
Comparison of Predictive Modeling Methodologies for Estimating Fuel Use and 
Emission Rates for Wheel Loaders 

 
Heni FITRIANI1 and Phil LEWIS, PhD, PE2 

 
1PhD Candidate, Oklahoma State University, School of Civil and Environmental 
Engineering, 207 Engineering South, Stillwater, OK 74078, PH (405)-334-8641; 
email: heni.fitriani@okstate.edu 
2Assistant Professor, Oklahoma State University, School of Civil and Environmental 
Engineering, 207 Engineering South, Stillwater, OK 74078, PH (405)-744-5207; 
email: phil.lewis@okstate.edu 

 
 

ABSTRACT 

Heavy duty diesel (HDD) construction equipment consumes significant 
amounts of fuel and consequently emits substantial quantities of pollutants. The 
purpose of this paper is to demonstrate three different predictive modeling 
methodologies for estimating fuel use and emission rates for HDD construction 
equipment based on real-world data. Engine performance data for five wheel loaders, 
including manifold absolute pressure (MAP), revolutions per minute (RPM), and 
intake air temperature (IAT) were used to develop prediction models for fuel use and 
emission rates of nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), 
carbon dioxide (CO2), and particulate matter (PM). For each wheel loader, predictive 
models were developed using simple linear regression (SLR), multiple linear 
regression (MLR), and artificial neural network (ANN). Results indicate that the 
ANN models accounted for the highest percentage of variability in the data compared 
to SLR and MLR based on values of the coefficient of determination (R2) for each 
model. Furthermore, a variable impact analysis was conducted to determine which 
variables have the most significant impact on fuel use and emission rates for the 
wheel loaders.  

 

INTRODUCTION 

Construction activities consume a substantial amount of fuel and consequently 
emit a substantial amount of pollutants into the environment. According to the United 
States Environmental Protection Agency (EPA 2005), there are approximately two 
million items of construction and mining equipment in the United States that 
consume about six billions gallons of diesel fuel annually. Furthermore, in most 
construction activities, heavy-duty diesel (HDD) construction equipment is the 
primary source of emissions. EPA also estimates that in 2005, HDD construction 
equipment emitted approximately 657,000 tons of nitrogen oxides (NOx), 1,100,000 
tons of carbon monoxide (CO), 63,000 tons of particulate matter (PM10) and 94,000 
tons of sulfur dioxide (SO2) (EPA 2005). Of these pollutants, NOx and PM are most 
prominent among HDD equipment (EPA 2006).  Other pollutants found in diesel 
exhaust include hydrocarbons (HC) and carbon dioxide (CO2).  
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 In order quantify and characterize the HDD emissions problem, reliable 
prediction models are needed; however, most emission prediction tools are based on 
engine dynamometer data and not real-world data.  The objective of this paper is to 
demonstrate three different predictive modeling methodologies for estimating fuel 
use and emission rates for HDD construction equipment, specifically wheel loaders, 
based on real-world data.  
 
