LAPORAN PENELITIAN DOSEN MUDA SATEKS UNIVERSITAS SRIWIJAYA

EVALUASI PERENCANAAN PENERAPAN AREA TRAFFIC CONTROL SYSTEM (ATCS) UNTUK KOTA PALEMBANG

Oleh:

AZTRI YULI KURNIA, ST., M.Eng.

JURUSAN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS SRIWIJAYA

2014

HALAMAN PENGESAHAN

1. Judul Penelitian : EvaluasiPerencanaan Penerapan Area Traffic

Control System (ATCS) Untuk Kota Palembang

2. Bidang Penelitian : Transportasi

3. Ketua Peneliti

a. Nama Lengkap : Aztri Yuli Kurnia, ST., M.Eng.

b. Jenis Kelamin : L/P

c. NIP : 19880713 201212 2 003 d. Pangkat/Golongan : Penata Muda Tk.I / IIIb

e. Jabatan : Tenaga Pengajar

f. Fakultas/Jurusan : Teknik / Teknik Sipil

g. Alamat : Jurusan Teknik Sipil, Fakultas Teknik, Universitas

Sriwijaya, Jalan Raya Palembang-Prabumulih, Km.

32 Inderalaya, Kab. Ogan Ilir, 30662, Sumsel.

h. Telpon/Faks/Email : 0711-580139

i. Alamat Rumah : Jl. Masjid Al-Ghazali No.40 Bukit Besar Palembang

30137, Sumsel.

j. Telpon/Faks/Email : 0812 785 5737

4. Jumlah Anggota Peneliti : 2 orang

> a. Nama Anggota 1 : Ferli Febrian

b. Nama Anggota 2 : Ronal Merza Saputra

5. Waktu Penelitian : 1 tahun

6. Jumlah Usulan Biaya : Rp. 12.000.000,-

Mengetahui, Inderalaya, Desember 2014

Ketua Peneliti Dekan Fakultas Teknik

Prof. Dr. Ir. H. M. Taufik Toha, DEA

Aztri Yuli Kurnia, ST., M.Eng. NIP. 19880713 201212 2 003 NIP. 19530814 198503 1 002

Menyetujui Ketua Lembaga Penelitian

Prof. Dr. Ir. M. Said, M.Sc NIP. 19610812198703 1 003

DAFTAR ISI

Halaman P	engesahan	i
Daftar Isi .		ii
BAB I.	Pendahuluan	1
BAB II.	Perumusan Masalah	2
BAB III.	Tinjauan Pustaka	3
3.1	Istilah dan Definisi	3
3.2	Deskripsi Umum Sistem APILL Terkoordinasi	4
BAB IV	Tujuan Penelitian	15
4.1	Tujuan Penelitian	15
4.2	Luaran Yang Hendak Dicapai	15
BAB V	Metodologi Penelitian	16
5.1	Pendekatan	16
5.2	Pengumpulan Data	16
5.3	Analisa Data	17
5.4	Kapasitas	31
5.5	Tingkat Performansi	32
5.6	Pendekatan Analisa Lalu Lintas	37
BAB VI	Jadwal Pelaksanaan	38
BAB VII	Personalia Penelitian	39
BAB VIII	Data dan Analisis	40
8.1	Kondisi Ruas Jalan di Kota Palembang	40
8.2	Analisa Tingkat Pelayanan Simpang	54
8.3	Koordinasi Sinyal Lampu Lalu Lintas Antar Simpang	62
8.4	Rencana Penerapan ATCS Kota Palembang	64
BAB IX	Kesimpulan dan Saran	68
9.1	Kesimpulan	68
9.2	Saran	68
Lampiran 1	l. Daftar Pustaka	70
	2. Riwayat Dosen Peneliti	71

BABI

PENDAHULUAN

Pertumbuhan dan perkembangan suatu kota akan mengakibatkan tejadinya perubahan aktivitas manusia yang berdampak kepada berbagai aspek kehidupan diantaranya dengan bertambahnya jumlah penduduk, kendaraan, pendapatan, dan tenaga kerja. Sejalan dengan hal tersebut, permintaan (*demand*) akan transportasi juga meningkat, sehingga perlu upaya peningkatan sarana dan prasarana transportasi yang memadai dimasa mendatang. Transportasi sendiri merupakan kunci pokok dalam perkembangan suatu daerah atau kota. Dengan adanya peningkatan secara efisien dan efektif akan membuat suatu daerah atau kota dapat berkembang secara terarah.

Efisiensi dalam bidang lalu lintas dan angkutan jalan sangat diperlukan untuk memenuhi lalu lintas yang lancar, aman serta tertib. Tingkat efisiensi tersebut meliputi efisiensi penggunaan dan pemanfaatan jalan, efisiensi yang berkaitan dengan waktu yang diperlukan untuk menempuh suatu perjalanan. Efisiensi dalam bidang transportasi dapat dilakukan dengan menerapkan manajemen lalu lintas. Manajemen transportasi adalah kegiatan perencanaan, pengaturan, pengawasan dan pengendalian. Bentuk dari manajemen transportasi salah satunya adalah manajemen lalu lintas yang diharapkan efeknya dapat memberikan efisiensi terhadap penerapan lalu lintas yang digunakan saat ini.

Untuk menerapkan konsep manajemen lalu lintas yang efisien dibutuhkan keterpaduan dalam peningkatan prasarana dan sarana lalu lintas. Salah satu manajemen lalu lintas untuk prasarana transportasi yang ada di daerah adalah simpang. Perencanaan simpang yang baik akan memberikan keterpaduan antara daerah atau kota dengan prasarana dan sarana transportasi yang ada. Sehingga diperlukan analisa mengenai kinerja simpang sehingga konsep manajemen lalu lintas terpadu tersebut dapat dilakukan.

Dalam evaluasi konsep manajemen lalu lintas tersebut, maka dilakukan evaluasi mengenai kinerja persimpangan yang ada di Kota Palembang. Evaluasi dilakukan untuk melihat bagaimana kualitas pelayanan lalu lintas pada persimpangan terutama persimpangan yang dikendalikan oleh APILL di Kota palembang dan mencoba mengevaluasi penerapan *Area Traffic Control System* (ATCS) untuk Kota Palembang Tersebut.

BAB II

PERUMUSAN MASALAH

Penelitian ini didapat dari adanya beberapa rumusan masalah, rumusan masalah tersebut antara lain adalah sebagai berikut:

- 1. Kinerja Persimpangan Bersinyal (APILL) di Kota Palembang.
- 2. Besarnya Tundaan (*Delay*) pada daerah persimpangan bersinyal di Kota Palembang.
- 3. Adanya keberhasilan penerapan ATCS pada beberapa kota di Indonesia untuk memperbaiki kinerja persimpangan bersinyal. Area Traffic Control System (ATCS) adalah suatu sistem pengendalian simpang lalu lintas jalan raya dengan menggunakan lampu lalu lintas (traffic light) dimana pengaturan lampu lalu lintas pada masing-masing simpang saling terkoordinasi, sehingga pengguna jalan (kendaraan) mendapatkan tundaan yang minimum. Dengan penerapan ATCS atau lampu lalu lintas terkoordinasi maka akan terjadi efisiensi pergerakan dan akan meningkatkan kapasitas simpang untuk melayani lalu lintas, waktu perjalanan yang lebih pendek, penurunan tingkat resiko kecelakaan bagi pengendara dan kesempatan juga keselamatan yang lebih tinggi bagi pejalan kaki/penyeberang jalan serta kenyamanan pengguna jalan yang lebih baik.

BAB III

TINJAUAN PUSTAKA

3.1 Istilah dan Definisi

Alat Pemberi Isyarat Lalu Lintas (APILL)

Peralatan teknis berupa isyarat lampu yang dapat dilengkapi dengan bunyi untuk memberi peringatan atau mengatur lalu lintas orang dan/atau kendaraan di persimpangan, persilangan sebidang ataupun pada ruas jalan (Undang-Undang Nomor 14 Tahun 1992).

Sistem APILL terkoordinasi (Area Traffic Control System/ATCS)

Pengendalian lalu lintas pada persimpangan-persimpangan yang dilengkapi dengan APILL secara terkoordinasi pada suatu wilayah tertentu atau kota tertentu yang dikendalikan secara terpusat.

Persimpangan

Pertemuan atau percabangan jalan, baik sebidang maupun yang tidak sebidang (Peraturan Pemerintah Nomor 43 Tahun 1993).

Persimpangan berdiri sendiri

Persimpangan yang diatur dengan APILL yang pengoperasiannya dianggap berdiri sendiri (Keputusan Direktur Jenderal Perhubungan Darat Nomor 273/HK 105/DJRD/96 Tahun 1996).

Pusat Pengendali (control center)

Sub sistem dari sistem APILL terkoordinasi yang berfungsi mengendalikan koordinasi pengaturan sinyal di setiap persimpangan sesuai dengan strategi yang ditetapkan.

Pengontrol Lokal (local controller)

Sub sistem dari sistem APILL terkoordinasi yang berfungsi mengimplementasikan skema pengaturan sinyal di sebuah persimpangan sesuai dengan perintah dari pusat pengendali.

Jaringan Komunikasi (communication network)

Sub sistem dari sistem APILL terkoordinasi yanng berfungsi sebagai media komunikasi antar sub sistem dalam sistem APILL terkoordinasi untuk memfasilitasi fungsi koordinasi dan monitoring.

Pendeteksi Kendaraan (vehicle detector)

Sub sistem dari sistem APILL terkoordinasi yang berfungsi mendeteksi lalu lintas kendaraan yang masuk dan/atau keluar persimpangan untuk menghasilkan data karakteristik lalulintas yang dibutuhkan untuk melakukan optimasi pengaturan sinyal.

Tingkat Pelayanan

Kemampuan ruas jalan dan/atau persimpangan untuk menampung lalu lintas pada keadaan tertentu.

Sistem Pengaturan

Tata cara pengauran sinyal lampu lalu lintas pada sistem APILL terkoordinasi yang dibedakan atas tingkat adaptivitasnya terhadap perubahan lalu lintas.

Pengaturan Sinyal Lampu Lalu Lintas

Pengaturan waktu siklus (*cycle-time*), jumlah fase, pembagian waktu hijau, koordinasi waktu antar simpang (*off-set*) yang ditetapkan untuk persimpangan tertentu.

3.2 Deskripsi Umum Sistem APILL Terkoordinasi

Menurut Keputusan Menteri No 62 Tahun 1993 Pasal 3, 4 6 dan 7; Alat Pemberi Isyarat Lalu Lintas jenis alat APILL terdiri dari 3 macam yaitu:

- 1. Lampu 3 warna, untuk mengatur kendaraan.
- 2. Lampu 2 warna, untuk mengatur kendaraan dan pejalan kaki.
- 3. Lampu 1 warna, untuk memberikan peringatan bahaya kepada pengguna jalan. Jenis jenis APILL terdiri dari:
- 1. Lampu 3 warna terdiri dari lampu merah, kuning, dan hijau.
- 2. Lampu 3 warna dipasang dalam posisi vertical atau horizontal.

- 3. Apabila dipaasang vertical maka susunan lampu dari atas ke bawah dengan urutan merah, kuning, hijau.
- 4. Apabila dipasang horizontal maka susunan lampu dari kiri ke kanan menurut arah lalu lintas dengan urutan merah, kuning, hijau.

Untuk lampu 3 warna sebagaimana yang di maksud diatas, dapat dilengkapi dengan lampu warna merah atau hijau yang memancarkan cahaya berupa tanda panah. Jenis alat pemberi isyarat lalu lintas pada lampu 2 warna terdiri dari:

- 1. Lampu 2 warna terdiri dari lampu warna merah dan hijau.
- 2. Lampu 2 warna dipasang dalam posisi vertical atau horizontal.
- 3. Apabila dipaasang vertical maka susunan lampu dari atas ke bawah dengan urutan merah, hijau.
- 4. Apabila dipasang horizontal maka susunan lampu dari kiri ke kanan menurut arah lalu lintas dengan urutan merah, hijau.

Sedangkan jenis alat pemberi isyarat lalu lintas pada lampu 1 warna terdiri dari:

- 1. Lampu 1 warna terdiri dari lampu warna kuning atau merah.
- 2. Lampu 1 warna dipasang dalam posisi vertical atau horizontal.

Setiap alat pemberi isyarat lalu lintas memiliki fungsi yang berbeda – beda, fungsi dari alat ini adalah sebagai berikut :

- 1. Lampu 3 warna menyala secara bergantian dan tidak berkedip dengan urutan sebagai berikut:
 - a. Lampu hijau menyala setelah lampu wana merah padam, mengisyaratkan kendaraan harus jalan.
 - b. Lampu warna kuning menyala setelah lampu warna hijau padam, mengisyaratkan kendaraan yang belum sampai pada batas berhenti atau sebelum alat pemberi isyarat lalu lintas bersiap untuk berhenti dan bagi kendaraan yang sedemikian sudah dekat dengan batas berhenti, sehingga tidak dapat berhenti lagi dengan aman dapat berjalan.
 - c. Lampu warna merah menyala setelah lampu kuning padam, mengisyaratkan kendaraan harus berhenti sebelum batas berhenti dan apabila jalur lalu lintas tidak dilengkapi dengan batas berhenti, kendaraan harus berhenti sebelum alat pemberi isyarat lalu lintas.
- 2. Lampu 2 warna menyala secara bergantian, yaitu berfungsi:
 - a. Mengatur lalu lintas pada tempat penyeberanga pejalan kaki.

- b. Mengatur lalu lintaskendaraan pada jalan tol atau tempat tempat tertentu lainnya.
- 3. Lampu 1 warna terdiri dari 1 lampu yang menyala berkedip atau 2 lampu yang menyala bergantian.
 - a. Lampu 1 warna yang berwarna kuning dipasang pada jalur lalu lintas, mengisyaratkan pengemudi harus berhati hati.
 - b. Lampu 1 warna sebagaimana yang berwarna merah dipasang pada persilangan sebidang dengan jalah kereta api dan apabila menyala, mengisyratkan pengemudi harus berhenti.
 - c. Lampu 1 warna dilengkapi dengan isyarat suara atau tanda panah pada lampu yang menunjukkan arah datangnya kereta.
 - Bentuk dan ukuran lampu yang telah disebutkan diatas rata rata berbentuk bulat dengan garis tengah antara 20 cm sampai 30 cmdengan daya lampu antara 60 watt sampai 100 watt.

