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Abstract. In this paper we investigated the asymptotic distribution of the bootstrap 

parameter estimator of  a first order autoregressive AR(1) model. We described the 

asymptotic distribution of such estimator by applying the delta method and employing 

two different approaches, and concluded that the two approaches lead to the same 

conclusion, viz. both results converge in distribution to a normal distribution. We also 

presented the Monte Carlo simulation of the residuals bootstrap and application with 

real data was carried out in order to yield apparent conclusions. 
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1. Introduction 

Consider the following first order autoregressive or AR(1) process: 

,1 ttt XX     

where  t  is a zero mean white noise process with constant variance 
2 .  Let ̂  be the 

estimator of the parameter  . Studying of estimation of the unknown parameter   

involves:  

(i) what estimator ̂  should be used?  

(ii) having choosen to use particular ̂ , is this estimator consistent to the 

population parameter  ?   

(iii)  how accurate is ̂   as an estimator for  true parameter  ? 

(iv) the interesting one is, how is the asymptotic behaviour of such estimator?  
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Bootstrap is a general methodology for answering the second and third questions, while 

the delta method is one of tools used to answer the last question. Consistency theory is 

needed to ensure that the estimator is consistent to the actual parameter as desired, and 

thereof the asymptotic behaviour will be studied.  

Let   be a parameter, i.e. coefficient of stationary AR(1) process. The estimator 

for   is  )1(ˆˆ
n   

n

t t

n

t tt XXX
1

2

2 1 .  The consistency theories of ̂  have 

studied in [3, 5, 10], and for bootstrap version of the same topic, see [1, 4, 6, 7]. They 

deal with the bootstrap approximation in various senses (e.g., consistency of estimator, 

asymptotic normality, applying of Edgeworth expansions, etc.), and they reported that 

the bootstrap works usually very well.  Bose [2] studied the accuracy of the 

bootstrapping method for autoregressive model. He proved that the parameter estimates 

of the autoregressive model can be bootstrapped with accuracy  2/1no  a.s., thus, it 

outperforms the normal approximation, which has accuracy “only” of order  2/1nO . 

Suprihatin, et.al [8]  studied the advantage of bootstrap by simulating the data  that fits 

to the AR(1) process, and the results gave a good accuracy. 

A good perform of the bootstrap estimator is applied to study the asymptotic 

distribution of *̂ , i.e., bootstrap estimator for parameter of the AR(1) process, using 

delta method. We describe the asymptotic distribution of the autocovariance function 

and investigate the bootstrap limiting distribution of *̂ . Section 2 reviews the 

consistency of bootstrap estimate for mean under Kolmogorov metric and describe the 

estimation of autocovariance function. Section 3 deals with asymptotic distribution of 

*̂  by applying the delta method. Section 4 discusses the results of Monte Carlo 

simulations involve bootstrap standard errors and density estmation for *̂ .  Section 5, 

the last section, briefly describes the conclusions of the paper. 

 

2. Consistency of  Estimation of  the Autocovariance Function 

Let  nXXX ,,, 21   be a  random sample of size n from a population with common 

distribution F and let  FXXXT n;,,, 21   be the specified random variable or statistic 

of interest, possibly depending upon the unknown distribution F. Let nF  denote the 

empirical distribution function of  nXXX ,,, 21  , i.e., the distribution putting 

probability 1/n at each of the points nXXX ,,, 21  . nF .   A bootstrap sample is defined 
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to be a random sample of size n drawn from nF , say  **

2

*

1

* ,,, nXXXX  . The 

bootstrap sample at first bootstrapping is usually denoted as 1*X , at second by 2*X , 

and so on. In general, the bootstrap sample at Bth bootstrapping is denoted by BX * . The 

bootstrap data set   BbXXXX b

n

bbb ,,2,1,,,, **

2

*

1

*    consists of members of the 

original data set  nXXX ,,, 21  , some appearing zero times, some appearing once, 

some appearing twice, etc. The bootstrap method is to approximate the distribution of  

 FXXXT n;,,, 21   under F by that of  nn FXXXT ;,,, **

2

*

1   under nF .   