PREVIOUS WORK 

 Some of the most prominent real-world emissions measurements from HDD 
construction equipment were completed by researchers at North Carolina State 
University (Abolhasani et al. 2008; Lewis 2009; Rasdorf et al. 2010, Frey et al. 2008, 
Kim 2007). Abolhasani et al. (2008) focused on measuring fuel use and emission 
rates of NOx, HC, CO, CO2 and PM for hydraulic excavators. This study showed that 
nearly 90% of the field measurements were valid and approximately 50% of the NOx 
emissions were produced during 30% of the time of operation.  Lewis (2009) 
presented a methodology for measuring weighted-average fuel use and emission rates 
of HDD construction equipment while performing common duty cycles. Lewis et al. 
(2012) studied the influence of engine idling with respect to fuel use and emission 
rates for HDD construction equipment. Frey et al. (2008a) compared petroleum diesel 
and B20 emissions from backhoes, motor graders, and wheel loaders while 
performing typical duty-cycles. Furthermore, Frey et al. (2008b) highlighted the field 
activity, fuel use, and emissions of motor graders in terms of using petroleum diesel 
and B20 biodiesel.  
 The use of artificial neural networks (ANN) in civil engineering was initiated 
in 1989, primarily for structural engineering and construction engineering 
management applications (Adeli 2001). Moreover, its application has been wide-
spread in many fields such as water resources and environmental engineering. Much 
work has also been conducted in characterizing emissions from diesel engines using 
ANN. ANN has been widely employed and it is generally considered to be a reliable 
method to achieve high quality models due to its capabilities in overcoming 
nonlinearity, processing large quantities of data, and overall accuracy.  
 Tehranian (2003) used ANN to predict diesel engine emissions of NOx, PM, 
HC, CO, and CO2 using data from engine dynamometer tests based on five engine 
transient-test schedules. Thompson et al. (2000) predicted the emissions of NOx, PM, 
HC, CO, and CO2 by using a three-layer ANN based on dynamometer test data. Clark 
et al. (2002) found that ANN offered the best model compared to other models in 
predicting NOx emissions for 16 dissimilar chassis test schedules. In order to predict 
emissions and fuel consumption, Desantes et al. (2002) developed mathematical 
models using ANN with several inputs, such as engine speed, fuel mass, air mass, 
fuel injection pressure, start of injection, exhaust gas recirculation (EGR) percentage, 
and nozzle diameter. This study found that EGR rates, fuel mass, and start of 
injection are the most reliable variables for obtaining robust models. Mudgal et al. 
(2011) used ANN to predict emissions of transit buses powered by biodiesel fuel 
consisting of B0 (regular diesel), B10 (10% biodiesel) and B20 (20% biodiesel). 
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METHODOLOGY 

This paper presents three different predictive modeling methodologies for 
estimating fuel use and emissions rates based on the real-world dataset from the 
research team at North Carolina State University. Simple linear regression (SLR), 
multiple linear regression (MLR), and artificial neural network (ANN) models were 
developed and compared for five wheel loaders. Engine performance data from the 
wheel loaders, including manifold absolute pressure (MAP), revolutions per minute 
(RPM), and intake air temperature (IAT), were used to develop prediction models for 
fuel use and emission rates of NOx, HC, CO, CO2, and PM. Table 1 displays the 
summary of engine attribute data for each wheel loader, including engine size (HP), 
displacement, model year, and EPA engine tier. The rated engine horsepower (HP) 
ranged from 126 HP to 149 HP and the model year ranged from 2002 to 2005; thus, 
all five of the wheel loaders were either EPA engine tier 1 or 2. 

 
Table 1. Summary of Engine Attribute Data 

Equipment 
Horsepower Displacement Model Engine

(HP) (Liters) Year Tier 
Wheel Loader 1 149 5.9 2004 2 
Wheel Loader 2 130 5.9 2002 1 
Wheel Loader 3 130 5.9 2002 1 
Wheel Loader 4 126 5.9 2002 1 
Wheel Loader 5 133 6.0 2005 2 

 
 
Simple Linear Regression 
 
 Simple linear regression models were developed to determine the relationship 
between a single response variable and a single predictor variable. Since it has been 
shown by others that MAP is highly correlated to fuel use and emission rates (Frey et 
al. 2008; Lewis 2009), simple linear regression models were formulated based on the 
relationship between MAP as a predictor variable and fuel use as a response variable, 
as well as MAP and mass per time (grams per second) emission rates of NOx, HC, 
CO, CO2, and PM.  These SLR models take the form of: 

Y1-6   = mx + b       (1) 

where: 
Y1-6    = Fuel use or emission rate of NOx, HC, CO, CO2, or PM (g/s) 
m = slope of the regression line 
x = MAP (kilopascal) 
b = y-intercept of regression line 
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Multiple Linear Regression (MLR) 
 