Adapun susunan lampu lalu lintas dapat dilihat pada Gambar 3.1. dibawah ini:

Sumber: http://atcs.baliprov.go.id

Gambar 3.1. Susunan Lampu Lalu Lintas Berbentuk Vertikal dan Horizontal

3.2.1 Prinsip Kerja APILL Terkoordinasi

Dalam sistem APILL terkoordinasi persimpangan-persimpangan jalan di area tertentu tidak dioperasikan sebagai persimpangan berdiri sendiri, namun dioperasikan secara terkoordinasi dan dikendalikan secara terpusat dari pusat pengendali.

Oleh karena itu, suatu sistem pengendalian lalu lintas yang di aplikasikan di suatu area dapat disebut sistem APILL terkoordinasi jika dapat memenuhi fungsi pokok sebagai berikut :

- a) Fungsi hubungan : dimana semua persimpangan di area tersebut terhubung melalui suatu jaringan komunikasi ke pusat pengendali.
- b) Fungsi koordinasi : dimana setiap persimpangan di area tersebut dapat diubah pengaturan sinyal lampu lalu lintasnya dari pusat pengendali.

Kedua fungsi pokok dari sistem APILL terkoordinasi tersebut harus terpenuhi di semua area yang dikoordinasikan dan berfungsi terus-menerus sepanjang waktu.

Selain kedua fungsi pokok tersebut, terdapat beberapa kemampuan fungsi tambahan dari suatu sistem APILL terkoordinasi yang menjadi keunggulan sistem ini, diantaranya:

- a) Dapat diaplikasikan beberapa skema pengaturan lalu lintas sesuai dengan perubahan lalu lintas yang terjadi.
- b) Dapat mengakomodasikan skema pengaturan khusus untuk memprioritaskan lalulintas tertentu (misalnya : VIP, ambulans, dan bus).
- c) Dapat mendeteksi kerusakan yang terjadi pada peralatan tertentu dari pusat pengendali, dimanapun lokasi peralatan tersebut berada.
- d) Dapat merekam data aktivitas operasional sistem termasuk mengkoleksi data lalulintas jalan.

3.2.2Sub-Sistem atau Bagian Utama Dari Sistem APILL Terkoordinasi

Untuk dapat memenuhi fungsi kerja dari suatu sistem APILL terkoordinasi sebagaimana disampaikan sebelumnya maka pada umumnya sistem APILL terkoordinasi memiliki 4 sub sistem bagian utama, yakni :

- a) Pusat pengendali (control center)
- b) Jaringan komunikasi (communication network)
- c) Pengendali lokal (*local controller*)
- d) Pendeteksi kendaraan (vehicle detector)

Penjelasan mengenai funsi dan komponen utama dari setiap sub sistem dari sistem APILL terkoordinasi tersebut disampaikan pada Tabel 6.1. dalam aplikasinya komponen dari subsistem dapat saja dilengkapi dengan komponen tambahan sesuai dengan keperluan.

Penggunaan sub sistem pendeteksi kendaraan sifatnya pilihan (opsional), karena sub sistem ini hanya diperlukan jika sistem operasi sistem APILL terkoordinasi yang dipilih sifatnya adaftif terhadap perubahan lalu lintas.

Pada dasarnya, yang membedakan antara sistem APILL terkoordinasi dengan persimpangan yang berdiri sendiri adalah adanya sub sistem pusat pengendali dan sub sistem jaringan komunikasi, dimana kedua sub sistem ini bersinergi dalam mengendalikan pengaturan sinyal lalu lintas di setiap persimpangan agar operasionalnya terkoordinasi.

Tabel 3.1. Penjelasan tentang Ilustrasi Konfigurasi dari Sistem APILL Terkoordinasi

Pusat pengendali (control center)	 Mengendalikan koordinasi pengaturan sinyal di setiap persimpangan sesuai dengan strategi yang ditetapkan. Melakukan monitoring 	a) Server untuk menyimpan data dan memproses perintah pengendalian sinyal b) Software untuk
	Melakukan monitoring	h) Software untuk
	status setiap persimpangan	melakukan optimasi pengendaliian sinyal
		c) Operator workstation sebagai fasilitas antarmuka bagi operator dengan seluruh sistem
		d) Display monitoring/wallma p untuk menampilkan status dan kinerja setiap persimpangan

No .	Sub Sistem	Fungsi Utama	Komponen Utama
			unit untuk berkomunikasi dengan sub sistem lainnya
2	Jaringan komunikasi (communicatio n network)	Sebagai media komunikasi antar sub-sistem lainnya untuk memfasilitasi fungsi koordinasi dan monitoring	a) Jalur komunikasi sebagai media penyalur informasi antar sub-sistem
			b) Sistem komunikasi yang menjadi basis dari tata cara komunikasi antar sub-sistem
3	Pengontrol lokal (local controller)	 Mengimplementasikan skema pengaturan sinyal di sebuah persimpangan sesuai dengan perintah dari pusat pengendali Menyimpan (back-up) timing plans untuk kondisi trouble-shooting 	a) Fasilitas antarmuka (papan tombol dan display) b) Controller unit/processing unit untuk pengaturan sinyal di persimpangan yang bersangkutan c) Communication unit untuk berkomunikasi
			dengan sub sistem lainnya d) Sumber energi (power supply) Keterangan : umumnya lampu lalu lintas dianggap sebagai bagian dari sub sistem ini.

No .	Sub Sistem	Fungsi Utama	Komponen Utama
4	Detektor kendaraan	Mendeteksi lalu lintas kendaraan yang masuk dan/atau keluar persimpangan untuk menghasilkan data karakteristik lalulintas yang dibutuhkan untuk melakukan optimasi pengaturan sinyal	a) Sensor untuk mendeteksi kendaraan yang melintas b) Prosesor untuk mengolah data hasil deteksi c) Communication unit untuk berkomunikasi dengan sub sistem lainnya
			d) Sumber energi (power supply)

3.2.3 Maksud, Tujuan dan Manfaat Penerapan Sistem APILL Terkoordinasi

Maksud dan penerapan sistem APILL terkoordinasi adalah untuk melakukan sinkronisasi atau koordinasi pengaturan sinyal lampu lalu lintas dari setiap persimpangan di dalam suatu jaringan jalan yang berada di area tertentu. Adapun tujuan dari penerapan sistem APILL terkoordinasi ini adalah untuk menciptakan lalu lintas di dalam jaringan jalan yang teratur dan lancar sehingga diperoleh tingkat pelayanan yang optimal yang ditandai dengan pengurangan waktu perjalanan, jumlah stop dan lama waktu tundaan. Dengan tercapainya tujuan tersebut diharapkan akan diperoleh manfaat dari penerapan sistem APILL terkoordinasi diantaranya:

- a) Pengurangan biaya transportasi, berupa penurunan konsumsi nilai waktu masyarakat dan biaya operasi kendaraan.
- b) Pengurangan dampak lingkungan, berupa penurunan konsumsi bahan bakar dan emisi gas buang kendaraan.

c) Pengurangan tingkat kecelakaan, berupa penurunan potensi terjadinya kecelakaan dengan adanya pengaturan konflik lalu lintas serta lancar dan teraturnya lalu lintas di dalam jaringan jalan.

3.2.4Kategori Sistem Pengaturan Pada Sistem APILL Terkoordinasi

Terdapat beberapa kategori sistem pengaturan yang diaplikasikan menggunakan sistem APILL terkoordinasi seperti yang disampaikan pada Tabel 6.2. Pembedaan kategori ini didasarkan pada tingkat koordinasi dan tingkat adaptivias sistem terhadap perubahan lalu lintas di jaringan jalan. Pemilihan kategori sistem pengaturan ini sangat mempengaruhi spesifikasi peralatan yang diperlukan dalam penerapan sistem APILL terkoordinasi, dimana semakin adaftid sistem operasi yang dinginkan maka dibutuhkan spesifikasi teknologi yang semakin tinggi,

Tabel 3.2. Tipe-Tipe Sistem Pengaturan yang dapat Diterapkan Pada Sistem APILL Terkoordinasi

Kategori	Karaktersistik Utama	Cara Pengaturan Sinyal	Metode Penentuan	Penggunaan
Koordinasi berbasis waktu (time based coordination)	Koordinasi didasarkan pada pola lalulintas pada perioda-perioda tertentu (time of day TOD, time of week TOW)	Menggunakan pilihan pengaturan sinyal yang telah ditetapkan untuk masing-masing simpang secara individual	Optimasi menggunakan program komputer (off line) berdasar data lalulintas historis di area tersebut.	Lalu lintas persimpangan yang sudah mendekati kondisi yang perlu dikoordinasikan
Pengaturan persimpagan yang saling terhubung (interconnect ed control)	 Setiap persimpangan saling terhubung Timing-plan disediakan dari pusat pengendali 	 Pre-time coordination Pemilihan timing-plan dapat dilakukan operator 	 Optimasi program komputer secara off-line Intervensi operator berdasarkan 	• Pre-time coordination biiasa digunakan jika variasi lalulntas tidak ekstrem.

Kategori	Karaktersistik Utama	Cara Pengaturan Sinyal	Metode Penentuan	Penggunaan
			informasi eksternal (tidak dari detektor)	intervensi operator dilakukan untuk kondisi khusus (ada kecelakaan, VIP, dll)
Pengaturan yang dapat disesuaikan dengan kondisi lalu lintas (traffic adjusted control)	Operasional yang palling konvemsional dari sistem perngaturan yang dapat disesuaikan	Memanfaatkan sensor pendeteksi kendaraan untuk menhasilkan kemampuan penyesuaian	 Pemilihan timing-palns disesuaikan dengan kondisi lalu lintas Dapat memiliki lebih banyak timing-paln dibandingkan interconnected control 	Diaplikasikan jika lalu lintas bervariasi secara signifikan pada waktu-waktu tertentu
Pengaturan yang responsif terhadap lalulintas (traffic responsive control)	Timing-plan disusun secara cepat dan otomatis mengunakan informasi dari detektor yang dipasang pada pendekat up- stream	Skema pengaturan lalu lintas dapat diubah hanya dalam beberapa menit	Menggunakan data lalulintas yang dideteksi dari pendekat untuk melakukan optimasi	Diaplikasikan jika lalu lintas bervariasi secara signifikan sepanjang hari atau jika terjadi pola lalulintas yang tidak biasa (ada kejadian tertentu)
Sistem pengaturan yang adaptif	Prediksi perubahan face dilakukan	Pengaturan fase diprediksi dari	Memprediksi arus kendaraan pada	Sama seperti pada traffic responsive

Kategori	Karaktersistik Utama	Cara Pengaturan Sinyal	Metode Penentuan	Penggunaan
terhadap lalu	berdasar dat	kondisi lalu	persimpangan	control, namun
lintas (traffic adaptive control)	dari detektor yang dipasang di setiap pendekat perimpangan	 Iintas terakhir Timing-plan tidak digunakan secara eksplisit 	dari data detektor	juga dapat digunakan pada variasi lalulintas yang acak

3.2.5Kriteria Umum Penerapan Sistem APILL Terkoordinasi Di Suatu Area

Untuk menentukan perlu atau tidaknya sistem APILL terkoordinasi diterapkan di suatu area sebaiknya didasarkan pada hasil studi kelayakan komprehensif. Namun sebelum dilakukan studi kelayakan tersebut, terdapat beberapa kriteria umum yang dapat dijadikan sebagai pedoman awal (*rule of thumb*) apakah persimpangan-persimpangan jalan tersebut perlu dikoordinasikan atau tidak, yakni :

- a) Sebaiknya jarak rata-rata antar persimpangan di area tersebut tidak lebih dari 800 meter.
- b) Diantara dua simpang yang berdekatan sebaiknya memiliki nilai indeks keterkatan (*coupling index*) yang tidak kurang dari 1,64. Dimana indeks keterkaitan ini dihitung dengan rumus sebagai berikut :

$$I = V/L$$

Dimana I adalah nilai indeks keterkaitan. V adalah lalulintas dua arah pada ruas jalan diantara kedua persimpangan (kendaraan/jam) dan L adalah jarak antara kedua persimpangan tersebut (meter).

Jika kondisi jaringan jalan di suatu are amemenuhi kedua kondisi tersebut, maka dapat ditindaklanjuti dengan melakukan studi kelayakan untuk mendapatkan gambaran yang lebih komprehensif mengenai konsekuensi dari penerapan sistem APILL terkoordinasi ini.

3.2.6 Tahapan Penyelenggaraan Sistem APILL Terkoordinasi

Dalam konteks penyelenggaraan suatu fasilitas publik maka penerapan sistem APILL terkoordinasi di suatu area tidak terbatas hanya dalam proses pemasangan (*installement*) perangkat keras dan perangkat lunak yang dibutuhkan, namun juga terkait dengan kegiatan operasional, pemeliharaan serta monitoring dan evaluasi kondisi dari kinerja sistem.

Penyelenggaraan sistem APILL terkoordinasi merupakan keputusan investasi yang cukup besar sehingga harus dipastikan bahwa :

- a) Penerapannya di suatu area akan memberikan manfaat yang signifikan.
- b) Sistem operasi dan teknologi yang dipilih adalah yang paling tepat.
- c) Tersedia dana dan sumber daya manusia yang memadai untuk mengoperasikan dan memeliharanya dengan baik.

