PERBANDINGAN METODE PENGUKURAN JARAK PADA ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI

ROSA, TACA and Primartha, Rifkie (2019) PERBANDINGAN METODE PENGUKURAN JARAK PADA ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI. Undergraduate thesis, Sriwijaya University.

[img] Text
RAMA_55201_09021281520100.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[img] Text
RAMA_55201_09021281520100_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (16MB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[img] Text
RAMA_55201_09021281520100_0001067709_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (398kB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (135kB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (487kB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (9kB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_07_REF.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7kB) | Request a copy
[img] Text
RAMA_55201_09021281520100_0001067709_08_LAMP.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (241kB) | Request a copy

Abstract

K-Nearest Neighbor is a non-parametric classification algorithm that does not use training data and does not use initial assumptions or models in the calculation process. The quality of the classification results of the k-Nearest Neighbor algorithm is very dependent on the distance between object and value of k specified, so the selection of method for distance measurement determines the results of classification. In this study, several methods of measuring Euclidean distance distance, Manhattan distance, Tchebychev distance and Cosine distance were examined to see distance measurement methods that can be used optimally on the k-Nearest Neighbor algorithm. The selection of k values also determines the results of the classification of the k-Nearest Neighbor algorithm, for which the determination of the value of k also needs to be considered. This study uses a cervical cancer dataset and provides the highest accuracy results in the Cosine distance distance measurement method that is equal to 92.559% at the value of k=9, while for the Manhattan distance measurement method is 91.666% with a value of k=13, the Tchebychev distance measurement method is 91.666% with the value of k=13 and the lowest accuracy value obtained by the Euclidean method that is equal to 91.071% at the value of k=13. Based on the value of accuracy, the most compatible distance measurement method used is Cosine distance even with the best k value obtained is k=9 though it has the highest computation time which is 0.898 s compared to the Euclidean method of 0.555 s, the Manhattan method is 0.5882 s and Tchebychev has the lowest computation time which is 0.49 s.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Pengukuran jarak,, K-Nearest Neighbor, Euclidean Distance Manhattan Distance, Techebyhev Distance, Costine Distance
Subjects: T Technology > T Technology (General) > T58.5-58.64 Information technology
Divisions: Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Taca Rosa
Date Deposited: 07 Aug 2019 02:59
Last Modified: 07 Aug 2019 02:59
URI: http://repository.unsri.ac.id/id/eprint/2665

Actions (login required)

View Item View Item