 Multiple linear regression was used to model the relationship between three 
predictor variables based on engine performance data (MAP, RPM, IAT) and one 
response variable (either fuel use or emission rate of NOx, HC, CO, CO2, and PM).  
The MLR equations for fuel use and emission rates for each pollutant take the form 
of: 
 
Y1-6  = β0 + β1X1 + β2X2+ β3X3    (2) 
 
where:  
Y1-6    = Fuel use or emission rate of NOx, HC, CO, CO2, or PM (g/s) 
X1 = MAP (kilopascal) 
X2 = Revolutions Per Minute (RPM) 
X3 = Intake Air Temperature (Celsius degrees)  
β0, β1, β2, β3  = Coefficients of linear relationship 
 

Artificial Neural Networks (ANN) 
 
 ANN is a computational model that simulates brain function. ANN models 
frequently perform better than other statistical techniques and usually improve 
predictive models. ANN models are trained through an iterative process by learning 
the complexities between input and output. ANN is comprised of input, hidden and 
output layers. In this paper, the input layers include MAP, RPM, and IAT; 
meanwhile, fuel use and emission rates are defined as output layers. The ANN 
approach used in this paper is the general regression neural network (GRNN) 
performed by the software @Risk. In order to generate the models, 60% of the data 
were used to train the models and 40% of the data were used to validate the models. 
 
RESULTS 

 This section presents the results for three predictive modeling methodologies - 
SLR, MLR, and ANN - for wheel loaders, as well as variable correlations and model 
comparisons for all models. Although models were developed for all five wheel 
loaders, only the SLR and MLR equations for Wheel Loader 1 are presented for 
brevity.  The validation results for the models for all five wheel loaders are presented 
in Table 6. 
 Table 2 shows the summary of the Pearson correlation coefficients for all five 
wheel loaders, indicating the relationship between engine data, fuel use, and emission 
rates. MAP has a strong positive relationship with fuel use and emission rates of NOx, 
CO2, and PM, but a moderate positive relationship with HC and CO. RPM has the 
second strongest relationship with fuel use and emission rates. Meanwhile, IAT has 
the weakest relationship with fuel use and emission rates as indicated by the lower 
(and sometimes negative) values of correlation to the specified response variables.  
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Table 2.  Summary of Pearson Correlations Coefficients 

Equipment 
Engine 
Data 

Fuel Use NOx HC CO CO2 PM 

WL 1 
MAP 0.91 0.82 0.86 0.68 0.92 0.90 
RPM 0.87 0.77 0.87 0.67 0.87 0.75 
IAT 0.27 0.37 0.00 0.26 0.27 0.30 

WL 2 
MAP 0.97 0.93 0.86 0.11 0.97 0.91 
RPM 0.94 0.93 0.86 0.07 0.94 0.87 
IAT 0.16 0.22 0.27 -0.31 0.17 -0.01 

WL 3 
MAP 0.94 0.91 0.83 0.58 0.94 0.92 
RPM 0.89 0.86 0.84 0.61 0.89 0.89 
IAT -0.25 -0.29 -0.01 -0.02 -0.25 -0.26 

WL 4 
MAP 0.92 0.88 0.37 0.56 0.92 0.87 
RPM 0.85 0.80 0.36 0.53 0.85 0.77 
IAT -0.29 -0.34 0.24 -0.49 -0.29 -0.26 

WL 5 
MAP 0.97 0.94 0.65 0.70 0.97 0.92 
RPM 0.90 0.87 0.69 0.68 0.90 0.77 
IAT -0.07 -0.08 0.04 -0.05 -0.07 -0.06 

 
 
Simple Linear Regression Models 
 
 Based on their high correlation values, SLR models were developed using 
MAP as a predictor variable to predict fuel use and emission rates of each pollutant. 
Table 3 presents the results of the SLR models for Wheel Loader 1. These models are 
based on 15,226 observations of second-by-second, real-world fuel use and emissions 
data.  Based on the coefficient of determination (R2), these models accounted for a 
high percentage of the variability in the data for fuel use, NOx, HC, CO2 and PM.  CO 
had the lowest R2 value, indicating much variability in the data, and therefore was 
more difficult to predict. 
 