BAB IV

TUJUAN PENELITIAN

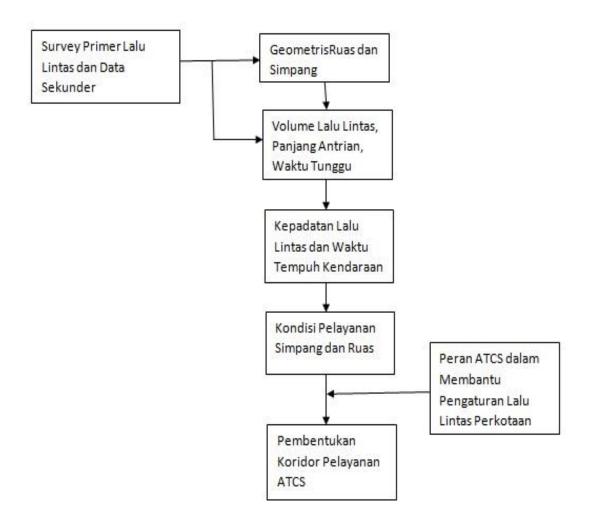
4.1 Tujuan Penelitian

Penelitian ini bertujuan untuk mengevaluasi kinerja persimpangan terutama yang memiliki APILL dan bagaimana perencanaan penerapan ATCS pada persimpangan tersebut. Lebih spesifik mengenai tujuan penelitian ini adalah sebagai berikut:

- 1. Menganalisis Tingkat Pelayanan Jalan (*level of service*) persimpangan bersinyal di Kota Palembang.
- 2. Mendapatkan dasar analisa untuk perencanaan ATCS di Kota Palembang

4.2 Keluaran Yang Hendak Dicapai

Keluaran yang diharapkan dari penelitian ini adalah:


- 1. Publikasi hasil penelitian kedalam jurnal penelitian ilmiah baik yang terakreditasi ataupun yang tidak terakreditasi
- 2. Data simpang pada daerah kajian studi penelitian yaitu Kota Palembang
- 3. Indikator untuk penerapan ATCS di Kota Palembang

BAB V

METODE PENELITIAN

5.1 PENDEKATAN

Pendekatan yang digunakan dalam pekerjaan ini digambarkan oleh bagan alir dalam gambar berikut ini:

Gambar 5.1. Bagan Alir Pekerjaan

5.2 PENGUMPULAN DATA

1. Data Volume Lalu Lintas

Data volume lalulintas diperoleh dari hasil survei lapangan secara langsung, maupun berdasarkan hasil survei yang telah dilakukan sebelumnya. Pencacahan lalu lintas akan digunakan untuk menilai kepadatan lalulintas yang ada dengan menggunakan metode

perhitungan simpang yang ada di dalam Manual Kapasitas Jalan Indonesia 1997, maka akan didapatkan nilai kapasitas lalu lintas (smp/jam), panjang antrian (meter), kendaraan berhenti (smp/jam), tundaan (det/smp). Kemudian masing-masing volume lalu lintas tiap lengan diasumsikan untuk menghitung volume kendaraan di ruas jalan. Dengan menggunakan metode perhitungan dari Manual kapasitas Jalan Indonesia 1997, maka akan didapatkan kapasitas ruas jalan (smp/jam), kecepatan tempuh rata-rata (km/jam) dan waktu tempuh (jam atau menit).

2. Data Tundaan dan Panjang Antrian

Data tundaan dan panjang antrian diperlukan untuk melakukan kalibrasi dari hasil perhitungan dengan MKJI 1997. Biasanyadalam perhitungan ini, terjadi selisih nilai antara nilai yang terhitung dengan yang ada di lapangan, sehingga diperlukan data tundaan maupun panjang antrian agar didapatkan hasil yang sesuai dengan kondisi di lapangan.

3. Data Waktu Tempuh dan Kecepatan Rata-rata

Data waktu tempuh dan kecepatan dipergunakan untuk mengetahui kondisi layanan ruas jalan / segmen dalam jalan. Data ini juga digunakan untuk memberi penilaian terhadap waktu tempuh angkutan, sehingga dapat digunakan untuk melakukan penyesuaian waktu siklus apabila diberlakukan bus priority di simpang dengan lampu lalulintas.

4. Data Geometri Simpang

Data geometri simpang selain diperlukan dalam perhitungan lalulintas juga digunakan untuk perencanaan pemasangan alat lalulintas seperti lampu lalulintas, kamera pengawas, monitor display dan peralatan pendukung lainnya.

5.3 ANALISA DATA

5.3.1 Analisa Simpang Bersinyal dengan MKJI

1. Data Masukan

a. Kondisi Geometri dan Lingkungan

Kondisi geometri digambarkan dalam bentuk gambar sketsa yang memberikan informasi lebar jalan, lebar bahu dan lebar median serta petunjuk arah untuk tiap lengan simpang. Lebar *approach* untuk tiap lengan diukur kurang lebih sepuluh meter dari garis henti.

Kondisi lingkungan jalan antara lain menggambarkan tipe lingkungan jalan yang dibagi dalam tiga tipe yaitu: tipe komersial, permukiman dan akses terbatas. Seperti juga diterangkan pada sub bab Simpang Tak Bersinyal tentang definisi gangguan samping, mediannya dan kelandaian lengan simpang.

b. Kondisi Arus Lalu Lintas.

Data lalulintas dibagi dalam tipe kendaraan yaitu kendaraan tidak bermotor (UM) sepedamotor (MC), kendaraan ringan (LV) dan kendaraan berat (HV). Dalam MKJI 1999, kendaraan bermotor dikategorikan sebagai hambatan samping. Arus lalu lintas tiap approach dibagi dalam tiap pergerakan, antara lain: gerakan belok ke kanan, belok kiri dan lurus.

Gerakan belok kiri pada saat lampu merah (left turn on red, LTOR) diijinkan jika mempunyai lebar approach yang cukup sehingga dapat melintasi antrian pada kendaraan yang lurus dan belok kanan.

Setiap approach harus dihitung perbandingan belok kiri (LT) dan perbandingan

kanan (RT), yang diformulasikan dibawah ini

$$LT = \frac{LT\left(\frac{smp}{jam}\right)}{Total\left(\frac{smp}{jam}\right)}$$

$$LT = \frac{RT \left(\frac{smp}{jam}\right)}{Total \left(\frac{smp}{jam}\right)}$$

dengan:

LT = arus lalulintas belok kiri

RT = arus lalulintas belok kanan

Untuk penghitungan arus lalulintas digunakan satuan smp/jam yang dibagi dalam dua tipe yaitu arus terlindung (protected traffic flow) dan arus berlawanan arah (opposed traffic flow), yang tergantung pada fase sinyal dan gerakan belok kanan. Nilai konversi ini diterangkan dalam tabel di berikut ini.

Tabel 5.1. Nilai Konversi SMP

	Nilai smp				
Tipe Kendaraan	Terlindung	Terlawan			
LV	1,0	1,0			
HV	1,3	1,3			

Sumber: Direktorat Jenderal Bina Marga, Departemen Pekerjaan Umum, 1997,

Manual Kapasitas Jalan Indonesia

2. Persinyalan

a. Fase Sinyal

Untuk merencanakan fase sinyal dilakukan dengan berbagai alternatif untuk evaluasi. Sebagai langkah awal ditentukan kontrol dengan dua fase. Jumlah dae yang baik adalah fase yang menghasilkan kapasitas besar dan rata-rata tundaan rendah. Pemisahan dengan kontrol pada gerakan belok kanan biasanya akan lebih baik jika kapasitasnya melebihi 200 smp/jam. Hal ini mungkin dikehendaki jika keselamatan lalu lintas menjadi pertimbangan. Keadaan ini akan menambah jumlah dase dan waktu antar hijau (intergreen) yang berakibat bertmabhanya waktu iklus dan waktu hilang. Walaupun dari segi keselamatan meningkat biasanya hal ini akan menurunkan kapasitas. Bila arus belok kanan dari satu kaki dan atau arus belok kanan kaki lawan arah terjadi pada fase yang sama, arus ini dinyatakan sebagai opposed. Sedangkan arus belok kanan yang dipisahkan fasenya dengan arus lurus atau belok kanan tidak diijinkan, maka arus ini dinyatakan sebagai protected.

b. Clearence Time and Lost Time

Dalam analisis untuk perencanaan, waktu antar hijau (*integreen*) dapat diasumsikan berdasarkan nilai berikut ini :

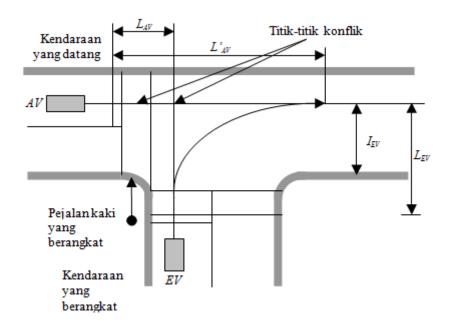
Tabel 3.2. Nilai Antar Hijau

Ukuran	Ratarata Lebar	NILAI NORMAL
Kecil	6 – 9 m	4 detik / fase
Sedang	10 – 14 m	5 detik / fase
Besar	≥ 15 m	≥ 6 detik / fase

Clearance time merupakan fungsi dari kecepatan dan jarak untuk mengosongkan (evacuating) dan memajukan (advacing) kendaraan dari titik konflik pada garis henti dari panjang pengoongan kendaraan.

Clearance time yang dikehendaki seharusnya dapat digunakan oleh kendaraan untuk mengosongkan titik konflik sebelum datang kendaraan yang pertama dari fase berikutnya yang dirumuskan seperti dibawah ini.

$$CT = \left[\frac{L_{EV} + I_{EV}}{V_{EV}} - \frac{L_{AV}}{V_{AV}} \right]_{max}$$


Dengan:

 L_{EV} , L_{AV} jarak dari garis henti ke titik konflik untuk masing---masing kendaraan yang bergerak maju atau meninggalkan.

 I_{EV} = panjang pengosongan kendaraan

 V_{EV} , V_{AV} = kecepatan masing---masing kendaraan yang bergerak meninggalkan atau maju.

Rumus diatas sebenarnya untuk simpang 4-way sedangkan untuk simpang 3-way terdapat kesulitan untuk menetapkan jarak kendaraan dari garis henti untuk dapat bergerak maju/meninggalkan (*L'AV*). Untuk memudahkan penentuan maka diasumsikan seperti pada simpang 4-way yaitu dipakai *LAV*. Dengan digunakan asumsi ini maka nilai CT menjadi lebih besar daripada nilai yang terjadi sebenarnya. Ini berarti nilai CT asumsi lebih aman daripada nilai sebenarnya.

Gambar 5.2. Asumsi Penentuan CT untuk Simpang 3 Lengan

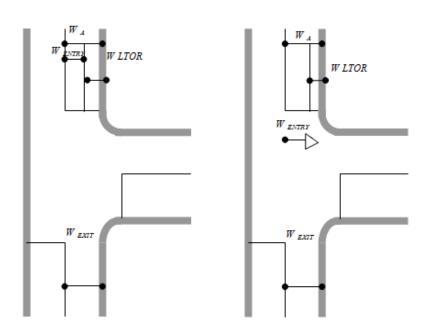
Nilai-nilai yang terpilih untuk V_{EV} , V_{AV} , I_{EV} tergantung dari kondisi komposisi laluliintas dan kondisi kecepatan pada simpang. Nilai-nilai sementara yang dapat digunakan sesuai peraturan Indonesia dibawah ini.

- 1) Kecepatan kendaraan yang datang, VAV
 - a) 10 m/det (kendaraan bermotor)
- 2) Kecepatan kendaraan yang berangkat, VEV
 - a) 10 m/det (kendaraan bermotor)
 - b) 3m/det (kendaraan tak bermotor)
 - c) 1,2 m/det (pejalan kaki)
- 3) panjang kendaraan yang berangkat
 - a) 5 m (LV atau HV)
 - b) 2 m (MC atau UM)

Periode *allred* antara fase haru sama atau lebih besar dari *clearance time*. Setelah waktu *allred* ditentukan, total waktu hilang (LTI) dapat dihitung sebagai penjumlahan periode waktu antar hijau (IG).

LTI =
$$\sum$$
 (allred + amber) i = \sum IG i

Periode amber untuk sinyal lalu lintas daerah perkotaan diambil 3 detik.


5.3.2 Penentuan Waktu Sinyal

1. Lebar Efektif Approach

Perhitungan lebar efektif (We) pada tiap approach didasarkan pada informasi tentang lebar approach (W_A), lebar entry (W_{ENTRY}) dan lebar exit (W_{EXIT}).

- 1) Untuk approach tanpa belok kiri langsung (LTOR) periksa Wexit, Jika Wexit < Ws x $(1-\rho \ RT \rho \ LTOR)$ Wexit sebaiknya diberi nilai baru yang sama dengan nilai Wexit, dan analisis penentuan waktu sinyal pendekat ini dilakukan hanya untuk lalu lintas lurus saja, yakni Q = QST
- 2) Untuk approach dengan belok kiri Lagsung (LTOR)

We dapat dihitung untuk pendekat dengan atau tanpa pulau lalu lintas seperti pada gambar.

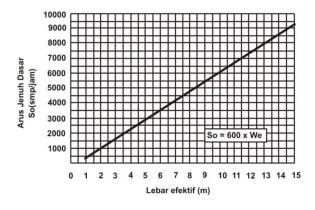
Gambar 3.3. Penentuan Lebar Efektif

- a) $W_{LTOR} \geq 2m$, dengan anggapan kendaraan LTOR dapat mendahului antria kendaraan lurus dan belok kanan dalam pendekat selama sinyal merah. Arus lalu lintas belok kiri langsung Q_{LTOR} dikeluarkan dari perhitungan selanjutnya, yakni Q = QST QRT
- b) W_{LTOR} < 2m , dengan anggapan bahwa kendaraan LTOR tidak dapat mendahului antria kendaraan lainnya dengan pendekat selama sinyal merah.

WA x
$$(1+\rho LTOR) - W_{LTOR}$$

Periksa W_{EXIT} (hanya untuk approach tipe P)

Jika W_{EXIT} < We x (1- ρ RT – ρ LTOR) We sebaiknya diberi nilai baru yang sama dengan W_{EXIT} dan analisis penetuan waktu sinyal pendekat ini dilakukan hanya untuk lalu lintas lurus saja, yakni Q = QST.


2. Arus Jenuh Dasar

a. Untuk tipe approach O

Arus jenuh dasar didapat dari grafik yang terdapat dalam MKJI 1997 (untuk approach tanpa garis pemisah belok kanan) dan grafik (untuk approach dengan garis pemisah belok kanan). Sebaai fungsi dari lebar efektif (We), lalulintas belok kanan (QRT) dan lalu lintas belok kanan yang berlawanan (QRTO). Cara menggunakan gambar adalah dengan mencari nilai arus dengan lebar approach yang lebih besar dan lebih kecil d ari We aktual dan kemudian diinterpolasi.

b. Untuk tipe approach P (arus pelindung)

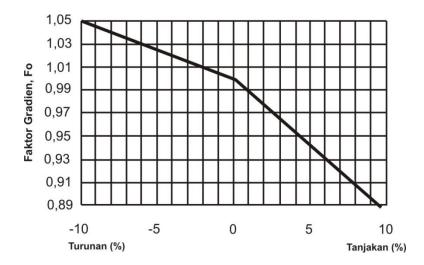
So = 600 x We (smp/jam hijau), atau So = 780 x We (smp/jam hijau)

Gambar 3.4. Arus jenuh Dasar untuk Tipe Pendekat P

3. Pemilihan tipe approach

Penentuan tipe approach dengan tipe perlindungan (P) atau berlawanan (O). Faktor Koreksi; Penentuan faktor koreksi untuk nilai arus lalu lintas dasar kedua tipe approach.

