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Heavy-duty diesel maintenance equipment consumes significant amounts 
of fuel and consequently emits substantial quantities of pollutants. The 
purpose of this study was to identify which engine activity variables had 
the greatest impact on fuel use and emissions rates. A real-world data set 
was used for a case study fleet containing backhoes, motor graders, and 
wheel loaders. Multiple linear regression was used to assess the relation-
ships between engine activity variables and fuel use and emissions rates. 
The engine activity variables of engine speed, manifold absolute pres-
sure, and intake air temperature were used to predict mass per time 
fuel use and emissions rates of nitrogen oxides, hydrocarbons, carbon 
monoxide, carbon dioxide, and particulate matter. The results indicated 
that manifold absolute pressure had the greatest impact on fuel use and 
emissions rate predictions. Based on this finding, fuel use and emissions 
estimating models based on manifold absolute pressure were developed 
as a practical estimating tool for practitioners.

Highway maintenance activities are a major part of infrastructure 
asset management. Many of these activities are performed by heavy-
duty diesel (HDD) equipment. This equipment consumes large quan-
tities of diesel fuel and thus emits large quantities of pollutants and 
greenhouse gases (GHGs). The energy and environmental impacts 
of these activities and equipment are significant.

Fleet managers have long been able to estimate their required fuel 
consumption based on historical records. Because of drastic price 
increases in recent years, it is now more important than ever to be 
able to estimate future fuel requirements to manage infrastructure 
maintenance costs. Furthermore, most fleet managers seldom con-
cern themselves with the environmental impact of their equipment, 
specifically air pollutant emissions. As new environmental regulations 
appear on the horizon, fleet managers can no longer afford to disregard 
the energy and environmental impacts of their work. They must be 
able to quantify the fuel use and emissions of their equipment to 
manage them.

The objective of this study was to establish a modeling frame-
work for estimating fuel use and emissions of HDD equipment used 
for highway maintenance activities. To do so, it was necessary to 

understand equipment activity, especially engine performance. The 
primary research question was: Which engine variables have the 
greatest impact on fuel use and pollutant emissions rates for HDD 
equipment?

Background

According to the U.S. Environmental Protection Agency (EPA), there 
are approximately two million items of off-road HDD construction 
and mining equipment in the United States (1). This equipment con-
sumes about six billion gal of diesel fuel annually. EPA also estimates 
that in 2005, HDD construction equipment emitted approximately 
657,000 tons of nitrogen oxides (NOx), 1,100,000 tons of carbon 
monoxide (CO), and 63,000 tons of particulate matter (PM). Each 
of these pollutants is a criteria pollutant as designated by the EPA 
National Ambient Air Quality Standards (NAAQS) (2). Other pollut-
ants found in diesel exhaust include hydrocarbons (HCs), which are a 
precursor to ground-level ozone (another NAAQS criteria pollutant). 
Although not a regulated pollutant, carbon dioxide (CO2) is perhaps 
the most recognized emission from HDD equipment because of its 
notoriety as a GHG and its potential global warming effect.

Diesel emissions have many impacts on human health and the 
environment. Diesel exhaust may lead to serious health conditions, 
including asthma and allergies, and can worsen heart and lung 
disease, especially in vulnerable populations like children and the 
elderly. PM and NOx emissions lead to the formation of smog and 
acid rain, which damage plants, animals, crops, and water resources. 
CO2 is a major GHG emission that leads to climate change, which 
affects air quality, weather patterns, sea level, ecosystems, and 
agriculture. Reducing GHG emissions from diesel engines through 
improved fuel economy and idle reduction strategies can help 
address climate change, improve the nation’s energy security, and 
strengthen the economy. Another concern with diesel emissions is 
environmental justice. It is possible that many minority and dis
advantaged populations may receive disproportionate impacts from 
diesel emissions (3).

To quantify and characterize HDD emissions, reliable prediction 
models are needed; however, most fuel use and emissions predic-
tion tools are based on engine dynamometer data. Although engine 
dynamometer testing is a reliable source of data, it is performed in  
a laboratory setting and does not accurately represent the episodic 
nature of real-world equipment activity. The data used for the 
modeling efforts presented in this paper are based on real-world 
data collected from in-use HDD equipment by an on-board portable 
emissions measurement system (PEMS).
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Scope

The equipment of interest for this study included backhoes, motor 
graders, and wheel loaders. These types of equipment were selected 
because they are often used for many highway maintenance activities  
and are frequently the most represented units in a highway mainte-
nance fleet. The case study equipment was owned by either the North 
Carolina Department of Transportation or private fleet owners in the 
Raleigh, North Carolina, area. The equipment was observed perform-
ing activities such as light grading, fine grading, excavating, and 
hauling materials.