Table 3.  Summary of SLR Models for Wheel Loader 1 
 

Response Model Equation R2 
Fuel Use Y1 = 5.0514 X1 + 0.6197 0.84 

NOx Y2 = 0.1338 X1 + 0.0253 0.67 
HC Y3 = 0.0137 X1 + 0.0029 0.74 
CO Y4 = 0.0582 X1 + 0.0096 0.47 
CO2 Y5 = 15.869 X1 + 1.9392 0.84 
PM Y6 = 1.6186 X1 + 0.1296 0.81 

X1 = MAP 
 

Multiple Linear Regression Models 
 
 Based on the correlation matrix in Table 2, MAP and RPM are highly 
correlated to fuel use and emissions rate for most of pollutants. Even though IAT has 
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a lower correlation to fuel use and emissions rate, IAT was still used as an input 
variable for the MLR models because it may still have some predictive power. 
 Table 4 summarizes the models for fuel use and emissions rates for Wheel 
Loader 1. Overall, the MLR models yielded higher R2 values than the SLR models 
for their respective response variables.  The MLR R2 values for fuel use and emission 
rates for NOx, HC, CO2 and PM indicate that the models perform well.  The model 
for CO, however, accounted for less than 50% of the variability in the data; thus, the 
MLR models also indicate that emission rates of CO are more difficult to predict 
compared to fuel use and the other pollutants.  
 

Table 4.  Summary of MLR Models and R2 for Wheel Loader 1 
 

Response Model Equation R2 
Fuel Use Y1 = -4.07 + 0.032 X1 + 0.0008X2 + 0.0254X3 0.86 

NOx Y2 = -0.121 + 0.00084 X1 + 0.00002 X2 + 0.00151 X3 0.72 
HC Y3 = -0.0042 + 0.00061 X1 + 4.13E-6 X2 – 0.0001X3 0.80 
CO Y4 = -0.05 + 0.000302 X1 + 0.00013X2 + 0.00052X3 0.49 
CO2 Y5 = -12.8 +0.1003X1+ 0.0024 X2 + 0.08X3 0.86 
PM Y6 = -1.78 + 0.0193X1 – 0.00034 X2 + 0.009X3 0.85 

X1 = MAP, X2 = RPM, X3 = IAT 
 
Artificial Neural Network Models 
 
 Unlike the SLR and MLR approaches, ANN does not produce equations for 
each response variables because they are developed in the network’s hidden layer.  In 
order to validate the results, the ANN software plots the predicted versus actual 
results based on the validation data and provides the results of the fitted line 
parameters including slope (m), y-intercept (b), and R2. Slope (m) indicates the 
accuracy of the model and R2 indicates precision – values close to 1.0 for each 
parameter indicate high accuracy and high precision, respectively.  The y-intercept 
(b) is an indicator of bias in the model, with values close to zero being desirable.  
Table 5 summarizes the results of ANN for Wheel Loader 1. Based on these results, 
ANN produced networks that were highly accurate and precise and unbiased for fuel 
use, NOx, HC, CO2, and PM.  As with the SLR and MLR models, CO was the most 
difficult of the pollutants to predict. 
 