- a) Faktor koreksi ukuran kota (FCS)
- b) Faktor koreksi hambatan samping ((FSF) merupakan fungsi dari tipe perlindungan jalan, tingkat hambatan samping dan rasio kendaraan tak bermotor. Jika gangguan smaping tidak diketahui maka dapat diasumsikan nilai tinggi agar tidak terjadi over estimate untuk kapasitas. Faktor ini dapat ditentukan ebrdasarkan tabel dibawah ini.


Tabel 5.3. Faktor Penyesuaian Ukuran Kota

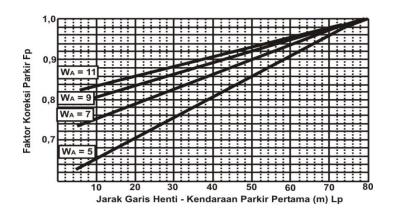
Penduduk Kota (juta jiwa)	Faktor Penyesuaian Ukuran
> 3,0	1,05
1,0 - 3,0	1,00
0,5 - 1,0	0,94
0,1 - 0,5	0,83

Tabel 5.4. Faktor Peneysuaian Hambatan Samping (FSF)

Lingkungan	Hambatan	Tipe Fase	Rasio					
Jalan	Samping		0,00	0,05	0,10	0,15	0,20	≥ 0,25
Komersial	Tinggi	Terlawan	0,93	0,88	0,84	0,79	0,74	0,70
(COM)	Sedang	(0)	0,93	0,91	0,88	0,87	0,85	0,81
	Rendah	Terlindung (P)	0,94	0,89	0,85	0,80	0,75	0,71
		Terlawan	0,94	0,92	0,89	0,88	0,86	0,82
		(0)	0,95	0,90	0,86	0,81	0,76	0,72
		Terlindung (P)	0,95	0,93	0,90	0,89	0,87	0,83
Permukiman	Tinggi	Terlawan	0,96	0,91	0,86	0,81	0,78	0,72
(RES)	Sedang	(0)	0,96	0,94	0,92	0,89	0,86	0,84
	Rendah	Terlindung (P)	0,97	0,92	0,87	0,82	0,79	0,73
		Terlawan	0,97	0,95	0,93	0,90	0,87	0,85
		(0)	0,98	0,93	0,88	0,83	0,80	0,74
Akses	T/S/R	Terlawan	1,00	0,95	0,90	0,85	0,80	0,75
Terbatas (RA)		(0)	1,00	0,98	0,95	0,93	0,90	0,88
		Terlindung (P)						

c) Faktor koreksi gradien (FG) adalah fungsi dari kelandaian lengan simpang ditentukan dari gambar berikut .

Faktor koreksi parkir (Fp), adalah jarak dari garis henti ke kendaraan yang parkir pertama dan lebar approach ditentukan dari formula di bawah ini atau diperlihatkan dalam Gambar 5.6.

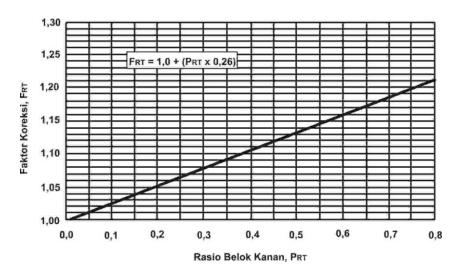

$$FP \square \square LP / 3 \square \square WA \square 2 \square \square \square LP / 3 \square g \square / WA \square / g$$

Dengan:

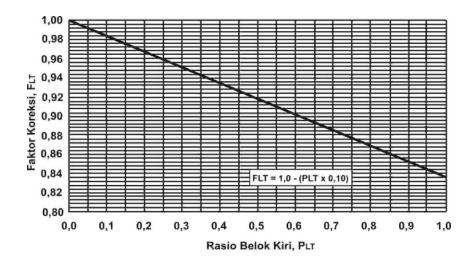
Lp = Jarak antara garis henti dan kendaraan yang parkir pertama.

WA = Lebar approach

g= waktu hijau approach yang bersangkutan (detik)


Gambar 5.6. Faktor Koreksi Parkir

Penentuan faktor koreksi untuk nilai arus jenuh dasar hanya untuk tipe aproach P.


d) Faktor koreksi belok kanan (FRT) ditentukan sebagai fungsi perbandingan kendaraan yang belok kanan (ρRT). Faktor ini hanya untuk tipe approach P, jalan dua lajur dan diperlihatkan pada gambar dibawah.

Untuk jalan dua lajur tanpa jalan median, kendaraan yang belok kanan terlindung dengan tpe approach P, cenderung untuk melewati garis tengah sebelum garis henti ketika mengakhiri belokannya. Kasus ini akan menambah jumlah arus jenuh dengan perbandingan yang tinggi pada lalu lintas belok kanan.

e) Faktor koreksi belok kiri (FLT) dientukan sebagai fungsi perbandingan belok kiri (ρLT). Faktor ini hanya untuk tipe approach tanpa LTOR seperti pada gambar dibawah ini.

Gambar 5.7. faktor Koreksi Belok Kanan (pRT)

Gambar 5.8. faktor Koreksi Belok Kiri (FLT)

Dalam approach yang terlindung, tanpa perlengkapan untuk LTOR kendaraan yang belok kiri cenderung menurun pelan dan dapat mengurangi arus jenuh pada approach. Pada umumnya lebih pelan pada lalu lintas dalam approach tipe O dan tidak ada koreksi yang dimasukkan pada perbandngan belok kiri.

5.3.3 Perhitungan Penilaian Arus Jenuh (S)

Perhitungan ini dapat menggunakan rumusi dibawah ini

 $S = SO \times FSF \times FG \times FRT \times FLT \text{ (smp/hijau)}$

Dengan:

S0 = arus jenuh dasar

FCS = faktor koreksi ukuran kota

FSF = faktor koreksi gangguan samping

FG = faktor koreksi kelandaian

FP = faktor koreksi parkir

FRT = faktor koreksi belok kanan

FLT = faktor koreksi belok kiri

5.3.4 Perbandingan arus dengan arus jenuh

Perhitungan perbandingan arus (Q) dengan arus jenuh (S) untuk tiap appproach dirumuskan dibawah ini

FR = Q / S

Perbandingan arus kritis (Frcrit)yaitu nilai perbandingan arus tertinggi dalam tiap fase. Jika nilai perbandingan arus kritis untuk tiap fase dijumlahkan akan didapat perbandingan arus simpang.

IFR = \sum (Frcrit)

Perhitungan perbandingan fase (phase ratio, PR) untuk tiap fase merupakan suatu fungsi perbandingan antara Frcrit dengan IFR.

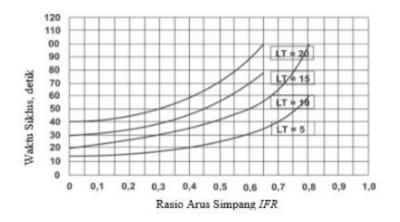
PR = Frcrit / IFR

5.3.5 Waktu siklus dan waktu hijau

1. Waktu siklus sebelum penyesuaian

Waktu siklus untuk fase dapat dihitung dengan rumus atau gambar dibawah ini. Waktu siklus hasil perhitungan ini merupakan waktu siklus optimum yang akan menghasilkan tundaan terkecil.

$$Cuo = \frac{1.5xLTI + 5}{1 - IFR}$$


Dengan:

Cuo = waktu siklus sinyal (detik)

LTI = total waktu hilang per siklus (detik)

IFR = perbandinan arus simpang

Jika alternatif sinyal yang direncanakan dievaluasi, menghasilkan nilai yang rendah untuk (IFR = LT/c), maka hasil ini akan lebih efisien.

Gambar 3.9. Penentuan Waktu Siklus

Waktu siklus yang dihasilkan diharapkan sesuai batas yang disarankan oleh MKJI 1997 sebagai pertimbangan teknik lalu lintas yang diterangkan dalam tabel berikut ini.

Tabel 5.5. Waktu Siklus yang Disarankan

Tipe kontrol	Waktu siklus yang layak (detik)
2 fase	40 - 80
3 fase	50 - 100

Sumber: Direktorat Jenderal Bina Marga, Departemen Pekerjaan Umum, 1997,

Manual Kapasitas Jalan Indonesia

Waktu siklus yang rendah biasanya pada simpang dengan lebar lebih kecil dari 10 m. Sedangkan pada simpang yang lebarnya lebih dari 10 m biasanya mempunyai waktu siklus yang lebih besar pula. Waktu siklus yang lebih rendah dari yang disarankan akan menyebabkan lebih sulit bagi pejalan kaki untuk menyeberang jalan. Hal ini dapat menjadi pertimbangan. Sedangkan waktu siklus yang lebih besar (> 130 detik) harus dihindarkan kecuali untuk kassus yang sangat khusus. Waktu siklus ini akan menghasilkan kapasitas simpang yang cukup besar.

1. Waktu Hijau (g)

Perhitungan waktu hijau untuk tiap fase dijelaskan dengan rumus dibawah ini

gi= (Cua – LTI) x PRi

dengan

gi= waktu hijau dalam fase –i (detik)

Cua = waktu siklus yang ditentukan (detik)

LTI = total waktu hilang per siklus

Pri = perbandingan fase

Waktu hijau yang lebih pendek dari 10 detik harus dihindarkan. Hal ini mungkin menghasilkan terlalu banyak pengemudi yang berlawanan setelah lampu merah dan kesulitan bagi pejalan kaki menyeberang jalan.

2. Waktu Siklus yang Disesuaikan (c)

Waktu siklus ini berdasarkan pada pembulatan waktu hijau yang diperoleh dan waktu hilang (LTI)

$$C = \sum g + LTI$$

5.4 KAPASITAS

Kapasitas untuk tiap lengan simpang dihitung dengan formula berikut.

 $C = S \times g/c$

Dengan:

C = kapasitas (smp/jam)

S = arus jenuh (smp/jam)

G = waktu hijau (detik)

C = waktu siklus yang ditentukan (detik)

Dari hasil perhitungan ini dapat dicari nilai derajat jenuh dengan rumus dibawah ini.

ds = Q / C

Dengan:

Ds = derajat jenuh

Q = arus lalu lintas (smp/jam)

C = kapasitas (smp/jam)

5.5 TINGKAT PERFORMASI

Dari data hasil hitungan sebelumnya maka dapat diketahui tingkat performasi suatu simpang,

antara lain : panjang antrian, kendaraan terhenti dan tundaan. Dalam perhitungan ini beberapa

persiapan antara lain persiapan waktu yang semula jam diganti detik dan dihitung nilai

perbandingan hijau, GR = g/c yang didapat dari perhitungan sebelumnya.

5.5.1 Panjang antrian

Dari nilai derajat jenuh yang digunakan untuk menghitung jumlah antrian (NQ1) yang

merupakan sisi dari fase hijau terdahulu. Sehingga didapat formula dan gambar di bawah ini.

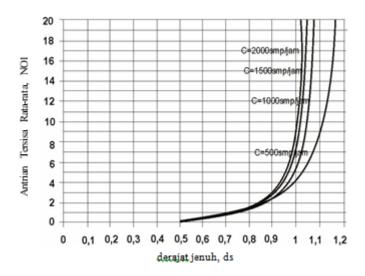
Untuk ds > 0.5

$$NQ_1 = 0.25 \times C \times \left[(ds - 1) - \sqrt{(ds - 1)^2 - \frac{8 \times (ds - 0.5)}{C}} \right]$$

Untuk ds < 0.5

NQ1 = 0

Dengan:


NQ1 = jumlah smp yang tersisa dari fase hijau sebelumnya

Ds + derajat jenuh

GR = Rasio hijau

C = kapasitas (smp/jam) s x GR

32

Gambar 3.10 Jumlah Antrian Kendaraan

kemudian dihitung jumlah antrian smp yang datang selama fase merah (NQ2), dengan formula berikut :

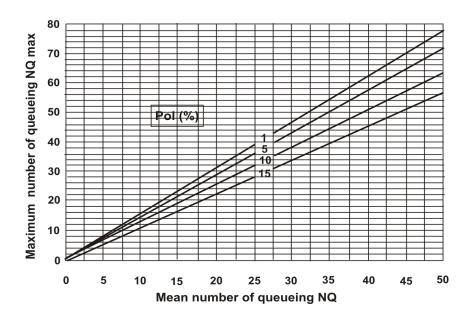
$$NQ_2 = c \times \frac{1 - GR}{1 - GR \times ds} \times \frac{Q}{3600}$$

Dengan:

NQ2 = jumlah smp yang datang selama fase merah

Q = volume lalu lintas yang masuk di luar LTOR (smp/detik)

C = waktu siklus (detik)


Ds = derajat jenuh

GR = rasio hijau (detik)

Untuk menghitung jumlah antrian total dengan menjumlahkan kedua hasil diatas.

$$NQ = NQ1 + NQ2$$

Untuk menentukan NQMAX dapat dicari gambar dibawah ini dengan menghubungkan nilai NQ dan probabilitas overloading PQL (%). Untuk perencanaan dan desain disarankan nilai PQL < 5%. Sedangkan untuk operasional disarankan PQL 5 - 10%.

Gambar 5.11. perhitungan Jumlah Antrian (NQ max) dalam smp

Perhitungan panjang antrian (QL) didapat dari perkalian antara NQMAX dengan rata-rata area yang ditempati tiap smp (s0 m2) dan dibagi lebar entry (WENTRY) yang dirumuskan sebagai berikut :

$$QL = \frac{NQ_{MAX} \times 20}{W_{ENTRY}}$$
 (meter)

5.5.2 Kendaraan terhenti

Angka henti (NS) adalah jumlah rata-rata berhenti per smp termasuk berhenti berulang dalam antrian. Angka henti pada masing-masing pendekat dapat dihitung berdasar rumus berikut ini.

$$NS = 0.9 \times \frac{NQ}{Q \times c} \times 3600$$

Dengan:

C = waktu siklus (detik)

Q = arus lalu lintas (smp/jam)

Jumlah kendaraan terhenti (NSV) pada masing-masing pendekat dapat dihitung dengan rumus:

$$NSV = Q \times NS \text{ (smp/jam)}$$

Angka henti seluruh simpang didapat dengan membagi jumlah kendaraan terhenti pada seluruh pendekat dengan arus simpang total Q dalam kend/jam.

$$NS tot = \frac{\sum NSV}{Qtot}$$

5.5.3 Tundaan

Tundaan lalu lintas rata-rata tiap approach ditentukan dengan formula berikut.

$$DT = c \times A + \frac{NQ_1 \times 3600}{C}$$

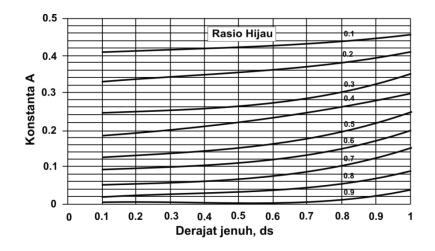
Dengan:

DT = tundaan lalu lintas rata-rata (det/smp)

C = waktu siklus yang disesuaikan (det)

$$A = \frac{0.5 \times (1 - GR)^2}{(1 - GR \times ds)}$$

Atau dapat dilhat pada gambar 3.12 dibawah.