The HDD equipment engine activity variables include measure-
ments of engine speed in revolutions per minute (rpm), manifold 
absolute pressure (MAP), and intake air temperature (IAT). The 
pollutant measurements include NOx, HC, CO, CO2, and PM. Fuel 
use measurements were also collected. The engine activity variables 
were used to predict fuel use and emissions rates.

Previous Work

The most prominent and well-documented data set of real-world 
fuel use and emissions measurements from off-road HDD equipment 
was developed by researchers at North Carolina State University 
from 2005 through 2008. This data set is widely considered to be 
the largest publicly available source of real-world fuel use and 
emissions data for nonroad construction equipment. The research 
team utilized PEMS testing to collect, analyze, and characterize  
real-world engine, fuel use, and emissions data from more than 
30 items of HDD equipment. The equipment types included back-
hoes, bulldozers, excavators, motor graders, off-road trucks, track 
loaders, and wheel loaders. For some of the equipment, the team 
made comparisons of pollutant emissions for petroleum diesel versus 
those for B20 biodiesel.

Many papers have been published based on the aforementioned 
data set. Lewis et al. outlined requirements and incentives for 
reducing air pollutant emissions from construction equipment (4). 
The authors also compared sources of emissions from various types 
of equipment. On the basis of those concepts, Lewis et al. devel-
oped a fuel use and emissions inventory for a publicly-owned fleet 
of nonroad diesel construction equipment (5). This emissions inven-
tory quantified emissions of NOx, HC, CO, and PM for the fleet for 
petroleum diesel and B20 biodiesel. The results were categorized by 
equipment type and EPA engine tier standards. The impacts on the 
inventory of different emissions reduction strategies were com-
pared. Frey et al. followed up this work by presenting the results 
of a comprehensive field study that characterized and quantified 
real-world emissions rates of NOx, HC, CO, and PM from nonroad 
diesel construction equipment (6). Average emissions rates were 
developed for each equipment type and were presented on a mass  
per time basis and mass per fuel used basis for petroleum diesel and 
B20 biodiesel. Frey et al. conducted a comparison of B20 versus 
petroleum diesel emissions for backhoes, motor graders, and wheel 
loaders working under real-world conditions (7). Frey et al. also com-
pared emissions rates for the different EPA engine tier standards of 
the equipment.

Lewis et al. published a series of papers on the impacts of idling on 
equipment fuel use and emissions rates (8–10). These papers quanti-
fied the change in total activity fuel use and emissions as the ratio 
of idle time to non-idle time changes. The major finding was that 
total fuel use and emissions for an activity increase as equipment idle 

time increases. Ahn et al. used the data set and previous studies to 
develop an integrated framework for estimating, benchmarking, and 
monitoring pollutant emissions from construction activities (11). 
Hajji and Lewis developed a productivity-based estimating tool for 
fuel use and air pollutant emissions for nonroad construction equip-
ment performing earthwork activities (12). The methodology for  
the field data collection in these studies used a PEMS and is well 
documented by Rasdorf et al. (13). Frey et al. also outlined the meth-
ods and procedures for collecting and analyzing data for construction 
equipment activity, fuel use, and emissions; thus, the methodology 
may be easily duplicated by those with the necessary expertise and 
implementation (14, 15).

Methodology

This section addresses the research approach that was used to evaluate 
the impact of engine activity parameters on the fuel use and emissions 
rates of HDD maintenance equipment. The data set used to conduct 
the analysis is described. The modeling methods used to define the 
relationships between engine activity and emissions data are pre-
sented. The approach for evaluating the impact of each engine activity 
variable on fuel use and emission rates is provided.

Engine Activity and Emissions Data

The data used in this paper were based on real-world data sets 
developed by North Carolina State University. Data were collected 
from 31 items of HDD equipment, including five backhoes, six bull-
dozers, three excavators, six motor graders, three off-road trucks, 
three track loaders, and five wheel loaders. The focus of this study 
was HDD equipment typically used for highway maintenance; 
therefore, five backhoes, six motor graders, and five wheel loaders 
were examined.

