X

X

X

T

n

;

,

,

,

2

1

K

image1.wmf
X

oleObject42.bin

image32.wmf
X

oleObject43.bin

image33.wmf
m

oleObject44.bin

image34.wmf
(

)

(

)

X

X

n

F

X

X

X

T

n

n

-

=

*

*

*

2

*

1

;

,

,

,

K

oleObject45.bin

image35.wmf
*

X

oleObject46.bin

image36.wmf
(

)

(

)

x

X

n

P

F

£

-

m

oleObject1.bin

oleObject47.bin

image37.wmf
(

)

(

)

x

X

X

n

P

n

F

£

-

*

oleObject48.bin

image38.wmf
(

)

)

(

)

(

sup

,

x

G

x

F

G

F

K

x

-

=

oleObject49.bin

oleObject50.bin

image39.wmf
(

)

.

.

0

,

s

a

H

H

K

Boot

n

®

oleObject51.bin

image40.wmf
K

,

,

2

1

X

X

oleObject52.bin