GR = rasio hijau (g/c)

Ds = derajat jenuh

NQ1 = jumlah smp yang tersisa dari fase hijau sebelumnya

C = kapasitas (smp/jam)

Nilai A merupakan fungsi dari perbandingan hijau (GR) dan derajat jenuh (ds) yang diperoleh dari gambar berikut yaitu dengan memasukkan nilai ds pada sumbu horizontal dan memilih green ratio yang sesuai kemudian tarik garis mendatar maka didapat nila A pada sumbu vertikal.

Gambar 5.12. Penentuan Nilai A dalam Formula Tundaan

Tundaan geometri rata-rata masin-masing approach (DG) akibat perlambatan dan percepatan kerika menunggu giliran pada suatu simpang dan atau dihentikan oleh lampu lalu lintas dihitung berdasarkan formula berikut ini.

$$DGj \square (1 \square \square SV) \square \square T \square 6 \square (\square SV \square 4)$$

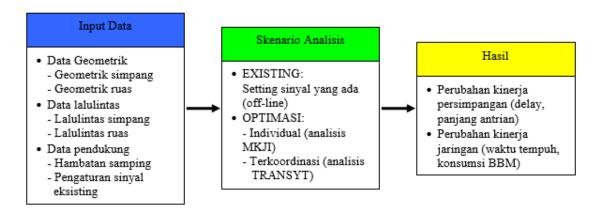
Dengan:

DG j = tundaan geometri rata-rata untuk approach j (detik/smp)

PSV = rasio kendaraan terhenti pada approach = Min (NS.1)

PT = rasio kendaraan berbelok pada approach

Tundaan geometri rta-rata LTOR diambil sebesar 6 detik.


Tundaan rata-rata (det/smp) adalah penjumlahan dar tundaan lalu lintas rata-rata dan tundaan geometri rata-rata (D = DT + DG)

Tundaan total (smp.det) adalah perkalian tundaan rata-rata dengan arus lalu lintas ($D \times Q$). Tundaan rata-rata untuk seluruh simpang (Di) didapat dengan membagi jumlah nilai tundaan dengan arus total.

$$D_I = \frac{\Sigma(Q \times D_j)}{Q_{TOT}} \text{ (det/smp)}$$

5.6 PENDEKATAN ANALISA LALU LINTAS

Dalam melakukan pendekatan analisis lalu lintas, maka sebagai langkah awal adalah melakukan penginputan data yang merupakan hasil survey dilapangan yang meliputi data geometrik (lebar jalan, lebar pendekat, dsb), data volume lalu lintas, data hambatan samping, dan pengaturan sinyal eksisting (waktu siklus, waktu hijau, merah dan kuning, jumlah fase dan pola pergerakannya). Data yang diperoleh tersebut merupakan data eksisting yang selanjutnya dilakukan evaluasi kinerjanya menggunakan MKJI sebagai pedoman. Selain kinerja persimpangan juga dilakukan perbandingan perubahan kinerja jaringan yang meliputi waktu tempuh, konsumsi BBM, dsb. Untuk lebih jelasnya mengenai pendekatan analisis lalu lintas dapat dilihat pada gambar 5.13 berikut ini.

Gambar 3.13 Pendekatan Analisis Lalu Lintas

BAB VI

JADWAL PELAKSANAAN

Pelaksanaan penelitian diharapkan akan selesai selama satu tahun atau periode dua semester. Jadwal pelaksanaan penelitian dapat dilihat pada tabel 6.1 berikut ini.

Tabel 5. Jadwal Pelaksanaan Penelitian

No.	Ionia Vagiatan		Bulan ke-																										
110.	Jenis Kegiatan	1	1 2 3 4 5 6 7 8 9										10		11		12												
1	Tinjauan pustaka																									П			П
2	Penyusunan Proposal																										\Box		
3	Pengumpulan Data primer dan sekunder																												
4	Data Entry																									П	īĪ		П
5	Analisa Data Primer																												
6	Pengolahan Data Primer dan Sekunder																												
7	Penulisan laporan Akhir																												
8	Seminar Hasil																												Ī
9	Publikasi																										П		

BAB VII

PERSONALIA PENELITIAN

1. Ketua Peneliti

a. Nama Lengkap :Aztri Yuli Kurnia, ST., M.Eng.

b. Jenis Kelamin : L/P

c. NIP : 1988 201212 2 003

d. Disiplin ilmu : Transportasi, Teknik Sipil

e. Pangkat/Golongan : III/b, Penata Muda Tk.I

f. Jabatan fungsional : Tenaga Pengajar

g. Fakultas/Jurusan : Teknik/Teknik Sipil

h. Waktu penelitian : 30 jam/minggu

2. Anggota Peneliti : 2 orang

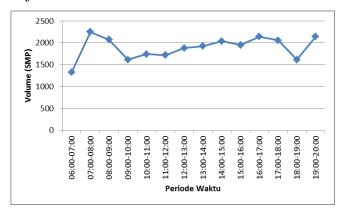
Anggota 1 : Ferli Febrian

Anggota 2 : Ronal Merza Saputra

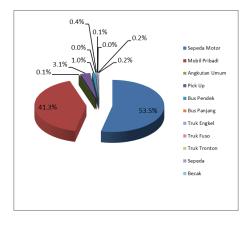
3. Tenaga Laboran/Teknisi : -

4. Pekerja Lapangan/Pencacah : 10 orang5. Tenaga Administrasi : 2 orang

BAB VIII

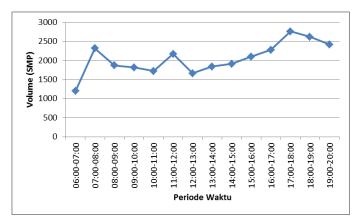

DATA DAN ANALISA

8.1 KONDISI RUAS JALAN DI KOTA PALEMBANG

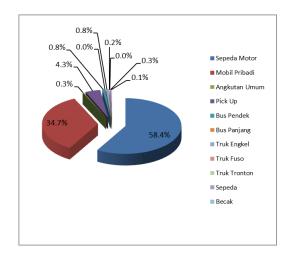

8.1.1 Kinerja Ruas Jalan Kota Palembang

Data berikut ini adalah data volume kendaraan pada ruas-ruas jalan utama di Kota Palembang:

- 1. Kinerja Ruas Jalan A. Rivai
 - a. Kinerja ruas jalan A. Rivai arah RS. Charitas

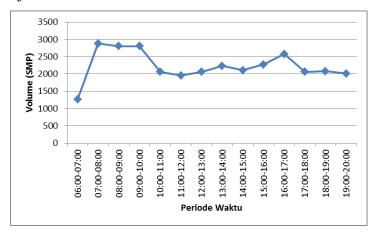


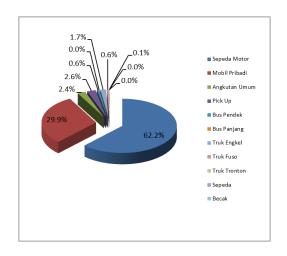
Gambar 8.1 Volume Kendaraan Pada Jalan A. Rivai Arah RS. Charitas



Gambar 8.2 Moda Yang Digunakan di Jalan A. Rivai Arah RS. Charitas

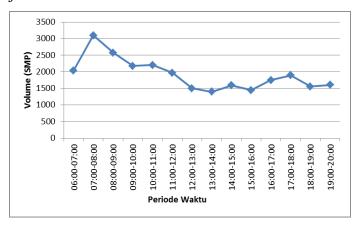
b. Kinerja Ruas Jalan Arah Bukit Besar


Gambar 8.3 Volume Kendaraan Pada Jalan A. Rivai Arah Bukit Besar

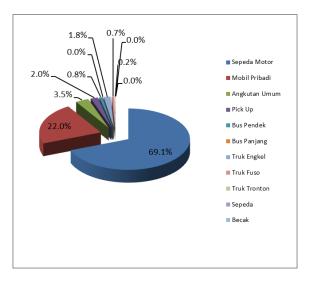

Gambar 8.4 Moda Yang Digunakan di Jalan A. Rivai Arah Bukit Besar

2. Kinerja Ruas Jalan Basuki Rahmat

a. Kinerja ruas jalan Basuki Rahmat arah Polda

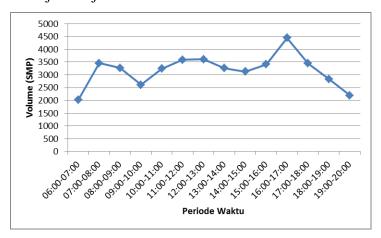


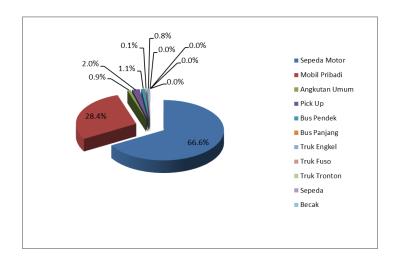
Gambar 8.5 Volume Kendaraan Pada Jalan Basuki Rahmat Arah Polda



Gambar 8.6 Moda Yang Digunakan di Jalan Basuki Rahmat Arah Polda

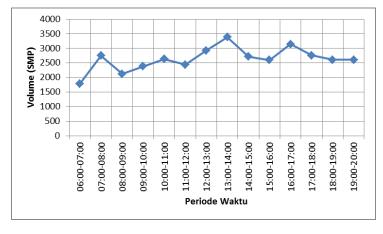
b. Kinerja ruas jalan Basuki Rahmat arah Patal


Gambar 8.7 Volume Kendaraan Pada Jalan Basuki Rahmat Arah Patal

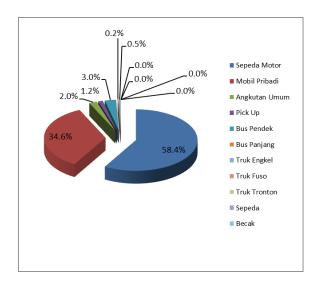

Gambar 8.8 Moda Yang Digunakan di Jalan Basuki Rahmat Arah Patal

3. Kinerja Ruas Jalan Kol. H. Burlian

a. Kinerja ruas jalan Kol. H. Burlian arah Polda

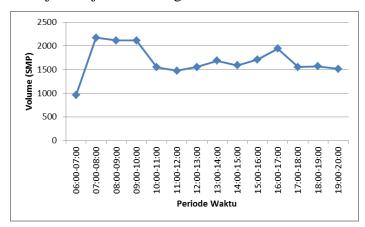


Gambar 8.9 Volume Kendaraan Pada Jalan Kol. H. Burlian Arah Polda

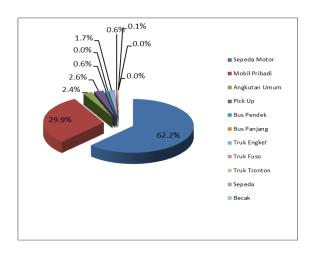


Gambar 8.10 Moda Yang Digunakan di Jalan Kol. H. Burlian Arah Polda

b. Kinerja ruas jalan Kol. H. Burlian arah AAL

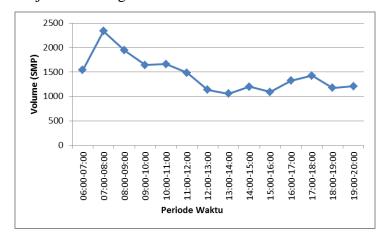


Gambar 8.11 Volume Kendaraan Pada Jalan Kol. H. Burlian Arah AAL

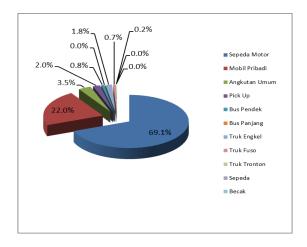


Gambar 8.12 Moda Yang Digunakan di Jalan Kol. H. Burlian Arah AAL

- 4. Kinerja Ruas Jalan Demang Lebar Daun
 - a. Kinerja ruas jalan Demang Lebar Daun arah Polda

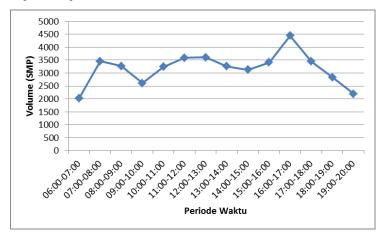


Gambar 8.13 Volume Kendaraan Pada Jalan Demang Lebar Daun Arah Polda

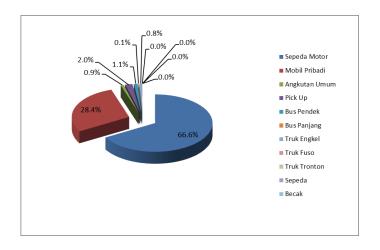


Gambar 8.14 Moda Yang Digunakan di Jalan Demang Lebar Daun Arah Polda

b. Kinerja ruas jalan Demang Lebar Daun arah Bukit Besar

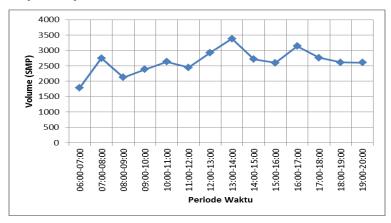


Gambar 8.15 Volume Kendaraan Pada Jalan Demang Lebar Daun Arah Bukit Besar

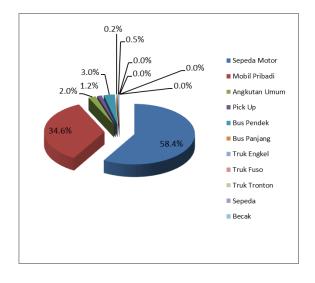


Gambar 8.16 Moda Yang Digunakan di Jalan Demang Lebar Daun Arah Bukit Besar

- 5. Kinerja Ruas Jalan Jend. Sudirman
 - a. Kinerja ruas jalan Jend. Sudirman arah RS. Charitas