 Let functional T is defined as      ˆ;,,, 21 nFXXXT n  where ̂  is the 

estimator for the coefficient   of stationary AR(1) process. The bootstrap version of T  

is     ˆˆ;,,, ***

2

*

1  nFXXXT nn , where *̂  is a bootstrap version of   computed 

using the original sample nXXX ,,, 21  . The bootstrap method is a device for 

estimating   xnPF ̂  by   .ˆˆ* xnP
nF    

  Suppose we have the observed values nXXX ,,, 21   from the stationary AR(1) 

process. A natural estimators for parameters mean, covariance  and correlation function 

are 



n

t

tnn X
n

X
1

1
̂ ,   





 
hn

t

ntnhtn XXXX
n

h
1

1
)(̂ , and )0(ˆ)(ˆ)(ˆ

nnn hh    

respectively. These all three estimators are consistent (see, e.g., [3, 10]). If the series 

tX  is replaced by the centered series XtX  , then the autocovariance function does 

not change. Therefore, studying the asymptotic properties of the sample autocovariance 

function )(ˆ hn , it is not a loss of generality to assume that X  = 0. The sample 

autocovariance function can be written as  

 


 





 


















hn

t

n

n

t

t

hn

t

tnthtn XX
n

X
n

XXX
n

h
1 11

111
)(̂  2nX .                   (2)    

Under some conditions (see, e.g., [10]), the last three terms in (2) is of the order 

 nOp /1 . Thus, under assumption that  X  = 0, we can write (2) in simple notation,    

 nOXX
n

h p

hn

t

thtn /1
1

)(ˆ
1

 




 . 

The asymptotic behaviour of the sequence  )()(ˆ hhn Xn    depends only on 




 

 hn

t tht XXn
1

1 .  Note that a change of hn   by n  is asymptotically negligible, so that, 

for simplicity of notation, we can equivalently study the average 
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n

t thtn XX
n

h
1

1
)(~ . 

Both )(ˆ hn  and )(~ hn  are unbiased estimator of    )(hXXE Xtht  , under the 

condition that 0X . Their asymptotic distribution then can be derived by applying a 

central limit theorem to the averages nY  of the variables thtt XXY  . The asymptotic 

variance takes the form g Y g)(  and in general depends on fourth order moments of 

the type  thtgthgt XXXXE   as well as on the autocovariance function of the series 

tX . Van der Vaart [10] showed that the autocovariance function of the series 

thtt XXY   can be written as  

),()()()()( 22

4, hghgghV X

g

X

g

XXhh                        (3) 

Where 
 
 

,3)(
22

1

4

1
4 






E

E
 the fourth cumulant of t . The following theorem gives the 

asymptotic distribution of the sequence  )()(ˆ hhn Xn   . 

 

Theorem 1 If 





j

jtjtX  holds for an i.i.d. sequence t  with mean zero and 

  4

tE   and numbers j  with , j j  then    hhdXn VNhhn ,,0)()(ˆ  .    

 

3. Asymptotic Distribution of Bootstrap Estimate For Parameter of AR(1) Process 

Using Delta Method 

The delta method consists of using a Taylor expansion to approximate a random vector 

of the form  nT  by the polynomial        nT  in nT . This method is 

useful to deduce the limit law of     nT  from that of nT ,  which is guaranteed 

by the next theorem. 

 

Theorem 2  Let  mk :  be a map defined on a subset of 
k  and differentiable 

at  . Let nT  be random vectors taking their values in the domain of  . If 

  TTr dnn   for numbers nr , then    )()( TTr dnn   . Moreover, the 

difference between   )( nn Tr  and    
nn Tr  converges to zero in probability. 
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Assume that n̂  is a statistic, and that   is a given differentiable map. The 

bootstrap estimator for the distribution of )()ˆ(  n  is )ˆ()ˆ( *

nn   . If the bootstrap 

is consistent for estimating the distribution of   nn ˆ , then it is also consistent for 

estimating the distribution of  )()ˆ(  nn , as given in the following theorem. The 

proof of the theorem is due to [10]. 

 

Theorem 3 (Delta Method For Bootstrap)  Let mk :  be a measurable map 

defined and continuously differentiable in a neighborhood of  . Let n̂  be random 

vectors taking their values in the domain of   that converge almost surely to  . If 

  Tn dn ̂  and   Tn dn  ˆˆ*  conditionally almost surely, then both 

      Tn dn  ˆ  and       Tn dnn   ˆˆ*  conditionally almost 

surely.   

Proof.  By applying the mean value theorem, the difference )ˆ()ˆ( *

nn    can be 

written as  nn
n




ˆˆ*   for a point n  between 
*ˆ
n  and n̂ , if the latter two points are in 

the ball around   in which   is continuously differentiable. By the continuity of the 

derivative, there exists a constant 0  for every  0  such that |||| h    < |||| h  

for every h and every   ||ˆ|| n . If n is sufficiently large,   suffeciently small, 

Mn nn  ||ˆˆ|| *  , and   ||ˆ|| n , then  

   nnnnn nnR  
ˆˆ)ˆ()ˆ(: **   

          Mn nn
n

 
 ˆˆ* . 

