Delta Method for Deriving the Consistency of Bootstrap Estimator
 for Parameter of Autoregressive Model

1Bambang Suprihatin, 2Suryo Guritno, and 3Sri Haryatmi

1Mathematics Department, Sriwijaya University, INDONESIA
(Ph.D student of Mathematics Department, Gadjahmada University)
E-mail: suprihatin.b@mail.ugm.ac.id

2,3 Mathematics Department, University of Gadjahmada, INDONESIA
E-mail: 2suryoguritno@ugm.ac.id 3s_kartiko@yahoo.com

Abstract. Let be the first order of autoregressive model and let be the sample that satisfies such model, i.e. the sample follows the relation where is a zero mean white noise process with constant variance . Let be the estimator for parameter . Brockwell and Davis (1991) showed that and . Meantime, Central Limit Theorem asserts that the distribution of converges to Normal distribution with mean 0 and variance as . In bootstrap view, the key of bootstrap terminology says that the population is to the sample as the sample is to the bootstrap samples. Therefore, when we want to investigate the consistency of the bootstrap estimator for sample mean, we investigate the distribution of contrast to , where is a bootstrap version of computed from sample bootstrap . Asymptotic theory of the bootstrap sample mean is useful to study the consistency for many other statistics. Let be the bootstrap estimator for . In this paper we study the consistency of using delta Method. After all, we construct a measurable map such that = conditionally almost surely, by applying the fact that , where G is a normal distribution. We also present the Monte Carlo simulations to emphisize the conclusions.

Keywords: Bootstrap, consistency, autoregressive model, delta method, Monte Carlo simulations

1. Introduction

Studying of estimation of the unknown parameter involves: (1) what estimator should be used? (2) having choosen to use particular , is this estimator consistent to the population parameter ? (3) how accurate is as an estimator for true parameter ? (4) the interesting one is, what is the asymptotic distribution of such estimator? The bootstrap is a general methodology for answering the second and third questions, while the delta method is used to answer the last question. Consistency theory is needed to ensure that the estimator is consistent to the actual parameter as desired.

Consider the parameter is the population mean. The consistent estimator for is the sample mean . The consistency theory is then extended to the consistency of bootstrap estimator for mean. According to the bootstrap terminology, if we want to investigate the consistency of bootstrap estimator for mean, we investigate the distribution of and . The consistency of bootstrap under Kolmogorov metric is defined as

 (1)

Bickel and Freedman (1981) and Singh (1981) showed that (1) converges almost surely to zero as. The consistecy of bootstrap for mean is a worthy tool for studying the consistency and limiting distribution of other statistics. In this paper, we study the asymptotic distribution of , i.e. bootstrap estimator for parameter of the AR(1) process. Suprihatin, et.al (2013) also studied the advantage of bootstrap for estimating the median, and the results gave a good accuracy.

The consistency of bootstrap estimator for mean is then applied to study the asymptotic distribution of , i.e. bootstrap estmate for parameter of the AR(1) process using delta method. We describe the consistency of bootstrap estimates for mean and investigate the limiting distribution of . Section 2 reviews the consistency of bootstrap estimate for mean under Kolmogorov metric and describe the estimation of autocovariance function. Section 3 deal with asymptotic distribution of using delta method. Section 4 discuss the results of Monte Carlo simulations involve bootstrap standard errors and density estmation for mean and . Section 5, is the last section, briefly describes the conclusions of the paper.

2. Consistency of Bootstrap Estimator For Mean and Estimation of Autocovariance Function

Let be a random sample of size n from a population with common distribution F and let be the specified random variable or statistic of interest, possibly depending upon the unknown distribution F. Let denote the empirical distribution function of , i.e., the distribution putting probability 1/n at each of the points . The bootstrap method is to approximate the distribution of under F by that of under whrere denotes a bootstrapping random sample of size n from .

We start with definition of consistency. Let F and G be two distribution functions on sample space X. Let be a metric on the space of distribution on X. For i.i.d from F, and a given functional , let

,

.