Table 5. Summary of Training Data for Wheel Loader 1 

Pollutants m b R2 
Fuel Use 0.904 0.148 0.92 

NOx 0.806 0.009 0.83 
HC 0.897 0.000 0.91 
CO 0.585 0.008 0.61 
CO2 0.898 0.479 0.91 
PM 0.902 0.039 0.92 
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Table 6. Comparison of Validation Results for SLR, MLR and ANN 

Pollutants 
  SLR     MLR     ANN   

m b R2 m b R2 m b R2 
Wheel Loader 1 

Fuel Use 0.89 -0.002 0.84 0.87 0.243 0.86 0.89 0.176 0.87 

NOx 0.89 0.010 0.67 0.73 0.015 0.72 0.80 0.010 0.78 

HC 0.84 0.005 0.74 0.80 0.015 0.81 0.87 0.001 0.86 

CO 0.01 0.010 0.47 0.51 0.008 0.50 0.52 0.010 0.55 

CO2 0.89 -0.028 0.84 0.86 0.659 0.86 0.89 0.556 0.88 

PM 0.90 0.024 0.81 0.84 0.080 0.85 0.89 0.044 0.90 
Wheel Loader 2 

Fuel Use 0.94 0.078 0.94 0.95 0.046 0.96 0.96 0.050 0.96 

NOx 0.87 0.007 0.87 0.03 0.008 0.90 0.94 0.003 0.93 

HC 0.74 0.002 0.74 0.79 0.021 0.78 0.85 0.001 0.84 

CO 0.01 0.010 0.01 0.13 0.009 0.12 0.57 0.005 0.54 

CO2 0.94 0.245 0.94 0.95 0.069 0.96 0.96 0.154 0.96 

PM 0.84 0.067 0.84 0.88 0.065 0.87 0.94 0.020 0.96 
Wheel Loader 3 

Fuel Use 0.89 0.096 0.89 0.91 0.135 0.89 0.92 0.068 0.91 

NOx 0.83 0.006 0.82 0.84 0.002 0.82 0.89 0.004 0.87 

HC 0.69 0.001 0.69 0.78 0.001 0.73 0.87 0.0003 0.88 

CO 0.34 0.003 0.34 0.41 0.003 0.41 0.58 0.002 0.58 

CO2 0.89 0.295 0.89 0.89 0.322 0.90 0.94 0.199 0.90 

PM 0.85 0.019 0.84 0.84 0.010 0.87 0.88 0.011 0.92 
Wheel Loader 4 

Fuel Use 0.86 0.150 0.85 0.91 0.101 0.91 0.93 0.065 0.94 

NOx 0.78 0.009 0.78 0.84 0.007 0.84 0.91 0.004 0.91 

HC 0.13 0.004 0.13 0.25 0.003 0.24 0.74 0.001 0.65 

CO 0.31 0.002 0.31 0.49 0.002 0.49 0.69 0.001 0.69 

CO2 0.86 0.472 0.85 0.91 0.271 0.91 0.94 0.181 0.94 

PM 0.75 0.077 0.75 0.79 0.067 0.78 0.92 0.023 0.92 
Wheel Loader 5 

Fuel Use 0.95 0.036 0.95 0.97 0.047 0.95 0.96 0.023 0.96 

NOx 0.88 0.003 0.88 0.92 0.003 0.88 0.93 0.001 0.90 

HC 0.42 0.001 0.43 0.49 0.001 0.50 0.65 0.001 0.64 

CO 0.49 0.003 0.50 0.51 0.003 0.51 0.52 0.003 0.51 

CO2 0.95 0.113 0.95 0.96 0.080 0.95 0.98 0.033 0.96 

PM 0.85 0.019 0.85 0.86 0.002 0.86 0.86 0.013 0.90 
 
Model Comparison 
 
 Model validations for the five wheel loaders were developed in order to 
compare and evaluate the performance of SLR, MLR, and ANN methodologies. The 
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models were validated by plotting the predicted versus actual results for each model 
and fitting a trend line to the data.  For each trend line, the values of accuracy (m), 
bias (b), and precision (R2) were determined. As shown in Table 6, ANN produces 
higher R2 values compared to SLR and MLR for fuel use and all emissions rates. SLR 
has the lowest R2 value for fuel use and emissions rates. Overall, ANN outperformed 
SLR and MLR with respect to precision, accuracy, and bias. In most cases, the ANN 
approach produced highly precise models for NOx, CO2, and PM; while the models 
for HC and CO were likely to be moderately precise with R2 values ranging from 
0.50 – 0.87. 
 