The real-world data sets included second-by-second measure-
ments of engine activity parameters and emissions data. The engine 
activity data included RPM (rpm), MAP (kPa), and IAT (°C). These 
are common engine activity variables that are generally measurable 
for all types of vehicles. It should be noted, however, that the PEMS 
subset of instruments for measuring engine activity was limited to 
these three variables. Although more recently manufactured nonroad 
equipment may have an onboard diagnostics system that records 
values for these variables (as well as others) via a PEMS interface, 
the data used in this study were collected directly from the engine 
by specialized PEMS instrumentation.

The emissions data included mass per time (g/s) rates of NOx, HC, 
CO, CO2, and PM. Mass per time (g/s) fuel use measurements were 
also collected. All these data were collected simultaneously and 
on the same timescale (s) as the engine activity data; thus, it was 
possible to identify relationships between the engine activity, fuel use, 
and emissions for each item of equipment. In the analysis presented 
here, fuel use and emissions were dependent variables and engine 
activity parameters were independent variables.

Multiple Linear Regression Models

Multiple linear regression (MLR) was used to model the relation-
ships between the dependent and independent variables. The three 
independent (or predictor) variables included MAP, RPM, and IAT. 
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The dependent (or response) variables included mass per time fuel 
use rates and emission rates of NOx, HC, CO, CO2, and PM; hence, 
six MLR models were developed for each item of equipment. The 
MLR equations for fuel use and emission rates for each pollutant 
had the following form:

Y X X X= β + β + β + β− (1)1 6 0 1 1 2 2 3 3

where

	 Y1–6	=	� fuel use or emissions rate of NOx, HC, CO, CO2, 
or PM (g/s);

	 X1	=	MAP (kPa);
	 X2	=	engine speed (rpm);
	 X3	=	 intake air temperature (°C); and
	β0, β1, β2, β3	=	coefficients of linear relationship.

A forward stepwise variable selection method was used to develop 
the MLR models. The criteria to include a variable in the model were 
based on probability (p-values). If the p-value of the variable was 
less than .05, the variable was included in the model. Conversely, if 
the p-value was greater than .05, the variable was not included in the 
model. The analysis of variance and analysis of maximum likelihood 
for each response variable were also conducted. The conditions of 
the MLR models were investigated with residual plots, including 
the normal probability plot of the residuals, residuals versus the 
fitted values, histogram of the residuals, and residuals versus the 
order of data.

Variable Impact Analysis

The purpose of variable impact analysis (VIA) is to measure the 
sensitivity of prediction models to changes in independent vari-
ables (16). As a result of the analysis, every independent variable is 
assigned a relative variable impact value. These are percentage values 
and sum to 100%. The lower the percentage value for a given variable, 
the less impact the variable has on the predictions. The results of the 
analysis help in the selection of a new set of independent variables, 
possibly a set that will enable more accurate predictions. For example, 

a variable with a low impact value can be eliminated in favor of a 
new variable.

The results of VIA are relative to a given set of models; thus, if 
one variable is disregarded in a set of models, that does not mean 
that it will not be of value to another set of models for making a 
significant contribution to accurate predictions. In data sets with 
smaller numbers of cases or larger numbers of variables, the differ-
ences in the relative impacts of the variables between sets of models 
may be more pronounced. For example, consider a model with two 
independent variables in which one is assigned 99% and the other 1%. 
This assignment means that the latter is much less important than the 
former, but it does not mean that the latter is unimportant altogether, 
particularly if high accuracy of predictions is desired.

VIA is not intended to support firm conclusions such as stating 
with high confidence that a given variable is irrelevant. Instead, the 
intention is to aid in a search for the best set of independent variables. 
The results of VIA may suggest that a given variable looks irrelevant, 
sufficiently so that it may be worthwhile to develop models without 
this variable. In this study, VIA was used to determine the relative 
impact of RPM, MAP, and IAT on predicting fuel use and emissions 
rates of NOx, HC, CO, CO2, and PM.

Results

This section presents the results of the VIA. A data collection 
summary of the case study equipment is presented. A summary 
of the precision of the MLR models is provided. The engine vari-
ables that had the highest impact on fuel use and emissions rates 
are identified.