We say that the bootstrap is consistent (strongly) under for T if

	Let functional T is defined as where and are sample mean and population mean respectively. Bootstrap version of T is , where is boostrapping sample mean. Bootstrap method is a device for estimating by . Singh (198) studied the consistency of bootstrap under Kolmogorov metric,

 =

Meanwhile, Bickel and Freedman (1981) studied the same topic but tey used Mallows metric. The crux result of both papers is that . Suprihatin, et.al (2011) emphasized this result by giving nice simulations and agree with their results. Papers of Singh (198) and Bickel and Freedman (1981) have become the foundation for studying other complicated statistics.

 	Suppose we have the observed values from the stationary AR(1) process. A natural estimators for parameters mean, covariance and correlation function are , , and respectively. If the series is replaced by the centered series , then the autocovariance function does not change. Therefore, studying the asymptotic properties of the sample autocovariance function , it is not a loss of generality to assume that = 0. The sample autocovariance function can be written as

. (2)

Under some conditions (see, e.g., van der Vaart (2012)), the last three terms in (2) is of the order . Thus, under assumption that = 0, we can write (2) in simple notation,

.

The asymptotic behaviour of the sequence depends only on . Note that a change of by is asymptotically negligible, so that, for simplicity of notation, we can equivalently study the average

.

Both and are unbiased estimator of , under the condition that . Their asymptotic distribution then can be derived by applying a central limit theorem to the average of the variables . The asymptotic variance takes the form and in general depends on fourth order moments of the type as well as on the autocovariance function of the series . Van der Vaart (2012) showed that the autocovariance function of the series can be written as

 (3)

Where the fourth cumulant of . The following theorem give the asymptotic distribution of the sequence .

Theorem 1 If holds for an i.i.d. sequence with mean zero and and numbers with then .

3. Asymptotic Distribution of Bootstrap Estimate For Parameter of AR(1) Process Using Delta Method

The delta method consists of using a Taylor expansion to approximate a random vector of the form by the polynomial in . This method is useful to deduce the limit law of from that of , which is guaranteed by the next theorem.

Theorem 2 Let be a map defined on a subset of and differentiable at . Let be random vectors taking their values in the domain of . If for numbers , then . Moreover, the difference between and converges to zero in probability.

Assume that is a statistic, and that is a given differensiable map. The bootstrap estimator for the distribution of is . If the bootstrap is consistent for estimating the distribution of , then it is also consistent for estimating the distribution of , as given in the following theorem. The proof of the theorem is due to van der Vaart (2000).

Theorem 3 (Delta Method For Bootstrap) Let be a measurable map defined and continuously differentiable in a neighborhood of . Let be random vectors taking their values in the domain of that converge almost surely to . If and conditionally almost surely, then both and conditionally almost surely.

Proof. By applying the mean value theorem, the difference can be written as for a point between and , if the latter two points are in the ball around in which is continuously differentiable. By the continuity of the derivative, there exists a constant for every such that < for every h and every . If n is suffeciently large, suffeciently small, , and , then

 .

Fix a number and a large number M. For sufficiently small to ensure that ,

. (4)

Since , the right side of (4) converges almost surely to for every continuity point M of . This can be made arbitrarily small by choice of M. Conclude that the left side of (4) converges to zero almost surely. The theorem follows by an application of Slutsky’s lemma. ■
	

For the AR(1) process, from Yule-Walker equation we obtain the moment estimator where be the lag 1 sample autocorrelation

. 	 (5)

According to Davison and Hinkley (2006), the estimate of standard error of parameter is . Meanwhile, the bootstrap version of standard error was introduced by Efron and Tibshirani (1986). In Section 4 we demonstrate results of Monte Carlo simulations consist the two of standard errors and give brief comments. In Suprihatin, et.al. (2012) we construct a measurable function as follows. Equation (5) can be written as

		

Brockwell and Davis (1991) have shown that is consistent estimator of true parameter . Kolmogorov SLLN asserts that . Since is independent of , then = 0. Hence, . By applying the Slutsky’s lemma, the last display is approximated by Thus, for we obtain . We see that equals to for the function. Since is continous and hence is measurable. Suppose that is based on a sample from a distribution with finite first four moments of By central limit theorem and applying Theorem 1 we conclude that

,

where as in (3) for . The map is differentiable at the point , with derivative . Theorem 2 says that

 = +

 = + .

In view of Theorem 2, if T possesses the normal with mean 0 and variance , then

 ~ .