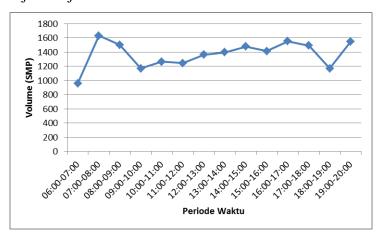
Gambar 8.17 Volume Kendaraan Pada Jalan Sudirman Arah RS. Charitas



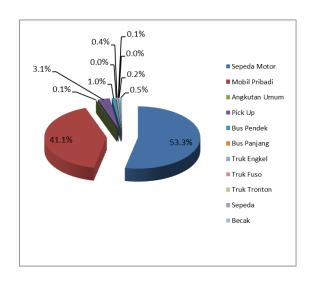
Gambar 8.18 Moda Yang Digunakan di Jalan Jend Sudirman Arah RS. Charitas

b. Kinerja ruas jalan Jend. Sudirman arah Polda

Gambar 8.19 Volume Kendaraan Pada Jalan Sudirman Arah Polda

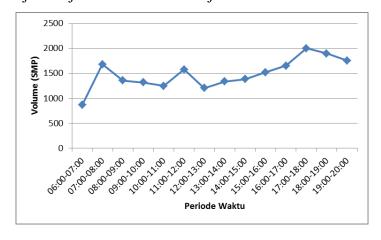


Gambar 8.20 Moda Yang Digunakan di Jalan Jend Sudirman Arah Polda

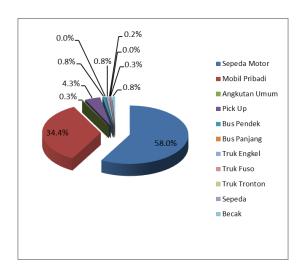

46

6. Kinerja Ruas Jalan Veteran

a. Kinerja ruas jalan Veteran arah RS. Charitas



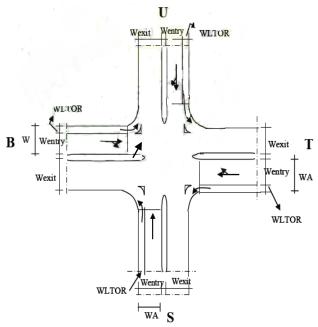
Gambar 8.21 Volume Kendaraan Pada Jalan Veteran Arah RS. Charitas



Gambar 8.22 Moda Yang Digunakan di Jalan Veteran Arah RS. Charitas

b. Kinerja ruas jalan Veteran arah Rajawali

Gambar 8.23 Volume Kendaraan Pada Jalan Veteran Arah Rajawali



Gambar 8.24 Moda Yang Digunakan di Jalan Veteran Arah Rajawali

8.1.2 Kondisi Geometrik Simpang

Data geometrik simpang merupakan data yang memuat kondisi geometrik jalan pada simpang. Data ini diperoleh melalui hasil survei dilapangan. Survei dilakukan pada saat kondisi jalan sepi dari kendaraan untuk menghindari gangguan arus lalu lintas.

Berikut gambar skema geometrik simpang empat untuk dilakukan survey dan pengukuran, seperti pada Gambar 8.41. dibawah ini.

Gambar 8. 41 Skema Geometrik Simpang Empat

Adapun setiap kaki persimpangan diberi kode pendekat U, S, T, dan B dengan keterangan sebagai berikut:

- a. U, yaitu utara adalah kaki persimpangan disebelah utara.
- b. S, yaitu selatan adalah kaki persimpangan disebelah selatan.
- c. T, yaitu timur adalah kaki persimpangan disebelah timur.
- d. B, yaitu barat adalah kaki persimpangan disebelah barat.

Adapun data geometrik simpang yang ada pada jalan utama perencanaan ATCS direncanakan pada tahap awal berada pada ruas jalan perbatasan penghubung Palembang – Banyuasin sampai menuju ke daerah Jakabaring.

Data geometerik simpang yang ada dapat dilihat pada tabel 7.1 ini.

Tabel 8.1. Data Geometrik Simpang Terminal Alang-Alang Lebar

Data Geometrik Simpang Terminal AAL											
Pendekat	Utara	Selatan (Jl. Alang- alang Lebar)	Barat (Jl. Lintas Sumatera)	Timur (Jl. Sultan Mahmud Bahar)							
Tipe Lingkungan Jalan	-	COM	COM	COM							
Hambatan Samping	1	Tinggi	Sedang	Sedang							
Median	-	Ada	Ada	Ada							
Lebar Median (m)	-	1,44	1,47	1,56							
Belok kiri jalan terus	-	Ada	-	Ada							
Lebar pendekat (m)	-	14,35	12,4	13,7							
Lebar pendekat masuk (m) (Wentery)	-	12,2	8,75	11,65							
Lebar Pendekat LTOR (WLTOR)	-	4,79	3,18	4,85							
lebar pendekat keluar (m) (Wexit)	-	14,6	8	9,9							

Tabel 8.2. Data Geometrik Simpang Talang Betutu

Data Geometrik Simpang Talang Betutu												
Pendekat	Utara	Selatan	Barat	Timur								
	(talang		(Jl. Sultan	(Jl. Kol. H.								
	betutu)		Mahmud	Burlian)								
			Bahar)									
Tipe Lingkungan Jalan	COM	-	COM	COM								
Hambatan Samping	Sedang	-	Sedang	Sedang								
Median	Ada	-	Ada	Ada								
Lebar Median (m)	1,52	-	1,47	1,56								
Belok kiri jalan terus	Ada	-	Ada	-								
Lebar pendekat (m)	14,25	-	12,4	13,7								
Lebar pendekat masuk	12,95	-	8,75	11,65								
(m) (Wentery)												
Lebar Pendekat LTOR	3,1	-	3,18	4,85								
(WLTOR)												
lebar pendekat keluar (m)	10,72	-	8	9,9								
(Wexit)												

Tabel 8.3. Data Geometrik Simpang Tanjung Api-api

Data Geometrik Simpang Tanjung Api-api											
Utara	Selatan	Barat	Timur								
(tanjung	(Soekarno-	(Jl. Kol. H.	(Jl. Kol. H.								
api-api)	Hatta)	Burlian)	Burlian)								
COM	COM	COM	COM								
Sedang	Sedang	Sedang	Sedang								
Ada	Ada	Ada	Ada								
1,52	1,44	1,47	1,56								
Ada	Ada	Ada	Ada								
14,25	14,35	12,4	13,7								
12,95	12,2	8,75	11,65								
3,1	4,79	3,18	4,85								
10,72	14,6	8	9,9								
	(tanjung api-api) COM Sedang Ada 1,52 Ada 14,25 12,95 3,1	(tanjung api-api) (Soekarno-Hatta) COM COM Sedang Sedang Ada Ada 1,52 1,44 Ada Ada 14,25 14,35 12,95 12,2 3,1 4,79	(tanjung api-api) (Soekarno-Hatta) (Jl. Kol. H. Burlian) COM COM COM Sedang Sedang Sedang Ada Ada Ada 1,52 1,44 1,47 Ada Ada Ada 14,25 14,35 12,4 12,95 12,2 8,75 3,1 4,79 3,18								

Tabel 8.4. Data Geometrik Simpang Talang Buruk

Data Geometrik Simpang Talang Buruk												
Pendekat	Utara	Selatan	Barat	Timur								
		(talang	(Jl. Kol. H.	(Jl. Kol. H.								
		buruk)	Burlian)	Burlian)								
Tipe Lingkungan Jalan	-	COM	COM	COM								
Hambatan Samping	-	Sedang	Sedang	Sedang								
Median	-	Ada	Ada	Ada								
Lebar Median (m)	-	1,44	1,47	1,56								
Belok kiri jalan terus	-	Ada	-	Ada								
Lebar pendekat (m)	-	14,35	12,4	13,7								
Lebar pendekat masuk (m) (Wentery)	-	12,2	8,75	11,65								
Lebar Pendekat LTOR (WLTOR)	-	4,79	3,18	4,85								
lebar pendekat keluar (m) (Wexit)	-	14,6	8	9,9								

Tabel 8.5. Data Geometrik Simpang Polda

Data Geometrik Simpang Polda											
Pendekat	Utara (Jl. Basuki	Selatan (Jl.	Barat (Jl. Kol. H.	Timur (Jl. Jend.							
	Rahmat)	Demang Lebar Daun)	Burlian)	Sudirman)							
Tipe Lingkungan Jalan	COM	COM	COM	COM							
Hambatan Samping	Sedang	Sedang	Sedang	Sedang							
Median	Ada	Ada	Ada	Ada							
Lebar Median (m)	1,52	1,44	1,47	1,56							
Belok kiri jalan terus	Ada	Ada	Ada	Ada							
Lebar pendekat (m)	14,25	14,35	12,4	13,7							
Lebar pendekat masuk (m) (Wentery)	12,95	12,2	8,75	11,65							
Lebar Pendekat LTOR (WLTOR)	3,1	4,79	3,18	4,85							
lebar pendekat keluar (m) (Wexit)	10,72	14,6	8	9,9							

Tabel 8.6. Data Geometrik Simpang Sekip

Data Geometrik Simpang Sekip											
Pendekat	Utara (Sekip)	Selatan (Jl. Kapt. Marzuki)	Barat (Jl. Jend. Sudirman)	Timur (Jl. Jend. Sudirman)							
Tipe Lingkungan Jalan	COM	COM	COM	COM							
Hambatan Samping	Sedang	Sedang	Sedang	Sedang							
Median	Ada	Ada	Ada	Ada							
Lebar Median (m)	1,52	1,44	1,47	1,56							
Belok kiri jalan terus	Ada	Ada	Ada	Ada							
Lebar pendekat (m)	14,25	14,35	12,4	13,7							
Lebar pendekat masuk (m) (Wentery)	12,95	12,2	8,75	11,65							
Lebar Pendekat LTOR (WLTOR)	3,1	4,79	3,18	4,85							
lebar pendekat keluar (m) (Wexit)	10,72	14,6	8	9,9							

Tabel 8.7. Data Geometrik Simpang Charitas

Data Geometrik Simpang Charitas											
Pendekat Utara Selatan Barat Timur											
	(Jl.	(Jl. Kapt.	(Jl. Jend.	(Jl. Jend.							
	Veteran)	A. Rivai)	Sudirman)	Sudirman)							
Tipe Lingkungan Jalan	COM	COM	COM	COM							
Hambatan Samping	Sedang	Sedang	Sedang	Sedang							
Median	Ada	Ada	Ada	Ada							
Lebar Median (m)	1,52	1,44	1,47	1,56							
Belok kiri jalan terus	Ada	Ada	Ada	Ada							
Lebar pendekat (m)	14,25	14,35	12,4	13,7							
Lebar pendekat masuk (m) (Wentery)	12,95	12,2	8,75	11,65							
Lebar Pendekat LTOR (WLTOR)	3,1	4,79	3,18	4,85							
lebar pendekat keluar (m) (Wexit)	10,72	14,6	8	9,9							

Tabel 8.8. Data Geometrik Simpang Jakabaring

Data Geometrik Simpang Jakabaring												
Pendekat	Barat	Timur										
	(Jl. Jend.	(Jl. KH.	(Jl.	(Jl. H. A.								
	Ahmad	Wahid	Ryacudu)	Bastari)								
	Yani)	Hasyim)										
Tipe Lingkungan Jalan	COM	COM	COM	COM								
Hambatan Samping	Sedang	Sedang	Sedang	Sedang								
Median	Ada	Ada	Ada	Ada								
Lebar Median (m)	1,52	1,44	1,47	1,56								
Belok kiri jalan terus	Ada	Ada	Ada	Ada								
Lebar pendekat (m)	14,25	14,35	12,4	13,7								
Lebar pendekat masuk	12,95	12,2	8,75	11,65								
(m) (Wentery) Lebar Pendekat LTOR (WLTOR)	3,1	4,79	3,18	4,85								
lebar pendekat keluar (m) (Wexit)	10,72	14,6	8	9,9								

8.1.3 Kondisi Pengaturan Lalu Lintas Simpang Kota Palembang

Pada perencanaan koridor pertama ATCS yang terintegrasi dengan koridor Bus Trans Musi ini, dilakukan analisa pengaturan lalu lintas. Data pengaturan lalu lintas yang menggunakan *traffic light* pada koridor ini dapat dilihat pada tabel 8.9 yang merupaka data pengaturan lalu lintas simpang charitas.

Tabel 8.9 Data Traffic Light Simpang Charitas

		Kak	i Simpang:	Veteran		
Siklus	1	2	3	4	5	Rata-rata
Hijau	Hijau 65		65	65	65	65
Kuning	3	3	3	3	3	3
Merah	210	210	210	210	210	210
Total Waktu Siklus	278	278	278	278	278	278
		Kaki S	impang: Ka	pten Arivai		
Siklus	1	2	3	4	5	Rata-rata
Hijau	Hijau 65		65	65	65	65
Kuning 3		3	3	3	3	3

Merah	210	210	210	210	210	210						
Total Waktu Siklus	278	278	278	278	278	278						
		Kaki Sin	npang: Sudi	rman (Pold	a)							
Siklus	1	2	3	4	5	Rata-rata						
Hijau	65	65	65	65	65	65						
Kuning	3	3	3	3	3	3						
Merah	210	210	210	210	210	210						
Total Waktu Siklus	278	278	278	278	278	278						
		Kaki Sin	npang: Sudi	rman (Cind	e)							
Siklus	1	2	3	4	5	Rata-rata						
Hijau	65	65	65	65	65	65						
Kuning	3	3	3	3	3	3						
Merah	210	210	210	210	210	210						
Total Waktu Siklus	278	278	278	278	278	278						
	Rata-rata waktu siklus =278 detik											

8.2 ANALISA TINGKAT PELAYANAN SIMPANG

8.2.1 Kinerja Persimpangan

Kinerja simpang dianalisa berdasarkan volume lalu lintas harian rata-rata simpang yang ada di daerah studi. Kemudian hasil dari volume lalu lintas dibandingkan dengan kapasitas persimpangan yang ada sehingga bisa didapat nilai V/C rasio persimpangan untuk menilai tingkat pelayanan persimpangan. Berikut merupakan tabel kinerja simpang-simpang di Kota Palembang.