Engine Activity and Emissions Data

Table 1 summarizes the HDD equipment specifications and the 
quantity of data that was collected for each item of equipment. Engine 
tier refers to the EPA regulation imposed on engine manufactur-
ers, which is aimed at reducing emissions rates of NOx, HC, CO, and 
PM. Almost half the units tested were Tier 1. The horsepower 

TABLE 1    HDD Equipment Specifications and Data Collection

Equipment
Horsepower 
(hp)

Displacement 
(L)

Model 
Year

Engine 
Tier

Data 
(s)

Backhoe 1   88 4.0 2004 2 8,780
Backhoe 2   88 4.2 1999 1 13,407
Backhoe 3   88 4.2 2000 1 9,853
Backhoe 4   97 3.9 2004 2 6,406
Backhoe 5   97 4.5 2004 2 5,379

Motor Grader 1 195 8.3 2001 1 16,293
Motor Grader 2 195 7.1 2004 2 10,767
Motor Grader 3 195 8.3 2001 1 5,590
Motor Grader 4 167 8.3 1990 0 10,040
Motor Grader 5 160 8.3 1993 0 9,788
Motor Grader 6 198 7.2 2007 3 7,757

Wheel Loader 1 149 5.9 2004 2 15,226
Wheel Loader 2 130 5.9 2002 1 19,064
Wheel Loader 3 130 5.9 2002 1 3,404
Wheel Loader 4 126 5.9 2002 1 6,718
Wheel Loader 5 133 6.0 2005 2 11,827
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rating and displacement values were quantitatively similar for all 
items in a particular equipment type. The model years ranged from 
1990 (Motor Grader 4) to 2007 (Motor Grader 6). Overall, almost 45 h  
of data were collected for the case study equipment. This total 
included approximately 12 h for backhoes, 17 h for motor graders, 
and 16 h for wheel loaders.

Table 2 summarizes the average values of engine activity, fuel use, 
and emissions for each of the equipment units in the case study fleet. 
The purpose of this table is to show the magnitude of the real-world 
data values that were collected. In the table, the equipment types with 
the highest average MAP and RPM also have the highest average 
fuel use and emissions rates. Furthermore, these equipment types 
also have the highest horsepower ratings and displacement values. 
Based on the data in Table 2, IAT appears to have little to no influence 
on fuel use and emissions rates, since backhoes had the highest aver-
age IAT but the lowest average fuel use and emissions rates. Overall, 
motor graders have the highest average engine activity, fuel use, and 
emission rates, followed by wheel loaders and backhoes. This find-
ing appears to support the intuitive conclusion that equipment with 
larger engines tend to consume more fuel and emit more pollutants 
on a mass per time basis.

MLR Models

MLR models were developed for each item of equipment, with 
fuel use, NOx, HC, CO, CO2, and PM as dependent variables and 
MAP, RPM, and IAT as independent variables. Overall, 96 MLR 
models were developed (6 dependent variables times 16 items of 
equipment). The variables MAP, RPM, and IAT were included in 
all the models based on the statistical significance test of p < .05. 
All p-values were much less than .01. This means that there is much 
less than a 1% probability that the coefficient assigned to the vari-
able occurred randomly or by chance. A review of the residual plots 
indicated no problems or cause for concern with the conditions of 
the models. The MLR models, therefore, were considered reliable 
for conducting the VIA.

Table 3 summarizes the R2 values for the MLR models for each 
item of equipment in the case study fleet. The R2 value is a measure 
of precision for MLR models and has a range of 0 to 1. R2 equates to 
the percentage of variability in the data that is accounted for by the 
model. For example, the fuel use model for Backhoe 1 has a value 
of R2 = .91. This means that approximately 91% of the variability 
in the fuel use data is accounted for by the model with MAP, RPM, 
and IAT. Overall, the MLR models accounted for a high percentage 
of the variability in the data for fuel use, NOx, CO2, and PM. The 
MLR models accounted for a moderate percentage of variability 
for HC and a comparatively low percentage of variability for CO; 
thus, it is reasonable to conclude that HC and CO are more difficult 

TABLE 2    Summary of Average Values for Engine Activity, Fuel Use, and Emissions

Equipment
MAP 
(kPa)

RPM 
(rpm)

IAT 
(°C)

Fuel 
(g/s)

NOx 

(g/s)
HC 
(g/s)

CO 
(g/s)

CO2 

(g/s)
PM 
(g/s)