Meantime, the bootstrap version of , denoted by can be obtained as follows [see, e.g. Efron dan Tibshirani (1986) and Freedman (1985)]:
1.

Define the residuals for
2.

A bootstrap sample is created by sampling with replacement from the residuals. Letting as an initial bootstrap sample and , .
3.

Finally, after centering the bootstrap time series i.e. is replaced by where . Using the plug-in principle, we obtain the bootstrap estimator computed from the sample .

Analog with the previous discussion, we obtain the bootstrap version for counterpart of , that is measurable map Thus, in view of Theorem 3 we conclude that converges to conditionally almost surely. By the Glivenko-Cantelli lemma and applying the plug-in principle, we obtain

and

.
	
4. Results of Monte Carlo Simulations

The simulation is conducted using S-Pus and the sample is the 50 time series data of exchange rate of US dollar compared to Indonesian rupiah. Data is taken from authorized website of Bank Indonesia, i.e. http://www.bi.go.id for fifty days of transactions on March and April 2012. Suprihatin, et. al. (2012) has identified that the time series data satisfies the AR(1) procces, such that the data follows the equation

where WN. The simulation yields the estimator = - 0.448 with standard error 0.1999. To produce a good approximation, Efron and Tibshirani (1986) and Davison and Hinkley (2006) suggest to use the number of resamples at least B = 50. Bootstrap version of standard errror using bootstrap samples of size B = 25, 50, 100, 1,000 and 2,000 yielding as presented in Table 1.

Table 1 Estimates for Standard Errors of for Various B
	
	B

	
	25
	50
	100
	500
	1,000
	2,000

	

	0.2005
	0.1981
	0.1997
	0.1991
	0.1972
	1.1964

 From Table 1 we can see that the values of bootstrap standard errors tend to decrease in term of size of B increase and closed to the value of 0.1999 (actual standard error). These results show that the bootstrap gives a good estimate. Meantime, the histogram and density estimate of are presented in Figure 1. From Figure 1 we can see that the resulting histogram close related to the normal density. Of course, this result agree to the result of Freedman (1985) and Bose (1988).

Figure 1 Histogram and Density Estimate of Bootstrap Estimator

5. Conclusions

A number of points arise from the study of Section 2, 3, and 4, amongst which we state as follows.
1.

Consider an AR(1) process with Yule-Walker estimator = is a consistent estimator for the true parameter . By using the delta method we have shown that is also a consistent estimator for and

		 for . Moreover, we obtain the crux result that

.
2. Resulting of Monte Carlo simulations show that the bootstrap estimators are good approximations, as represented by their standard errors and plot of densities estimation.

REFERENCES

[1] BICKEL, P. J. AND FREEDMAN, D. A. Some asymptotic theory for the bootstrap, Ann. Statist., 9, 1996-1217, 1981.

[2] BOSE, A. Edgeworth correction by bootstrap in autoregressions, Ann. Statist., 16, 1709-1722, 1988.

[3] BROCKWELL, P. J. AND DAVIS, R. A. Time Series: Theory and Methods, Springer, New York, 1991.

[4] DAVISON, A. C. AND HINKLEY, D. V. Bootstrap Methods and Their Application, Cambridge University Press, Cambridge, 2006.

[5] EFRON, B. AND TIBSHIRANI, R. Bootstrap methods for standard errors, confidence intervals, and others measures of statistical accuracy, Statistical Science, 1, 54-77, 1986.

[6] FREEDMAN, D. A. On bootstrapping two-stage least-squares estimates in stationary linear models, Ann. Statist., 12, 827-842, 1985.

[7] SINGH, K. On the asymptotic accuracy of Efron’s bootstrap, Ann. Statist., 9, 1187-1195, 1981.

[8] SUPRIHATIN, B., GURITNO, S., AND HARYATMI, S. Consistency of the bootstrap estimator for mean under kolmogorov metric and its implementation on delta method, Proc. of The 6th Seams-GMU Conference, 2011.

[9] VAN DER VAART, A. W. Asymptotic Statistics, Cambridge University Press, Cambridge, 2000.