Tabel 8.10. Kinerja Ruas Jalan Eksisting Simpang Charitas

Tabel Perhitungan Kapasitas Jl. Sudirman arah kiri

	0-	-				
Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,726

Tabel Perhitungan Kapasitas Jl. Sudirman arah lurus

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,803

Tabel Perhitungan Kapasitas Jalan Sudirman arah kanan

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,509

Tabel Perhitungan Kapasitas Jl. Veteran arah kiri

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,103

Tabel Perhitungan Kapasitas Jl. Veteran arah lurus

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,672

Tabel Perhitungan Kapasitas Jl. Veteran arah kanan

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,434

Tabel Perhitungan Kapasitas Jl. Sudirman Cinde arah kiri

	Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
Ī	2900	1	1	0,94	1	2726	0,229

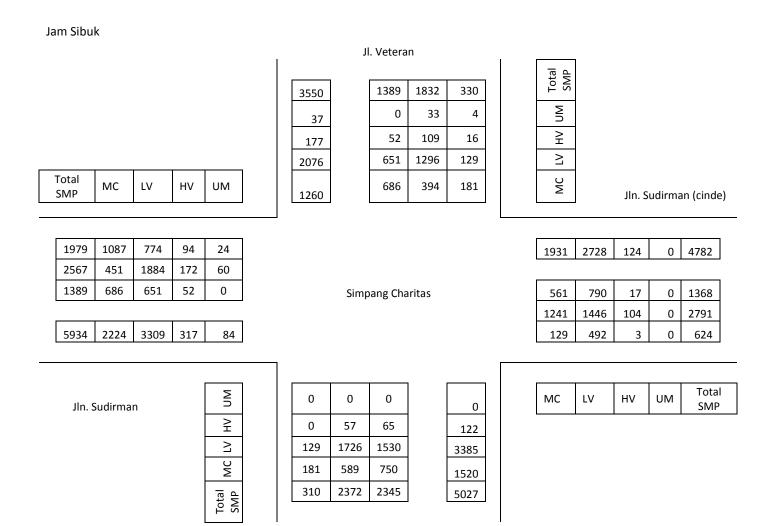
Tabel Perhitungan Kapasitas Jl. Sudirman Cinde arah lurus

1	C	F.C	FC	EC-t	ГСо	Compait	\//C
	Co	FCw	FCsp	FCsf	FCC	Capacity	V/C
	3400	1	1	0,94	1	3196	0,873

Tabel Perhitungan Kapasitas Jl. Sudirman Cinde arah kanan

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,502

Tabel Perhitungan Kapasitas Jl. Kapten A. Rivai arah kiri


Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,097

Tabel Perhitungan Kapasitas Jalan Kapten A. Rivai arah lurus

	Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
	2900	1	1	0,94	1	2726	0,870

Tabel Perhitungan Kapasitas Jalan Kapten A. Rivai arah kanan

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,734

Gambar 8.42. Volume tersibuk Kaki Simpang Charitas

Jln. Kapt.A.Rivai

Tabel 8.11. Kinerja Ruas Jalan Eksisting Simpang Sukarno Hatta

Tabel Perhitungan Kapasitas Jalan Tj. Api Api - Kol. H. Burlian

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,317

Tabel Perhitungan Kapasitas Jalan Tj. Api Api - Jl. Sukarno Hatta

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,266

Tabel Perhitungan Kapasitas Jalan Tj. Api Api arah kanan

		•				
Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
3400	1	1	0,94	1	3196	0,214

Tabel Perhitungan Kapasitas Jalan Sultan Mahmud Badaruddin II arah kiri

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,369

Tabel Perhitungan Kapasitas Jln.Sultan Mahmud Badaruddin II - Kol.H.Burlian

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,244

Tabel Perhitungan Kapasitas Jln. Sultan Mahmud Badaruddin II - Jl. Sukarno Hatta

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,345

Tabel Perhitungan Kapasitas Jln. Kol.H.Burlian-Jl.Sukarno Hatta

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,315

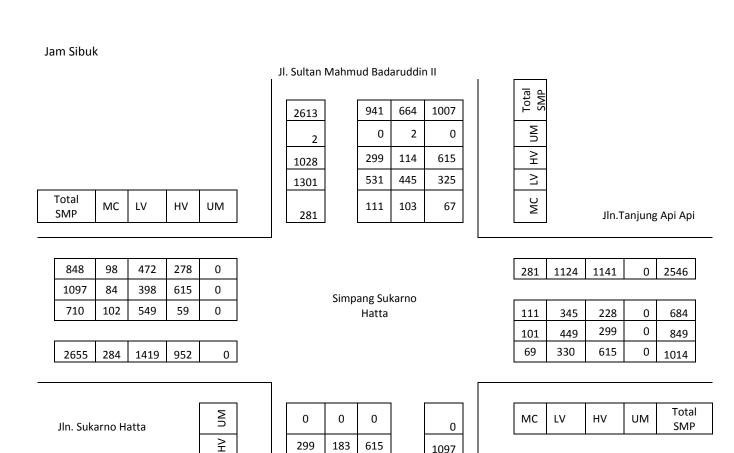
Tabel Perhitungan Kapasitas Jln. Kol.H.Burlian-Jl.Sultan Mahmud Badaruddin II

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,240

Tabel Perhitungan Kapasitas Jln. Kol.H.Burlian- Jl.Tj.Api Api

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C	
2900	1	1	0,94	1	2726	0,295	

Tabel Perhitungan Kapasitas Jln. Sukarno Hatta-Jl.Sultan Mahmud Badaruddin II


Buddi dddii ii								
	Co	FCw	FCsp	FCsf	FCc	Capacity	V/C	
	2900	1	1	0.94	1	2726	0.311	

Tabel Perhitungan Kapasitas Jln. Kol.H.Burlian- Jl.Sultan Mahmud Badaruddin II

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,402

Tabel Perhitungan Kapasitas Jln. Sukarno Hatta-Jl.Kol.H.Burlian

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,260

Jln. Kol.H.Burlian

174

16

805

1066

153

2316

442

28

653

450

109

858

Gambar 8.43. Volume tersibuk Kaki Simpang Sukarno Hatta

Tabel 8.12. Kinerja Ruas Jalan Eksisting Simpang Polda

 \geq

MC

Total SMP

Tabel Perhitungan Kapasitas Jl.Basuki Rahmat arah kiri

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,121

Tabel Perhitungan Kapasitas Jalan Basuki Rahmat arah lurus

	-					
Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,165

Tabel Perhitungan Kapasitas Jalan Basuki Rahmat arah kanan

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,483

Tabel Perhitungan Kapasitas Jalan Demang Lebar Daun arah kiri

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,117

Tabel Perhitungan Kapasitas Jalan Demang Lebar Daun arah lurus

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,195

Tabel Perhitungan Kapasitas Jalan Demang Lebar Daun arah kanan

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,502

Tabel Perhitungan Kapasitas Jalan Kol.H.Burlian arah kiri

C	Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
29	900	1	1	0,94	1	2726	0,121

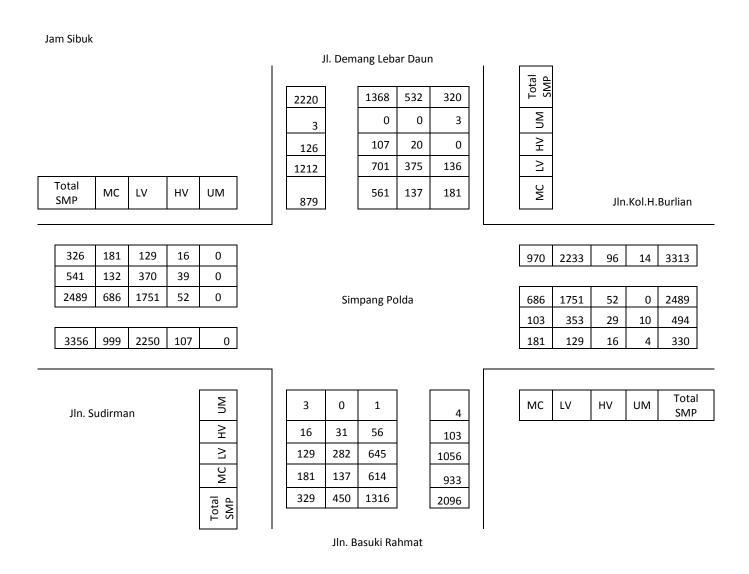
Tabel Perhitungan Kapasitas Jalan Kol.H.Burlian arah lurus

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,181

Tabel Perhitungan Kapasitas Jalan Kol.H.Burlian arah kanan

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,509

Tabel Perhitungan Kapasitas Jalan Sudirman arah kiri


		<u>'</u>				
Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,120

Tabel Perhitungan Kapasitas Jalan Sudirman arah lurus

Со	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,199

Tabel Perhitungan Kapasitas Jalan Sudirman arah kanan

Co	FCw	FCsp	FCsf	FCc	Capacity	V/C
2900	1	1	0,94	1	2726	0,509

Gambar 8.44. Volume tersibuk Kaki Simpang Polda

8.2.2 Waktu Tempuh Kendaraan

Untuk perencanaan system sinyal yang terkoordinasi, direncanakan kecepatan kendaraan pada ruas jalan utama sebesar 35 km/jam. Kecepatan rencana digunakan untuk melakukan setting APILL agar kendaraan (terutama angkutan umum) pada jalan utama dapat terakomodasi dan mempunyai waktu tempuh yang lebih pendek dibandingkan tanpa bantuan perangkat ATCS.

Sesuai dengan pembagian koridor dan kecepatan rencana antar simpang sebesar 35 km/jam, maka diperoleh waktu tempuh pada masing-masing segmen seperti yang tercantum dalam table dibawah ini.

Tabel 8.13. Waktu Tempuh Kendaraan

No.	Ruas	Jarak Tempuh (km)	Waktu Tempuh (detik) V = 35 km/jam							
	Zona 1		Kiii/jaiii							
	Simpang 3 Terminal Alang-alang Lebar	2,8	288,00							
	Simpang 3 Talang Betutu	2,0	200,00							
		0,8	82,29							
	Simpang 4 Tanjung Siapi-api									
1		1,4	144,00							
	Simpang 3 Talang Buruk	3,9	401,14							
	Simpang 4 Polda	3,9	401,14							
	Simpang 11 orda		205.71							
	Simpang 4 Sekip Pangkal	2	205,71							
	Zona 2									
	Simpang 3 Bandara	5,9	606,86							
	Simpang 4 Tanjung Siapi-api									
2		1,7	174,86							
	Simpang 4 Soekarno Hatta									
	Simpang 4 Mason Lindungan	6,6	678,86							
	Simpang 4 Macan Lindungan									
	Zona 3 (a)									
	Simpang 4 Sekojo	0,45	46,29							
		0,43								
	Simpang 3 Celentang	1.0	105 42							
	Simpang 4 PTC Patal	1,9	195,43							
		1,5	154,29							
3	Simpang 4 Angkatan 66									
	G: 4D II	2	205,71							
	Simpang 4 Polda	1.2	123,43							
	Simpang 3 Demang Lebar Daun	1,2	143,43							
	L0	2 2	006.55							
	Simpang 4 Parameswara	2,3	236,57							
	Zona 3 (b)		1							
4	Simpang 3 Pusri	1,9	195,43							
	Simpung 5 I usii	1,7	173,43							

No.	Ruas	Jarak Tempuh (km)	Waktu Tempuh (detik) V = 35 km/jam				
	Simpang 4 Lemabang	1.0	105 14				
	Simpang 3 Boom Baru	1,8	185,14				
	Simpang 4 Dolog Kuto	1,1	113,14				
	Simpang 4 Rajawali	0,7	72,00				
		0,7	72,00				
	Simpang 4 Taman Siswa	0,45	46,29				
	Simpang 4 Charitas	0,95	97,71				
	Simpang 5 Kampus		87,43				
	Simpang 4 PIM	0,85					
	Zona 4						
	Simpang 3 Jakabaring	8,2	843,43				
	Simpang 4 A. Yani	2,1	216,00				
	Simpang 3 kantor Walikota	·	·				
5	Simpang 4 Kodim	0,9	92,57				
	Simpang 4 Diponegoro	0,24	24,69				
		0,65	66,86				
	Simpang 4 Bukit Besar	_					
	Simpang 4 Dr. Cipto	0,5	51,43				

Sebaran kendaraan dalam ruas jalan antar dua simpang bersinyal dapat digunakan sebagai salah satu analisis untuk menghitung besar keuntungan yang dapat diambil dari pelaksanaan program koordinasi antar simpang bersinyal. Dalam analisis ini yang menjadi tolak ukur adalah persentase kendaraan yang dapat terus melaju pada simpang kedua tanpa mendapatkan tundaan berupa lampu merah.

8.3 KOORDINASI SINYAL LAMPU LALU LINTAS ANTAR SIMPANG

Menurut Pedoman Sistem Pengendalian Lalu Lintas Terpusat No. AJ401/1/7/1991 Keputusan Direktur Jendral Perhubungan Darat, dasar pendekatan dari perencanaan system terkoordinasi pengaturan lalu lintas sepanjang suatu jalan arteri adalah bahwa kendaraan-kendaraan yang lewat jalan tersebut akan melaju dalam bentuk iring-iringan dari suatu simpang ke simpang berikutnya. Berdasarkan kecepatan gerak iring-iringan tersebut, interval lampu dan lama lampu hijau menyala di satu simpang dan di simpang berikutnya dapat ditentukan, sehingga iring-iringan tersebut dapat melaju terus tanpa hambatan sepanjang jalan yang lampu pengatur lalu lintasnya terkoordinasikan.

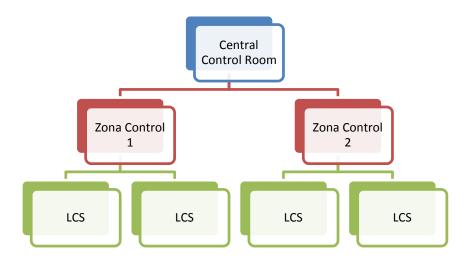
Pada situasi dimana terdapat beberapa sinyal yang mempunyai jarak yang cukup dekat, diperlukan koordinasi sinyal sehingga kendaraan dapat bergerak secara efisien melalui kumpulan sinyal-sinyal tersebut.

Pada umumnya kendaraan yang keluar dari suatu sinyal akan tetap mempertahankan grupnya hingga sinyal berikutnya. Jarak dimana kendaraan akan terus mempertahankan grupnya adalah sekitar 300 meter.

Untuk mengkoordinasikan beberapa sinyal, diperlukan beberapa syarat yang harus dipenuhi, yaitu :

- 1 Semua sinyal harus mempunyai panjang waktu siklus (cycle time) yang sama.
- 2 Umunya digunakan pada jaringan jalan utama (arteri, kolektor) dan juga dapat digunakan untuk jaringan jalan yang berbentuk grid.
- 3 Terdapat sekelompok kendaraan (platoon) sebagai akibat lampu lalu lintas di bagian hulu.