Backhoe 1 104 905 20 0.43 0.02 0.000 0.000 1.3 0.02
Backhoe 2 101 1,256 26 0.93 0.03 0.003 0.009 2.9 0.30
Backhoe 3 104 1,225 56 0.74 0.02 0.002 0.004 2.3 0.35
Backhoe 4 112 1,119 51 0.41 0.02 0.002 0.001 1.3 0.09
Backhoe 5 111 1,095 47 0.42 0.02 0.002 0.003 1.3 0.11
Average 106 1,120 40 0.58 0.02 0.002 0.003 1.8 0.17

Motor Grader 1 174 1,789 30 4.8 0.18 0.015 0.02 15 1.40
Motor Grader 2 115 1,167 45 1.5 0.05 0.014 0.01 4.7 0.27
Motor Grader 3 149 1,746 41 2.2 0.08 0.042 0.01 7.0 0.78
Motor Grader 4 113 1,827   0 2.5 0.16 0.032 0.04 8.0 0.63
Motor Grader 5 120 1,405 12 2.3 0.12 0.014 0.05 9.9 0.53
Motor Grader 6 169 1,839 60 2.2 0.04 0.010 0.01 10 0.51
Average 140 1,628 31 2.6 0.11 0.021 0.02 9.1 0.68

Wheel Loader 1 122 1,217 30 1.5 0.05 0.012 0.02 4.8 0.42
Wheel Loader 2 118 1,373 21 1.4 0.05 0.002 0.01 4.3 0.41
Wheel Loader 3 119 1,192 19 0.8 0.04 0.002 0.05 2.6 0.12
Wheel Loader 4 126 1,392 18 1.0 0.04 0.004 0.00 3.2 0.31
Wheel Loader 5 105 1,072 33 0.7 0.22 0.002 0.01 2.2 0.13
Average 118 1,249 24 1.1 0.08 0.004 0.02 3.4 0.28

TABLE 3    Summary of R2 Values for MLR Models

Equipment Fuel Use NOx HC CO CO2 PM

Backhoe 1 .91 .76 .42 .67 .90 .11
Backhoe 2 .92 .85 .15 .18 .92 .32
Backhoe 3 .96 .87 .71 .24 .96 .50
Backhoe 4 .94 .87 .78 .65 .94 .89
Backhoe 5 .91 .88 .57 .62 .91 .88
Average .93 .85 .53 .47 .93 .54

Motor Grader 1 .78 .62 .36 .31 .78 .83
Motor Grader 2 .97 .84 .41 .12 .96 .72
Motor Grader 3 .92 .79 .58 .17 .92 .92
Motor Grader 4 .90 .75 .25 .13 .90 .71
Motor Grader 5 .98 .89 .58 .13 .98 .83
Motor Grader 6 .92 .45 .60 .12 .92 .90
Average .91 .72 .46 .16 .91 .81

Wheel Loader 1 .86 .71 .80 .49 .86 .85
Wheel Loader 2 .96 .90 .78 .13 .96 .87
Wheel Loader 3 .90 .84 .78 .39 .89 .87
Wheel Loader 4 .91 .84 .25 .47 .91 .79
Wheel Loader 5 .96 .89 .51 .52 .96 .87
Average .92 .89 .62 .40 .92 .85

Overall average .92 .80 .54 .33 .91 .72
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to predict than fuel use, NOx, CO2, and PM when MAP, RPM, and 
IAT are used as predictor variables.

Variable Impact Analysis

Table 4 presents the average engine variable impact for each depen-
dent variable and each item of equipment. On the basis of overall aver-
ages, and in most cases the equipment type averages, MAP has the 
greatest impact on predictions of fuel use, NOx, CO, CO2, and PM. The 
variable RPM has the next highest average impact on these dependent 
variables. For HC, RPM has the greatest average impact, followed 
by MAP. IAT has the least average impact of any of the independent 
variables on all the dependent variables. This does not mean that IAT 
has no predictive power and should be disregarded in future models. 
It means only that IAT does not have as much influence on fuel use, 
NOx, HC, CO, CO2, and PM relative to MAP and RPM.