[10] VAN DER VAART, A. W. Lecture Notes on Time Series, Vrije Universiteit, Amsterdam, 2012.
163

oleObject52.bin

oleObject53.bin

oleObject54.bin

image39.wmf
(

)

(

)

x

F

X

X

X

T

P

x

H

n

F

n

£

=

;

,

,

,

)

(

2

1

K

oleObject55.bin

image40.wmf
(

)

(

)

x

F

X

X

X

T

P

x

H

n

n

Boot

£

=

;

,

,

,

)

(

*

*

2

*

1

*

K

oleObject56.bin

image41.wmf
r

oleObject57.bin

image42.wmf
(

)

.

0

,

.

.

s

a

Boot

n

H

H

®

r

image1.wmf
{

}

T

t

X

t

Î

,

oleObject58.bin

image43.wmf
(

)

(

)

m

-

=

X

n

F

X

X

X

T

n

;

,

,

,

2

1

K

oleObject59.bin

image44.wmf
X

oleObject60.bin

image45.wmf
m

oleObject61.bin

image46.wmf
(

)

(

)

X

X

n

F

X

X

X

T

n

n

-

=

*

*

*

2

*

1

;

,

,

,

K

oleObject62.bin

image47.wmf
*

X

oleObject1.bin

oleObject63.bin

image48.wmf
(

)

(

)

x

X

n

P

F

£

-

m

oleObject64.bin

image49.wmf
(

)

(

)

x

X

X

n

P

n

F

£

-

*

oleObject65.bin

image50.wmf
(

)

)

(

)

(

sup

,

x

G

x

F

G

F

K

x

-

=

oleObject66.bin

image51.wmf
(

)

(

)

(

)

(

)

.

sup

*

x

X

X

n

P

x

X

n

P

n

F

F

x

£

-

-

£

-

m

oleObject67.bin

image52.wmf
X

X

s

a

.

.

*

®

image2.wmf
n

t

t

t

X

X

X

,

,

,

2

1

K

oleObject68.bin

oleObject69.bin

image53.wmf
å

=

=

=

n

t

t

n

n

X

n

X

1

1

ˆ

m

oleObject70.bin

image54.wmf
(

)

(

)

å

-

=

+

-

-

=

h

n

t

n

t

n

h

t

n

X

X

X

X

n

h

1

1

)

(

ˆ

g

oleObject71.bin

image55.wmf
)

0

(

ˆ

)

(

ˆ

)

(

ˆ

n

n

n

h

h

g

g

r

=

oleObject72.bin

image56.wmf
t

X

oleObject73.bin

oleObject2.bin

image57.wmf
X

t

X

m

-

oleObject74.bin

image58.wmf
)

(

ˆ

h

n

g

oleObject75.bin

image59.wmf
X

m

oleObject76.bin

image60.wmf
å

å

å

-

=

=

-

=

+

+

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

h

n

t

n

n

t

t

h

n

t

t

n

t

h

t

n

X

X

n

X

n

X

X

X

n

h

1

1

1

1

1

1

)

(

ˆ

g

oleObject77.bin

image61.wmf
(

)

2

n

X

oleObject78.bin

image3.wmf
t

t

t

X

X

e

q

+

=

-

1

image62.wmf
(

)

n

O

p

/

1

oleObject79.bin

oleObject80.bin

image63.wmf
(

)

n

O

X

X

n

h

p

h

n

t

t

h

t

n

/

1

1

)

(

ˆ

1

+

=

å

-

=

+

g

oleObject81.bin

image64.wmf
(

)

)

(

)

(

ˆ

h

h

n

X

n

g

g

-

oleObject82.bin

image65.wmf
å

-

=

+

-

h

n

t

t

h

t

X

X

n

1

1

oleObject83.bin

image66.wmf
h

n

-

oleObject3.bin

oleObject84.bin

image67.wmf
n

oleObject85.bin

image68.wmf
å

=

+

=

n

t

t

h

t

n

X

X

n

h

1

1

)

(

~

g

oleObject86.bin

image69.wmf
)

(

ˆ

h

n

g

oleObject87.bin

image70.wmf
)

(

~

h

n

g

oleObject88.bin

image71.wmf
(

)

)