Fix a number 0  and a large number M. For   sufficiently small to ensure that 

 M ,  

   nnnnnn PMnPPRP ˆ|||ˆ||or ||ˆˆ||ˆ| *   .                  (4) 

 

Since  ..
ˆ

san  , the right side of (4) converges almost surely to  MTP ||||  for 

every continuity point M of ||||T . This can be made arbitrarily small by choice of M. 
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Conclude that the left side of (4) converges to zero almost surely, and hence 

    .0ˆˆ)ˆ()ˆ( ..

**

sannnn nn     By assumption that    Tn dn  ˆˆ*  and 

because matrix   is continuous, by applying the continuous-mapping theorem we 

conclude that   ).(ˆˆ* Tn dnn      By applying the Slutsky’s lemma, we obtain

   nnsann nn  
ˆˆ)ˆ()ˆ( *

..

*  , and by an earlier conclusion we also conclude 

that     ,)()ˆ()ˆ( .

* Tn dnn    completing the proof.   ■ 

  

The moment estimator  for stationary AR(1) process is obtained from the Yule-

Walker equation, i.e. )1(ˆˆ
n   where )1(ˆ

n  be the lag 1 of sample  autocorrelation  

          







 


n

t t

n

t tt

n

X

XX

1

2

2 1
)1(̂ .                                                    (5) 

According to Davison and Hinkley [4],  the estimated standard error of parameter ̂  is  

          n2ˆ1  .  Meanwhile, the bootstrap version of standard error was 

introduced in [5]. In Section 4 we demonstrate the results of the Monte Carlo 

simulations consist tw types of standard errors and give brief comments.  

In accordance with the Theorem 3, we should construct a measurable function 

  which is defined and continuously differentiable in a neighborhood of  .  

Meantime, the bootstrap version of  ̂ , denoted by *̂  can be obtained as 

follows (see, e.g., [5, 6]): 

1. Define the residuals 1
ˆˆ

 ttt XX   for .,,3,2 nt    

2. A bootstrap sample 
**

2

*

1 ,,, nXXX   is created by sampling 
**

3

*

2 ,,, n 
 
 with 

replacement from the residuals. Letting 1

*

1 XX   as an initial bootstrap sample 

and **

1

* ˆ
ttt XX    , nt ,,3,2  . 

3. Finally, after centering the bootstrap time series 
**

2

*

1 ,,, nXXX   i.e. 
*

iX  is 

replaced by 
** XX i   where  


n

t tX
n

X
1

** 1
. Using the plug-in principle, we 

obtain the bootstrap estimator  )1(ˆˆ **

n 







 


n

t t

n

t tt

X

XX

1

2*

2

**

1
 computed from the 

sample 
**

2

*

1 ,,, nXXX   .  
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The way to describe the function   and asymptotic behaviour of )1(ˆ
n  as 

follows. Since   
n

t t

n

t ttn XXX
1

2

2 1)1(̂ , then we can  write this expression as  
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2 1
,

1
)1(ˆ  , 

for the function 2:  with 
u

v
vu ),( . According to the Theorem 1, the 

multivariate central limit theorem for 

T
n

t
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n

t

t XX
n

X
n
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The map   is differentiable with the matrix  
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By applying Theorem 2, 
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In view of Theorem 2, if   TZZ 21,  possesses the normal distribution as in (6), then 
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Thus, by Theorem 2 we conclude that 
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Similarly and by applying the plug-in principle, Theorem 3 gives the bootstrap version 

for the above result, 
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 . 

The results which are obtained by these two ways (methods) lead to the same 

conclusion, i.e. both results converge in distribution to normal distribution, but the 

variances of both normal distribution are different. The difference of both variances is a 

reasonable property, because they were concluded by different approach. 

 

 

4. Results of Monte Carlo Simulations 
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The simulation is conducted using S-Plus and the data sets are 20, 30, 50, and 100 time 

series data of  exchange rate of US dollar compared to Indonesian rupiah. Let 

4,3,2,1, ini  be the size of ith data set respectively,  The data is taken from 

authorized website of  Bank Indonesia, i.e., http://www.bi.go.id  for  transactions during 

May up to August  2012. Let the count for the tth transaction be tX  and identified as a 

sample. After centering the four data sets (replacing tX  by tX ), then we fit an AR(1) 

model ,,,2,1,1 ittt ntXX     and 4,3,2,1i , where  t   WN  2,0  .  For 

the data of size 1n = 20, the simulation gives the estimate ̂  turned out to be 0.7126 

with an estimated standard error         = 0.1569. The simulation shows that the larger n 

the smaller estimated standard error, so larger n means a better estimate of  , as seen in 

Table 1. 