Simplified Approach to Estimating Fuel Use  
and Emissions

One of the intended purposes of VIA is to select a subset of variables 
that may produce accurate models. Based on the results of the VIA, 
a set of simple models that use one independent variable were inves-
tigated for predicting fuel use and emissions for HDD equipment. 
Since MAP had the greatest overall impact on fuel use and emis-
sions, it was a logical candidate for a predictor variable for the new 
models. The variable MAP varies with engine load in turbocharged 
engines (all engines in the case study fleet were turbocharged); thus, 
MAP is a good surrogate for engine load. Furthermore, engine load 

is much easier to estimate compared with RPM and IAT for a given 
activity. Many construction equipment textbooks and equipment 
performance handbooks use engine load as a basis for fuel use esti-
mating equations (17–20); therefore, MAP as a surrogate for engine 
load was selected to develop the new, simplified models.

Since measurements of MAP vary among individual items of 
equipment, the MAP data were normalized according to Equation 2 to 
provide a common basis for selecting MAP-based engine load esti-
mates. The normalized MAP values range from 0% to 100%, simi-
larly to engine load estimates, and are easier to estimate compared 
with actual MAP values measured in kPa. In this case, a normalized 
MAP-based engine load estimate of 0% indicates the lowest engine 
load possible, such as equipment idling; an estimate of 100% represents 
the highest possible engine load, such as equipment operating at full 
throttle under adverse conditions.

=
−
−

MAP
MAP MAP

MAP MAP
(2)norm

min

max min

where

	MAPnorm	=	normalized MAP (%),
	 MAP	=	MAP value at time i (kPa),
	MAPmin	=	minimum MAP value (kPa), and
	MAPmax	=	maximum MAP value (kPa).

Simple linear regression (SLR) models were developed that use 
normalized MAP values (as surrogates for engine load) to predict fuel 
use and emissions for each item of equipment in the case study fleet. 
SLR models employ one independent variable to predict a dependent 
variable. These models take the form shown in Equation 3:

Y mX b= +− (3)1 6

where

	m	=	slope of the regression line,
	X	=	engine load (%) (also normalized MAP), and
	b	=	y-intercept.

Table 5 presents a summary of the R2 values for the SLR models 
for each item of equipment in the case study fleet. Compared with 
the MLR models in Table 3, which use three predictor variables, these 
simple one-variable models account for only slightly less variability 
in the data. On average, the SLR models have R2 values that are about 
6% lower than those of the MLR models; therefore, the SLR models 
provide reasonable estimates for fuel use and emissions of NOx, HC, 
CO2, and PM on the basis of engine load. Although the models for 
HC and CO have more variability, they still provide adequate rough 
order of magnitude estimates for these pollutants.

The SLR models have the potential to be useful estimating tools 
for practitioners. Table 6 presents a summary of the models for fuel 
use and emissions in commonly used units: gal/h for fuel use; lb/h for 
emissions rates of NOx, HC, CO, and CO2; and g/h for PM. Further-
more, these models were categorized on the basis of EPA engine 
tier standards. This categorization was accomplished by averaging 
the model coefficients for the items of equipment found in each 
engine tier. Tier 0 includes Motor Graders 4 and 5. Tier 1 includes 
Backhoes 2 and 3; Motor Graders 1 and 3; and Wheel Loaders 2, 
3, and 4. Tier 2 includes Backhoes 1, 4, and 5; Motor Grader 2; and 
Wheel Loaders 1 and 5. This is an acceptable approach because the 

TABLE 4    Average Engine Variable Impact  
for Each Equipment Type (%)

Variable Fuel Use NOx HC CO CO2 PM

Backhoes (n = 5)

MAP   51   34 26 26   48 34

RPM   35   53 55 46   42 41

IAT   14   13 19 28   10 25

Total 100 100 100 100 100 100

Motor Graders (n = 6)

MAP   69   56 34 53   67 62

RPM   25   29 37 28   25 25

IAT     6   15 29 19     8 13

Total 100 100 100 100 100 100

Wheel Loaders (n = 5)

MAP   53   54 23 43   54 58

RPM   38   33 57 31   38 28

IAT     9   13 20 26     8 14

Total 100 100 100 100 100 100

Overall (n = 16)

MAP   58   48 28 41   56 51

RPM   33   38 50 35   35 31

IAT     9   14 22 24     9 18

Total 100 100 100 100 100 100



Lewis, Fitriani, and Arocho� 13

engines are designed to meet specific EPA engine tier emissions 
standards rather than being designed for a particular type of equip-
ment or activity. As anticipated, the fuel use and emissions estimates 
decrease as engine tier increases, although there is little difference 
in the models for HC and CO. These pollutants are difficult to model 
precisely because of their high variability in the original field data.