(

h

X

X

E

X

t

h

t

g

=

+

image4.wmf
{

}

t

e

oleObject89.bin

image72.wmf
0

=

X

m

oleObject90.bin

image73.wmf
n

Y

oleObject91.bin

image74.wmf
t

h

t

t

X

X

Y

+

=

oleObject92.bin

image75.wmf
å

g

Y

g

)

(

g

oleObject93.bin

image76.wmf
(

)

t

h

t

g

t

h

g

t

X

X

X

X

E

+

+

+

+

oleObject4.bin

oleObject94.bin

image77.wmf
t

X

oleObject95.bin

image78.wmf
t

h

t

t

X

X

Y

+

=

oleObject96.bin

image79.wmf
),

(

)

(

)

(

)

(

)

(

2

2

4

,

h

g

h

g

g

h

V

X

g

X

g

X

X

h

h

-

+

+

+

=

å

å

g

g

g

g

e

k

oleObject97.bin

image80.wmf
(

)

(

)

,

3

)

(

2

2

1

4

1

4

-

=

e

e

e

k

E

E

oleObject98.bin

image81.wmf
t

e

image5.wmf
2

s

oleObject99.bin

oleObject100.bin

image82.wmf
å

¥

-¥

=

-

+

=

j

j

t

j

t

X

e

y

m

oleObject101.bin

oleObject102.bin

image83.wmf
(

)

¥

<

4

t

E

e

oleObject103.bin

image84.wmf
j

y

oleObject104.bin

image85.wmf
,

¥

<

å

j

j

y

oleObject5.bin

oleObject105.bin

image86.wmf
(

)

(

)

h

h

d

X

n

V

N

h

h

n

,

,

0

)

(

)

(

ˆ

®

-

g

g

oleObject106.bin

image87.wmf
(

)

n

T

f

oleObject107.bin

image88.wmf
(

)

(

)

(

)

L

+

-

¢

+

q

q

f

q

f

n

T

oleObject108.bin

image89.wmf
q

-

n

T

oleObject109.bin

image90.wmf
(

)

(

)

q

f

f

-

n

T

image6.wmf
q

ˆ

oleObject110.bin

image91.wmf
q

-

n

T

oleObject111.bin

image92.wmf
m

k

Â

®

Â

:

f

oleObject112.bin

image93.wmf
k

Â

oleObject113.bin

image94.wmf
q

oleObject114.bin

image95.wmf
n

T

oleObject6.bin

oleObject115.bin

image96.wmf
f

oleObject116.bin

image97.wmf
(

)

T

T

r

d

n

n

®

-

q

oleObject117.bin

image98.wmf
¥

®

n

r

oleObject118.bin

image99.wmf
(

)

(

)

)

(

)

(

T

T

r

d

n

n

q

f

q

f

f

¢

®

-

oleObject119.bin

image100.wmf
(

)

(

)

)

(

q

f

f

-

n

n

T

r

image7.wmf
q

oleObject120.bin

image101.wmf
(

)

(

)

q

f

q

-

¢

n

n

T

r

oleObject121.bin

image102.wmf
n

q

ˆ

oleObject122.bin

image103.wmf
f

oleObject123.bin

image104.wmf
)

(

)

ˆ

(

q

f

q

f

-

n

oleObject124.bin

image105.wmf
)

ˆ

(

)

ˆ

(

*

n

n

q

f

q

f

-

oleObject7.bin

oleObject125.bin

image106.wmf
(

)

q

q

-

n

n

ˆ

oleObject126.bin

image107.wmf
(

)

)

(

)

ˆ

(

q

f

q

f

-

n

n

oleObject127.bin

oleObject128.bin

image108.wmf
q

oleObject129.bin

image109.wmf
n

q

ˆ

oleObject130.bin

image8.wmf
q

q

p

®

ˆ

image110.wmf
f

oleObject131.bin

image111.wmf
q

oleObject132.bin

image112.wmf
(

)

T

n

d

n

®

-

q

q

ˆ

oleObject133.bin

image113.wmf
(

)

T

n

d

n

®

-

q

q

ˆ

ˆ

*

oleObject134.bin

image114.wmf
(

)

(

)

(

)

(

)

T

n

d

n

q

f

q

f

q

f

¢

®

-

ˆ

oleObject135.bin

oleObject8.bin

image115.wmf
(

)

(

)

(

)

(

)