Table 1  The estimates of  *̂  and           as compared to ̂  and          respectively,  

      for various sample size n and bootstrap sample size B 

 
 B  

50 200 1,000 2,000 

 

n = 20 

*̂  0.5947 0.5937 0.6044 0.6224     ̂ = 0.7126 

         0.1368 0.1428 0.1306 0.1295         = 0.1569 

 

n = 30 

*̂  0.6484 0.6223 0.6026 0.6280 ̂ = 0.7321 

         0.1049 0.1027 0.1108 0.1185         = 0.1244 

 

n = 50 

*̂  0.5975 0.6051 0.5792 0.6002 ̂ = 0.6823 

         0.1162 0.1178 0.1093 0.1103         = 0.1034 

 

n = 100 

*̂  0.6242 0.6104 0.6310 0.6197 ̂ = 0.6884 

         0.0962 0.1006 0.0994 0.0986         = 0.0736 

  

The bootstrap estimator of ̂  is usually denoted by *̂ . How accurate is *̂  as 

an estimator for ̂ ? To answer the question, we need a bootstrap estimated standard 

error which is denoted by         , as a measure of statistical accuracy. To do so, we 

resample the data tX  as many B ranging from 50 to 2,000 for each sample of size 

4,3,2,1, ini . To produce a good approximation, Davison and Hinkley [4]  and 

Efron and Tibshirani [5] suggested to use the number of bootstrap samples (B) at least B 

= 50. Table 1 shows the results of simulation for various size of data sets and the 

http://www.bi.go.id/
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number of bootstrap samples. As we can see, the increasing of the number of bootstrap 

samples tends to yield the estimates of            are close to the estimate of standard 

error,         . For example, even for small sample of size 201 n , the bootstrap shows 

a good performance. Using bootstrap samples B = 50, the resulting of its bootstrap 

standard error          turned out to be 0.1368, while the estimated standard error 

        = 0.1569. The difference between the two estimates is relative small. Meanwhile, 

if  we employ the 1,000 and 2,000 bootstrap samples, the simulation yields            to 

be 0.1306 and 0.1295 repectively, versus their estimated standard error of 0.1569. This 

fact shows a better performance of the bootstrap method along with the increasing 

number of bootstrap samples used. A better performance of bootstrap is also shown 

when we simulate a larger sample, as we can see in Table 1.  For 1004 n  the bootstrap 

estimate of standard errors are 0.0962 and 0.0986 for B = 50 and 2,000 respectively, 

agreeing nicely with the estimated standard error of 0.1034. 

 Meantime, the histogram and density estimates of   ˆˆ* in , with

4,3,2,1i  are presented in Fig. 1. The top row of Fig. 1 shows the distribution of 

random variable   ˆˆ* in  looks skewed because of employing the small size of 

samples used, i.e. 20 and 30. At overall, from Fig. 1 we can see that the four resulting 

histograms are closely related to the probability density of normal random variables. In 

fact, the four plots of density estimates are resemble a plot of the probability density 

function (pdf) of an  *2,0 N  random variable, where  

*

1,03*

*
*

1,12*

*

0,0

2

2*

*
*2

)0(ˆ

)1(ˆ2

)0(ˆ

1

)0(ˆ

)1(ˆ
VVV

n

n

nn

n








 








 . 

  Again, we can see that the larger n the closer density estimates in estimating the pdf of 

an  *2,0 N  random variable. This result agrees with the result of [2] and [6]. 
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Fig. 1  Histogram  and  plot  of  density  estimates  of  1,000  bootstrap   random  

samples   4,3,2,1,ˆˆ*  ini  ,  with sample of  size  1n = 20 (top left), 2n = 

30 (top right), 
3n = 50 (buttom left),  and 4n = 100 (buttom right). 

 

5. Conclusions 

A number of points arise from the study of Sections 2, 3, and 4, amongst which we state 

as follows. 

1. Consider an AR(1) process ttt XX   1 ,  with Yule-Walker estimator ̂  = 

)1(ˆ
n  of the true parameter )1(X  .  The crux result, by applying the delta 

method we have shown that the asymptotic distribution, 
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where 
*

1,03*

*
*

1,12*

*

0,0

2
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*
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)0(ˆ

)1(ˆ2

)0(ˆ
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 . This result leads to the 

same conclusion with those of using the first way. The difference of both 

variances is a reasonable property, because the two variances were concluded by 

different approach. 

2. Resulting of Monte Carlo simulations show that the bootstrap estimators are 

good approximations, as represented by their standard errors and a plot of 

density estimates. 
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