To assist practitioners further with estimating fuel use and emis-
sions, Figure 1 presents a cumulative frequency diagram of engine 
load versus time for backhoes, motor graders, and wheel loaders. 
The figure was developed by summing the amount of time that 
each item of equipment spent in each range of normalized MAP. 
Since the equipment is designed to accommodate particular types 
of activities, engine load versus time was categorized by equipment 
type and not EPA engine tier. Figure 1 shows the average engine 
load versus time for each equipment type. The figure represents the  
cumulative time, on average, that each equipment type spends at 
or below a specific engine load. For example, backhoes and wheel 
loaders spend approximately 60% of their work time at an engine 
load of 20% or less; thus, more than half their work time is spent 

at low engine loads. Motor graders spend approximately 60% of 
their time at or below an engine load of 50%, which is much higher 
compared with backhoes and wheel loaders. Figure 1 provides a 
useful guide for practitioners to estimate probable engine loads as 
the predictor variable for the SLR models.

Conclusions

The primary research question for this paper was: Which engine 
variables have the greatest impact on fuel use and emission rates 
for HDD equipment, particularly backhoes, motor graders, and 
wheel loaders? This question was investigated through a rigorous 
statistical analysis based on real-world engine activity, fuel use, and 
emissions data. The following are the conclusions of this analytical 
effort:

•	 MAP, followed by RPM, has the greatest impact on mass per 
time rates of fuel use, NOx, CO, CO2, and PM.

•	 RPM, followed by MAP, has the greatest impact on mass per 
time rates of HC.
•	 IAT has the least impact on mass per time rates of fuel use, 

NOx, HC, CO, CO2, and PM.

The objective of this study was to establish a modeling frame-
work for estimating fuel use and emissions of HDD equipment used 
for highway maintenance activities. This framework was accom-
plished with the results of the VIA to determine which engine vari-
able had the greatest influence on fuel use and emissions. With 
normalized MAP data as a surrogate for engine load, a set of simple 
one-variable models was developed to predict fuel use and pollutant 
emissions of NOx, HC, CO, CO2, and PM. To make the models more 
applicable, they were categorized according to EPA engine tier stan-
dards. These models provide a practical and statistically defensible 
fuel use and emissions estimating tool for backhoes, motor graders, 
and wheel loaders.

Another key finding of this research effort is that HC and CO are 
difficult to predict because of high variability in the data. Although 
the MLR and SLR models accounted for small percentages of the 
variability in the real-world data, the models still provide at least a 
rough order of magnitude estimate for these pollutants. Conversely, 

TABLE 5    Summary of R2 Values for SLR Models

Equipment Fuel Use NOx HC CO CO2 PM

Backhoe 1 .86 .62 .17 .01 .86 .06
Backhoe 2 .83 .62 .05 .14 .83 .28
Backhoe 3 .96 .78 .67 .25 .96 .37
Backhoe 4 .89 .79 .66 .62 .89 .89
Backhoe 5 .77 .75 .40 .50 .77 .85
Average .86 .71 .39 .30 .86 .49

Motor Grader 1 .76 .60 .19 .26 .76 .81
Motor Grader 2 .95 .79 .24 .12 .96 .67
Motor Grader 3 .92 .75 .51 .17 .92 .91
Motor Grader 4 .88 .74 .18 .10 .88 .69
Motor Grader 5 .98 .89 .49 .08 .98 .82
Motor Grader 6 .92 .44 .07 .06 .92 .85
Average .90 .70 .28 .13 .90 .79

Wheel Loader 1 .84 .67 .74 .47 .84 .81
Wheel Loader 2 .94 .87 .74 .01 .94 .84
Wheel Loader 3 .89 .82 .69 .34 .89 .84
Wheel Loader 4 .85 .78 .13 .31 .85 .75
Wheel Loader 5 .95 .88 .43 .50 .95 .85
Average .89 .81 .54 .33 .89 .82

Overall average .89 .74 .40 .25 .89 .71

TABLE 6    Summary of SLR Models

Tier 0 Tier 1 Tier 2

Output m b m b m b

Fuel use (gal/h) 10 0.4 5.4 0.3 4.9 0.4

NOx (lb/h) 3.8 0.2 1.2 0.2 0.9 0.9

HC (lb/h) 0.2 0.1 0.2 0.0 0.1 0.0

CO (lb/h) 0.2 0.2 0.1 0.0 0.1 0.0

CO2 (lb/h) 225 8.0 120 6.0 110 8.0

PM (g/h) 8.8 0.3 5.3 0.3 3.3 0.2

Note: The values in the columns are for the following equation: Y = mX + b, 
where X = engine load, m = slope of regression line, and b = y-intercept.
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FIGURE 1    Cumulative frequency diagram of engine load  
versus time.
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fuel use rates and emission rates of NOx, CO2, and PM are quite 
predictable, especially as a function of MAP.