T

n

d

n

n

q

f

q

f

q

f

¢

®

-

ˆ

ˆ

*

oleObject136.bin

image116.wmf
)

ˆ

(

)

ˆ

(

*

n

n

q

f

q

f

-

oleObject137.bin

image117.wmf
(

)

n

n

n

q

q

f

q

ˆ

ˆ

*

-

¢

oleObject138.bin

image118.wmf
n

q

oleObject139.bin

image119.wmf
*

ˆ

n

q

oleObject140.bin

image9.wmf
(

)

(

)

(

)

(

)

1

2

0

ˆ

,

0

ˆ

-

®

-

n

d

N

n

g

s

q

q

image120.wmf
n

q

ˆ

oleObject141.bin

image121.wmf
q

oleObject142.bin

image122.wmf
f

oleObject143.bin

image123.wmf
0

>

d

oleObject144.bin

image124.wmf
0

>

h

oleObject145.bin

oleObject9.bin

image125.wmf
||

||

h

q

q

f

f

¢

-

¢

¢

oleObject146.bin

image126.wmf
||

||

h

h

oleObject147.bin

image127.wmf
d

q

q

£

-

¢

||

||

oleObject148.bin

image128.wmf
d

oleObject149.bin

image129.wmf
M

n

n

n

£

-

||

ˆ

ˆ

||

*

q

q

oleObject150.bin

image10.wmf
(

)

m

-

X

n

image130.wmf
d

q

q

£

-

||

ˆ

||

n

oleObject151.bin

image131.wmf
(

)

(

)

n

n

n

n

n

n

n

R

q

q

f

q

f

q

f

q

ˆ

ˆ

)

ˆ

(

)

ˆ

(

:

*

*

-

¢

-

-

=

oleObject152.bin

image132.wmf
(

)

(

)

M

n

n

n

n

h

q

q

f

f

q

q

£

-

¢

-

¢

=

ˆ

ˆ

*

oleObject153.bin

image133.wmf
0

>

e

oleObject154.bin

image134.wmf
h

oleObject155.bin

oleObject10.bin

image135.wmf
e

h

<

M

oleObject156.bin

image136.wmf
(

)

(

)

n

n

n

n

n

n

P

M

n

P

P

R

P

ˆ

|

||

ˆ

||

or

||

ˆ

ˆ

||

ˆ

|

*

d

q

q

q

q

e

>

-

>

-

£

>

oleObject157.bin

image137.wmf
q

q

.

.

ˆ

s

a

n

®

oleObject158.bin

image138.wmf
(

)

M

T

P

³

||

||

oleObject159.bin

image139.wmf
||

||

T

oleObject160.bin

image11.wmf
2

s

image140.wmf
1

ˆ

ˆ

r

q

=

oleObject161.bin

image141.wmf
1

ˆ

r

oleObject162.bin

image142.wmf
å

å

=

=

-

=

n

t

t

n

t

t

t

X

X

X

1

2

2

1

1

ˆ

r

oleObject163.bin

image143.wmf
q

oleObject164.bin

image144.wmf
n

2

ˆ

1

q

-

oleObject165.bin

oleObject11.bin

image145.wmf
f

oleObject166.bin

image146.wmf
(

)

å

å

=

=

-

-

+

=

n

t

t

n

t

t

t

t

X

X

X

1

2

2

1

1

1

ˆ

e

q

r

oleObject167.bin

image147.wmf
å

å

å

=

=

-

=

-

+

=

n

t

t

n

t

t

t

n

t

t

X

X

X

1

2

2

1

2

2

1

e

q

oleObject168.bin

image148.wmf
(

)

å

å

å

=

=

-

+

=

-

+

-

=

n

t

t

n

t

t

t

n

t

n

t

X

X

X

X

1

2

2

1

1

2

2

2

1

e

q

oleObject169.bin

image149.wmf
å

å

å

=

=

-

=

+

-

=

n

t

t

n

t

t

t

n

n

t

t

X

n

X

n

X

n

X

n

1

2

2

1

2

1

2

1

1

e

q

q

oleObject170.bin

image12.wmf
¥

®

n

oleObject171.bin

image150.wmf
1

r

q

=

oleObject172.bin

image151.wmf
(

)

t

t

s

a

n

t

t

t

X

E

X

n

e

e

1

.