Variable Impact Analysis 
 
 Using the MLR models, a variable impact analysis was conducted to 
determine the percentage of contribution of the input variables (MAP, RPM, and 
IAT) to the prediction of fuel use and emission rates of each pollutant. Table 7 
presents the summary of the variable impact analysis for Wheel Loader 1. MAP is the 
most significant variable for fuel use, NOx, CO2, and PM which are 44.25%, 38.83%, 
46.67% and 79.39%, respectively. RPM, however, has the most contribution for HC 
and CO.  IAT did not have the highest impact for any of the response variables. 
 

Table 7. Variable Impact Analysis for Average Wheel Loaders 
 

Engine Data Fuel Use NOx HC CO CO2 PM 
MAP 54.66% 54.35% 28.66% 26.30% 54.65% 59.42% 
RPM 36.71% 34.89% 53.89% 36.80% 36.76% 25.47% 
IAT 8.63% 10.76% 17.45% 36.90% 8.59% 15.11% 

 
CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this paper was to demonstrate three different predictive 
modeling methodologies for estimating fuel use and emission rates of pollutants 
using real-world data. Based on the summary of Pearson correlation coefficients, 
MAP had a high positive correlation to fuel use and emission rates of NOx, CO2, and 
PM, but had a moderate positive relationship with HC and CO. Although not as 
highly correlated, RPM had a strong positive relationship with fuel use and 
emissions. IAT was shown to have the least impact of the three engine performance 
variables on predicting fuel use and emission rates.  It is recommended that other 
engine performance data, such as engine load or throttle position, be considered for 
future studies. 

For all three modeling approaches, CO proved to be the most difficult 
pollutant emission rate to predict, as evidenced by its low R2 values.  Typically, there 
is high variability in CO data which confounds the prediction effort, as well as the 
fact that CO did not have a strong correlation with any of the engine data predictor 
variables.  It is recommended that strong relationships between CO and other 
variables be considered.  For example, it there exists a strong relationship between 
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CO and fuel use (which is accurately and precisely predicted by each of the three 
modeling approaches), then fuel use may be used as a predictor variable for CO. 

With regard to variable impact analysis, it can be concluded that MAP has the 
highest percentage of contribution in the prediction of fuel use and emission rates, 
accounting for approximately 60% of total impact, although for HC and CO it had the 
second highest impact. For these two pollutants, RPM had the highest impact but it 
was second for fuel use, NOx, CO2, and PM.  Although IAT had the lowest ranking 
impact among the three engine performance variables, it still may have some 
predictive power, especially for CO.  For strictly prediction purposes, it is 
recommended that all three engine performance variables be used to estimate fuel use 
and emission rates. 

Based on the model comparisons, ANN models generally performed the best 
with respect to precision, accuracy, and bias. In most cases, the ANN approach 
produced highly precise models for NOx, CO2, and PM; while the models for HC and 
CO were moderately precise.  A potential drawback to the ANN approach is that the 
equations for each response variable are not actually provided, thus the user must 
have access to the artificial neural network.  Although, the SLR and MLR approaches 
yielded models that were slightly less accurate and precise than the ANN approach, 
these models are still useful.  The simplicity of the one variable SLR models may be 
appealing to some users, such as fleet managers, that want to estimate the fuel use 
and emissions footprints of their equipment.  Other users, such as engine 
manufacturers, may like the MLR approach because they would be able to reasonably 
estimate each of the engine performance variables. 
Overall, the results of this study help to quantify and characterize the air pollution 
problem from HDD equipment used in construction.  Although only wheel loaders 
were addressed in this paper, the methodologies presented may certainly be used 
to develop fuel use and emissions models for other types of equipment.  In order to 
further characterize this emissions problem, it is recommended that other types of 
equipment, such as backhoes, bulldozers, motor graders, track loaders, excavators, 
and off road trucks, be targeted for future modeling efforts. 
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