Recommendations

The results presented in this paper are limited to backhoes, motor 
graders, and wheel loaders. Although these items of equipment are 
prominent in most highway maintenance fleets, many other types 
of equipment should be included in the analysis. The study effort 
presented here should be expanded to include the other equipment 
types found in the real-world data sets, including bulldozers, exca-
vators, off-road trucks, and track loaders. These equipment types 
may also be used in highway maintenance activities, but they are 
especially critical for general construction and earthwork tasks. 
Furthermore, the real-world data set should be updated to include 
Tier 3 and Tier 4 equipment as well as other equipment types such 
as cranes, scrapers, and tractors.

The analysis of the engine activity data was limited to MAP, RPM, 
and IAT. The data for those variables should be examined more 
closely to determine their true influence on fuel use and emissions. 
For example, previous studies mentioned in the literature review 
have shown that MAP and RPM are frequently highly correlated with 
each other; thus, multicollinearity may be a concern (6, 7, 14, 15). 
When this occurs, the coefficient estimates of the MLR models may 
change erratically in response to small changes in the model or the 
data. Multicollinearity does not reduce the predictive power or 
reliability of the model, but it does affect calculations regarding the 
individual predictor variables. In this case, MLR models with cor-
related predictors can indicate how well MAP, RPM, and IAT predict 
fuel use and emissions, but they may not give valid results about 
any individual predictor, such as RPM, or about which predictor 
variables are redundant with respect to others. Furthermore, other 
equipment variables, such as engine horsepower and gross vehicle 
weight, may help provide higher-resolution results for fuel use and 
emissions estimating efforts.

The results of the study have shown that mass per time fuel use 
and emission rates are highly sensitive to MAP, which may be treated 
as a surrogate for engine load. Previous work highlighted in the 
literature review has shown that mass per fuel used emissions rates 
have less variability than mass per time emissions rates (6, 7, 14, 15). 
The mass per time emissions rates may be converted to mass per fuel 
used emissions rates by dividing them by the corresponding fuel use 
rate (lb/hr ÷ gal/hr = lb/gal). Mass per fuel used emissions rates may 
be used to estimate emissions inventories by fleet owners that keep 
meticulous fuel use records. This approach may be more practical 
than estimating equipment activity and appropriate engine loads for 
mass per time emissions rates.

The modeling framework presented in this paper provides a sta-
ble foundation for environmentally driven equipment replacement 
and selection analysis. Fleet managers must begin to focus more on 
the energy and emissions requirements of their fleets. Some fleet 
owners are beginning to evaluate their equipment maintenance and 
replacement needs in terms of fuel burn rather than total hours of 
operation. In the past, fleet managers had only historical fuel use 
records for estimating fuel requirements. In the distant past, fuel 
costs were a small fraction of the overall equipment ownership and 
operating costs. Nowadays, because of higher and fluctuating fuel 
prices, fuel costs are a much more significant component of operat-
ing costs. Although it is not possible to predict future fuel prices 

accurately, this paper has shown that it is possible to forecast future 
fuel use rates. These fuel use forecasts are needed to improve estimates 
of equipment operating costs as well as total highway maintenance 
activity costs.

It is highly recommended that fleet managers, particularly those 
that oversee publicly owned fleets, do not overlook the environmental 
impacts of their equipment. More emphasis from the federal govern-
ment is being placed on reducing all sources of GHGs. It is likely that 
more attention will be given to reducing further the already regulated 
EPA NAAQS criteria pollutants. It is also realistic to believe that 
the public sector will be expected to lead these pollution reduction  
efforts and set a good example for the private sector through knowl-
edge development and leadership in pollution reduction and air 
quality stewardship. It is likely that the profit-driven motives of the 
private sector will not encourage this leadership or stewardship.
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