Selain itu, fungsi dari system koordinasi sinyal adalah untuk mengikuti volume lalu lintas maksimum untuk melewati simpang tanpa berhenti dengan mulai waktu hijau (green periode) pada simpang berikutnya mengikuti kedatangan dari kelompok (platoon).


8.4 RENCANA PENERAPAN ATCS KOTA PALEMBANG

Rencana penerapan ATCS Kota Palembang adalah upaya untuk mengembangkan suatu system pengendalian lalu lintas berbasis teknologi informasi yang dapat digunakan untuk meningkatkan kelancaran lalu lintas di koridor jalan Nasional, Provinsi, Kota dan Kabupaten.

Rencana penerapan ATCS Kota Palembang adalah upaya untuk mengembangkan suatu system pengendalian lalu lintas berbasis teknologi informasi yang dapat digunakan untuk meningkatkan kelancaran lalu lintas di koridor jalan Nasional, Provinsi, Kota dan Kabupaten. Cakupan ATCS Kota Palembang meliputi jalur/koridor jalan yang terletak pada wilayah Kota Sumatera Selatan. Dalam penyusunan rencana penerapan ATCS Kota Palembang, pemilihan titik lokasi simpang, pemasangan detector kendaraan, pemasangan kamera (*video surveillance*) berdasarkan kriteria sebagai berikut:

- 1. Simpang jalan utama kota Palembang,
- 2. Simpang-simpang yang terkoordinasi memiliki tingkat pelayanan yang rendah,
- Analisa pendesainan simpang terkoordinasi dengan mengoptimalisasi dan memprioritaskan simpang yang terintegrasi dengan angkutan umum utama di Kota Palembang.
- 4. Tiap kaki simpang dipasang detector kendaraan,
- 5. Tiap simpang dipasang kamera PTZ (Pan, Tit, dan Zoom) untuk pemantauan situasi lalu lintas.
- 6. Perangkat Counter Down menggunakan tipe matrik yang bisa menampilkan informasi teks.
- 7. APILL tenaga surya yang tergolong baru, bisa digunakan sepenuhnya dengan cara mengganti control dan menambah perangkat pendukung ATCS.
- 8. Jaringan data menggunakan Wireless broadband 5,8 GHz tipe OFDM.
- 9. Lokasi Pusat Kendali (CC-Room) direncanakan berada di Kantor Dinas Perhubungan Provinsi dan dihubungkan dengan CC Room Kota Palembang.

Secara singkat desain arsitektur sistem ATCS untuk Kota Palembang ini dapat dilihat pada gambar 8.45 berikut ini.

Keterangan:

LCS: Local control system

Gambar 8.45. Desain Arsitektur Sistem ATCS

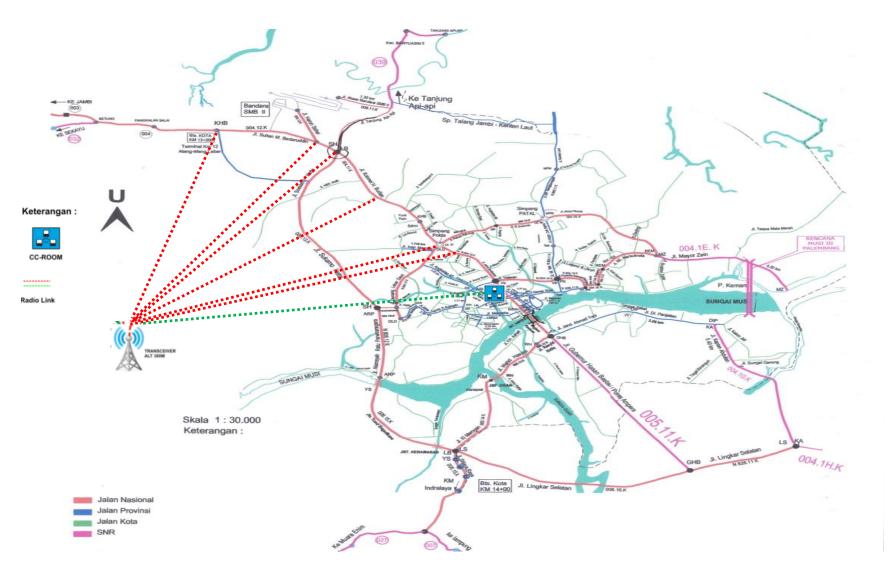
Perangkat access point berfungsi sebagai transceiver yang menghubungkan seluruh simpang ke CC Room. Jaringan perangkat komunikasi wireless harus menggunakan perangkat radio khusus dengan kemampuan troughput yang tinggi, minimal 40 Mbps dan jangkauan yang luas (mencapai seluruh wilayah Kota Palembang). Penggunaan teknologi wireless broadband digunakan dengan alasan :

- a. Antisipasi ketersediaan kapasitas jaringan untuk pengembangan di masa yang akan datang.
- b. Jangkauan jaringan yang luas, mencakup wilayah terluar dari Kota Palembang.
- c. Kemudahan dalam implementasi secara bertahap.
- d. Mampu dikembangkan dan interkoneksi dengan ATCS lainnya.

Dalam perencanaan ATCS Kota Palembang ini dilakukan penerapan dengan mengsinkronasikan perencanaan dengan angkutan umum utama yang ada di Kota Palembang yaitu Trans Musi. Trans Musi yang ada di Kota Palembang saat ini mengalami masa *stagnant*, diharapkan dengan adanya pembangunan di Kota Palembang maka masa ini akan segera berlalu dan beroperasi kembali. Dalam penerapan ini ditinjau dari tiga koridor yang paling memiliki tingkat LHR paling tinggi atau memiliki tingkat pelayanan yang rendah, yaitu terdiri atas tiga koridor utama yang terdiri dari:

1. Koridor 1: Terminal Alang-Alang Lebar – Ampera

- 2. Koridor 2: PIM Terminal Sako
- 3. Koridor 3: Jakabaring PS Mall


Dalam perencanaan Area Traffic Control System ini maka dipilih koridor pertama sebagai perencanaan penerapan. Hal ini disebabkan karena:

- Koridor pertama berada pada jalan poros utama Palembang yaitu jalan jend. Sudirman dan jalan Kol. H. Burlian.
- 2. Berdasarkan nilai V/C rasio, ruas jalan jend. Sudirman dan jalan kol H. Burlian memiliki nilai V/C rasio yang tinggi dan tingkat pelayanan yang rendah.
- 3. Koridor pertama Trans Musi memiliki beberapa persimpangan utama yang memiliki geometrik yang layak untuk perencanaan ATCS.
- 4. Persimpangan-persimpangan yang ada di sepanjang koridor pertama memiliki tingkat pelayanan yang rendah.

Berdasarkan dari hal diatas, dengan memadukan hasil studi dan memperhatikan perencanaan angkutan umum utama di Kota Palembang, maka perencanaan ATCS dengan melakukan koordinasi persimpangan-persimpangan berikut ini:

- 1. Simpang 3 Terminal Alang-alang Lebar
- 2. Simpang 3 Talang Betutu
- 3. Simpang 4 Tanjung Siapi-api
- 4. Simpang 3 Talang Buruk
- 5. Simpang 4 Polda
- 6. Simpang 4 Sekip Pangkal

Untuk skema penerapan dapat dilihat lebih jelas pada gambar 8.46 dibawah ini

Gambar 8.46. Skema Penerapan ATCS Jangka Pendek di Kota Palembang

BABIX

KESIMPULAN DAN SARAN

9.1 KESIMPULAN

Dari penelitian yang telah dilakukan didapat beberapa kesimpulan sebagai berikut:

- Koridor pertama berada pada jalan poros utama Palembang yaitu jalan jend.
 Sudirman dan jalan Kol. H. Burlian.
- 2. Berdasarkan nilai V/C rasio, ruas jalan jend. Sudirman dan jalan kol H. Burlian memiliki nilai V/C rasio yang tinggi dan tingkat pelayanan yang rendah.
- 3. Koridor pertama Trans Musi memiliki beberapa persimpangan utama yang memiliki geometrik yang layak untuk perencanaan ATCS.
- 4. Dalam penerapan ini ditinjau dari tiga koridor yang paling memiliki tingkat LHR paling tinggi, yaitu terdiri atas tiga koridor utama yang terdiri dari:
 - a. Koridor 1: Terminal Alang-Alang Lebar Ampera
 - b. Koridor 2: PIM Terminal Sako
 - c. Koridor 3: Jakabaring PS Mall
- 5. Dilakukan koordinasi simpang berupa perencanaan ATCS pada persimpangan berikut ini:
 - a. Simpang 3 Terminal Alang-alang Lebar
 - b. Simpang 3 Talang Betutu
 - c. Simpang 4 Tanjung Siapi-api
 - d. Simpang 3 Talang Buruk
 - e. Simpang 4 Polda
 - f. Simpang 4 Sekip Pangkal

9.2 SARAN

Berdasarkan penelitian yang dilakukan, maka terdapat beberapa saran yang dapat peneliti sampaikan, yaitu:

- 1. Kota Palembang sudah selayaknya melakukan penerapan Area Traffic Control System karena di beberapa ruas jalan memiliki tingkat pelayanan yang rendah.
- 2. Geometrik persimpangan kota Palembang diperlukan penganalisaan untuk mendapatkan manuver yang baik bagi kendaraan sehingga dapat menambah

kecepatan dan memperkecil waktu tundaan untuk persimpangan terutama bagian LOTR.

LAMPIRAN 1

DAFTAR PUSTAKA

, 1996, Pedoman Teknis Pengaturan Lalu Lintas di Persimpangan Berdiri
Sendiri dengan APILL – Departemen Pekerjaan Umum.
, 1997, Manual Kapasitas Jalan Indonesia, Direktorat Jendral Bina Marga
Indonesia – Departemen Pekerjaan Umum.
Hobbs, F. D., 1995, PERENCANAAN DAN TEKNIK LALU LINTAS, Edisi ke-2
(Terjemahan), Gadjah Mada Univercity Press, Yogyakarta.
Haryanto, Jono, 2004, PERENCANAAN PERSIMPANGAN SEBIDANG JALAN RAYA,
JTS, FTSPUSU, Sumatra Utara.
Oglesby, C. H., Hicks, R. G. 1982. TEKNIK JALAN RAYA, Edisi ke-4 (terjemahan),
Erlangga, Jakarta.
Wishaultons 2000 ANIALIGIC CIMDANC EMDAT TAK DEDCINWAL DENCAN
Wishnukoro, 2008, ANALISIS SIMPANG EMPAT TAK BERSINYAL DENGAN
MENGGUNAKAN MANAJEMEN LALU LINTAS, Tugas Akhir, JTS, FTSPUII,
Yogyakarta.

LAMPIRAN 2

RIWAYAT DOSEN PENELITI

Ketua Peneliti

A. Identitas Diri

1	Nama Lengkap	:	Aztri Yuli Kurnia, ST., M.Eng.		
			(W)		
2	Jabatan fungsional	:	Tenaga Pengajar		
3	Jabatan Struktural	:	-		
4	NIP/NIK	:	19880713 201212 2 003		
5	NIDN	:	-		
6	Tempat dan Tanggal	:	Palembang, 13 Juli 1988		
	Lahir				
7	Alamat Rumah	:	Jl. Masjid Al-Ghazali No.40 Bukit Besar		
			Palembang 30137, Sumsel.		
8	Nomor Tlpn/faks/HP	:	0812 785 5737		
9	Alamat Kantor	:	Jurusan Teknik Sipil, Fakultas Teknik, Universitas		
			Sriwijaya, Jalan Raya Palembang-Prabumulih, Km.		
			32 Inderalaya, Kab. Ogan Ilir, 30662		
10	Nomor telpon/Faks	:	Telp. (0711) 580139.		
			Faxsimile.(0711) 580139.		
11	Alamat e-mail	:	aztri_zainuddin@yahoo.com		
12	Lulusan yang telah	:	S-1=orang; S-2 =orang; S-3 =		
	dihasilkan		orang		
13	Mata Kuliah yang	:	Dasar-Dasar Rekayasa Transportasi		
	Diampu		2. Rekayasa Lalu Lintas		
			3. Perencanaan Perkerasan Jalan		
			4. Perencanaan dan Pemodelan Transportasi		

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan	Universitas Sriwijaya	Universiti Teknologi	
Tinggi		Malaysia	
Bidang Ilmu	Teknik Sipil	Transportation and Highway	
Tahun Masuk-Lulus	2005-2009	2010-2012	
Judul	Analisis Tarif	Extend of Road Lighting	
Skripsi/Thesis/Disertasi	Angkutan Umum	Impact On The Quality of	
	Berdasarkan ATP	Roadway Service	
	dan WTP Masyarakat		
	Kawasan Pinggiran		
	Kota		
Nama Pembimbing	Melawaty Agustien,	Assoc. Prof. Dr. Johnnie	
	S.Si, MT	Ben-Edigbe	

C. Pengalaman Penelitian 5 Tahun Terakhir

No	Tahun	Judul Penelitian	Pendanaan		
			Sumber*	Jmlh (Juta Rp)	

D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir

No	Tahun	Judul Pengabdian Kepada	Pendanaan	
		Masyarakat	Sumber*	Jmlh (Juta Rp)

E. Pengalaman Penulisan Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir

No	Tahun	Judul Artikel Ilmiah	Volume/Nomor/	Nama Jurnal
			Tahun	

F.	Pengalaman	Penyampaian	Makalah	Secara	Oral	Pada	Pertemuan/Seminar
	Ilmiah Dalan	n 5 Tahun Tera	khir				

No	Nama Pertemuan	Judul Artikel Ilmiah	Waktu dan Tempat
	Ilmiah/Seminar		

G. Pengalaman Penulisan Buku Dalam 5 Tahun

No	Judul Buku	Tahun	Jumlah	Penerbit
			Halaman	

H. Pengalaman Perolehan HKI Dalam 5-10 Tahun Terakhir

No	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID

I. Pengalaman Merumuskan Kebijakan Publik/ Rekayasa Sosial Lainnya Dalam 5 Tahun Terakhir

No	Judul/Tema/ Jenis Rekayasa Sosial Lainnya	Tahun	Tempat	Respon
	yang Telah Diterapkan		Penerapan	Rakyat

J. Penghargaan Yang Pernah Diraih Dalam 10 Tahun Terakhir (dari pemerintah, Asosiasi, atau Institusi Lainnya).

No	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	