.

2

1

1

-

=

-

®

å

oleObject173.bin

image152.wmf
1

-

t

X

oleObject174.bin

image153.wmf
t

e

oleObject175.bin

image154.wmf
(

)

t

t

X

E

e

1

-

oleObject12.bin

oleObject176.bin

image155.wmf
0

1

.

.

2

1

s

a

n

t

t

t

X

n

®

å

=

-

e

oleObject177.bin

image156.wmf
.

~

2

2

2

1

X

X

n

X

n

q

q

r

-

=

oleObject178.bin

image157.wmf
¥

®

n

oleObject179.bin

image158.wmf
1

.

.

~

ˆ

r

q

s

a

®

oleObject180.bin

image159.wmf
1

~

r

image13.wmf
(

)

X

X

n

-

*

oleObject181.bin

image160.wmf
(

)

2

X

f

oleObject182.bin

image161.wmf
(

)

x

X

n

x

x

n

2

q

q

f

-

=

oleObject183.bin

image162.wmf
f

oleObject184.bin

image163.wmf
r

ˆ

oleObject185.bin

image164.wmf
.

t

e

oleObject13.bin

oleObject186.bin

image165.wmf
(

)

(

)

0

,

0

2

,

0

)

0

(

V

N

X

n

d

X

®

-

g

oleObject187.bin

image166.wmf
å

+

=

g

X

X

g

V

2

2

4

0

,

0

)

(

2

)

0

(

)

(

g

g

e

k

oleObject188.bin

image167.wmf
0

=

h

oleObject189.bin

oleObject190.bin

image168.wmf
)

0

(

X

g

oleObject191.bin

oleObject14.bin

image169.wmf
2

2

)

0

(

)

0

(

X

n

n

X

X

g

q

f

g

=

¢

oleObject192.bin

image170.wmf
(

)

(

)

))

0

(

(

2

X

X

n

g

f

f

-

oleObject193.bin

image171.wmf
(

)

(

)

)

0

(

1

2

1

)

0

(

X

n

t

t

n

X

n

X

g

f

g

-

¢

å

=

oleObject194.bin

image172.wmf
)

1

(

p

o

oleObject195.bin

image173.wmf
(

)

å

-

t

X

t

n

X

n

X

n

n

X

)

0

(

)

0

(

2

1

2

2

g

g

q

oleObject196.bin

image14.wmf
*

X

oleObject197.bin

image174.wmf
0

,

0

V

oleObject198.bin

image175.wmf
(

)

(

)

(

)

T

n

X

X

n

n

X

n

d

X

2

2

2

)

0

(

))

0

(

(

ˆ

g

q

g

f

f

q

q

®

-

=

-

oleObject199.bin

image176.wmf
÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

0

,

0

2

2

2

)

0

(

,

0

V

n

X

N

X

n

g

q

oleObject200.bin

image177.wmf
q

ˆ

oleObject201.bin

image178.wmf
*

ˆ

q

oleObject15.bin

oleObject202.bin

image179.wmf
1

ˆ

ˆ

-

-

=

t

t

t

X

X

q

e

oleObject203.bin

image180.wmf
.

,

,

3

,

2

n

t

K

=

oleObject204.bin

image181.wmf
*

*

2

*

1

,

,

,

n

X

X

X

K

oleObject205.bin

image182.wmf
*

*

3

*

2

,

,

,

n

e

e

e

K

oleObject206.bin

image183.wmf
1

*

1

X

X

=

image15.wmf
X

oleObject207.bin

image184.wmf
*

*

1

*

ˆ

t

t

t

X

X

e

q

+

=

-

oleObject208.bin

image185.wmf
n

t

,

,

3

,

2

K

=

oleObject209.bin

oleObject210.bin

image186.wmf
*

i

X

oleObject211.bin

image187.wmf
*

*

X

X

i

-

oleObject212.bin

oleObject16.bin

image188.wmf
å

=

=

n

t

t

X

n

X

1

*

*

1

oleObject213.bin

image189.wmf
*

1

*

ˆ

ˆ

r

q

=

oleObject214.bin

image190.wmf
å

å

=

=

-

=

n

t

t

n

t

t

t

X

X

X

1

2

*

2

*

*

1

oleObject215.bin

oleObject216.bin

image191.wmf
1

~

r

oleObject217.bin

image192.wmf
.

~

2

*

2

*

2

*

*

1

X

X

n

X

n

q

q

r

-

=

image16.wmf
*

X

oleObject218.bin

image193.wmf
*

1

~

r

oleObject219.bin

image194.wmf
1

~

r

oleObject220.bin

image195.wmf
(

)

(

)

*

0

,

0

2

*

,

0

)

0

(

ˆ

V

N

X

n

d

n

®

-

g

oleObject221.bin

image196.wmf
(

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

®

-

=

-

*

0

,

0

2

2

*

2

*

2

*

*

)

0

(

ˆ

,

0

))

0

(

ˆ

(

ˆ

ˆ

V

n

X

N

X

n

n

n

n

d

n

g

q

g

f

f

q

q

oleObject222.bin

oleObject17.bin

image197.wmf
,

50

,

,

3

,

2

,

1

K

=

+

=

-

t

X

X

t

t

t

e

q

oleObject223.bin

image198.wmf
t

e

oleObject224.bin

image199.wmf
(

)

2

,

0

s

oleObject225.bin

image200.wmf
q

ˆ

oleObject226.bin

image201.wmf
*

ˆ

q

oleObject227.bin

image17.wmf
*

ˆ

q

image202.wmf
(

)

*

ˆ

ˆ

q

F

se

oleObject228.bin

oleObject229.bin

image203.wmf
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.0

0.5

1.0

1.5

2.0

2.5

tetha.boot

oleObject230.bin

oleObject231.bin

oleObject232.bin

oleObject233.bin

oleObject234.bin

oleObject235.bin

oleObject18.bin

oleObject236.bin

oleObject237.bin

image204.wmf
1

~

ˆ

r

q

p

®

oleObject238.bin

oleObject239.bin

image205.wmf
(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

®

-

*

0

,

0

2

2

*

2

*

2

*

)

0

(

ˆ

,

0

))

0

(

ˆ

(

V

n

X

N

X

n

n

n

d

n

g

q

g

f

f

oleObject240.bin

oleObject19.bin

oleObject20.bin

image18.wmf
m

n

Â

®

Â

:

f

oleObject21.bin

image19.wmf
(

)

q

q

ˆ

ˆ

*

-

n

oleObject22.bin

image20.wmf
(

)

(

)

(

)

(

)

G

X

X

n

X

d

f

f

f

¢

®

-

*

oleObject23.bin

image21.wmf
(

)

G

X

X

n

d

®

-

*

oleObject24.bin

image22.wmf
q

oleObject25.bin

image23.wmf
q

ˆ

oleObject26.bin

image24.wmf
q

ˆ

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

image25.wmf
å

=

=

=

n

i

i

X

n

X

1

1

ˆ

q

oleObject33.bin

image26.wmf
(

)

m

-

X

n

oleObject34.bin

image27.wmf
(

)

X

X

n

-

*

oleObject35.bin

image28.wmf
(

)

(

)

(

)

(

)

.

sup

*

x

X

X

n

P

x

X

n

P

n

F

F

x

£

-

-

£

-

m

oleObject36.bin

image29.wmf
*

ˆ

q

oleObject37.bin

oleObject38.bin

oleObject39.bin

oleObject40.bin

oleObject41.bin

image30.wmf
(

)

n

X

X

X

,

,

,

2

1

K

oleObject42.bin

image31.wmf
(

)

F

X

X

X

T

n

;

,

,

,

2

1

K

oleObject43.bin

image32.wmf
n

F

oleObject44.bin

oleObject45.bin

image33.wmf
n

X

X

X

,

,

,

2

1

K

oleObject46.bin

oleObject47.bin

image34.wmf
(

)

n

n

F

X

X

X

T

;

,

,

,

*

*

2

*

1

K

oleObject48.bin

image35.wmf
n

F

oleObject49.bin

image36.wmf
(

)

*

*

2

*

1

,

,

,

n

X

X

X

K

oleObject50.bin

image37.wmf
n

F

oleObject51.bin

image38.wmf
(

)

G

F

,

r

