


# International Conference On MANUFACTURING SCIENCE AND TECHNOLOGY

## Melaka, Malaysia, August 28 – 30, 2006

## **Edited by**

## V. C. VENKATESH

and

### N. S. M. EL-TAYEB

Multimedia University, Melaka, Malaysia

SUPPORTED BY BY ORGANIZED MAIN SPONSOR





Malaysia

The Institution of Engineers,

(M) Sdn. Bhd.

Infineon Technologies

Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka, Malaysia.

ISBN 983-42051-2-0

Price: RM10 / US\$4.00

Copyright 2006 © Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form of by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

## FOREWORD



Writing a foreword for the ICOMAST 2006 Proceedings is indeed a pleasure. ICOMAST 2006 is the 11<sup>th</sup> Conference I am involved in and most of the time as the main organizer. But this one is an exception as we have two distinguished guests at the opening ceremony: Datuk Seri Mohd. Ali Rustam, Chief Minister of Melaka and Tun Dr. Siti Hasmah Hj. Mohd Ali, Chancellor, Multimedia University

The 1<sup>st</sup> conference I organized was the 4<sup>th</sup> AIMTDR (All India Machine Tool Design and Research) at the Indian Institute of Technolgy, Madras where I started my career. The AIMTDR conferences were inspired by the annual MTDR Conferences in the UK held alternatively in Birmingham and Manchester under the late Professors Tobias and Koenigsberger. The subsequent ones I organised were while working in NUS, Singapore under CIRP-UNESCO auspices in 1982 and again in 1988 August prior to the CIRP General Assembly in Tokyo. The next two were in Cookeville TN, USA while working in Tennessee Technological University, the first was the CIRP Seminar and the second the 7<sup>th</sup> ICAPE (International Conference on Production Engineering) jointly with Professor McGeough. The next two were again in Singapore while working in Nanyang Technological University and these were the ICOPE conferences (International Conference On Production Engineering). While in NTU in Singapore I organised the 1<sup>st</sup> ICAMT (Conference on Advanced Manufacturing Technology) in UTM Johor Bahru. This was followed by 2<sup>nd</sup> and 3<sup>rd</sup> ICAMT when I moved to UTM. For eight of these conferences I brought out special edited issues with Elsevier's Journal of Materials Processing Technology. These 10 conferences showed me the power of citations and the impact factor which find their way into Google Web, Google Book Search, and Google Citations. The MTDR conferences in those days had an enormous citation and impact factor.

CIRP (College Internationale Recherche Production) is the French acronym for the International Academy for Production Engineering Research. The CIRP General Assemblies are held annually in one of its member countries and its papers are published annually in CIRP Annals which have an impact factor of 1. ICOMAST 2006 is privileged to have the CIRP President, Professor George Chryssolouris of the University of Patras, Greece, and formerly a MIT faculty, deliver the inaugural address. Other CIRP Fellows who will deliver keynotes are Professors McGeough (a Fellow of the Royal Society of Engineering, Edinburgh), Jawahir, Rahman, and Weckenmann. Yours truly who is a Fellow and two CIRP Associate Members are also with us, Dr. A. Srivastava of Tech-Solve, USA, and Dr. P. V. Brevern our Dean of FET. The 6<sup>th</sup> Keynote Speaker is one of India's top manufacturing specialists Professor V.K. Jain of the Indian Institute of Technology, Kanpur. To them I extend a cordial welcome and express my gratitude for their being here. Their presence and their papers will have an impact factor and garner many citations. May I also add that of the previous 10 conferences, the 7<sup>th</sup> ICAPE has brought many citations and these figures prominently in Google and incidentally my co-author was Professor McGeough who is with us today.

This conference bears all the hall marks of success. This is due to the great team work I had and I owe a deep debt of gratitude to our President Professor Datuk Dr. Ghauth Jasmon, our Dean Dr. P.V. Brevern, to A/Prof. Dr. Nabil El-Tayeb, Ms. Y. F. Law, Mr. B. F. Yousif, Mr. K. O. Low, and Mr. S. L. Beh.. My thanks to members of the technical team A/Prof. Dr. Maleque, Dr. Khaled, Dr. T. S. Lee, Dr. D. Rilling for helping in the review of papers. Thanks to the local hospitality committee from FET headed by Mr. S.L. Beh. Thanks to Ms. Om Karini (CU), Ms. Juanna, Ms. Noor Hamiza, and Mr. Bukhari whose help along with Mr. Beh in the opening ceremony is deeply appreciated.

Thanks in particular to Messrs Nabil, Low, and Yap for bringing out a fantastic Souvenir which highlights the ICOMAST 2006 programme, gives sketches of keynote speakers, contains photographs of all major volunteers and highlights the city of Melaka. I am thankful to organizations that took up advertisements in our souvenir for small and bigger amounts that finally add up to a big amount.

For running a conference of this magnitude, financial support is essential. I am thankful for the generous seed money given by our MMU President and to Dr. Hans Meyer CEO of Infineon (Malaysia) Technologies Sdn. Bhd. for a bountiful RM 20,000. My thanks to the Institution of Engineers (Malaysia) for their support.

I would like to thank three journals and their editors for kindly agreeing to accept carefully screened and refereed papers: International Journal of Manufacturing Science and Management, Inderscience, UK

International Journal of Manufacturing Science and Technology, Advanced Solutions Inc., USA

Machining Science and Technology, Taylor and Francis, USA

Last but not least are the authors whom I thank sincerely for contributing good papers and for attending this conference.

Monin-

Chairman, Organising Committee Professor V.C. Venkatesh, DSc, PhD, Fellow CIRP, Fellow SME, Mem ASME, Mem ASPE, Faculty of Engineering & Technology, Multimedia University

# **Table of Contents**

| ID | TITLE                                                                                                                                                       | Pg |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A. | KEYNOTE PAPERS                                                                                                                                              |    |
| 1  | EDUCATION IN MANUFACTURING TECHNOLOGY AND SCIENCE: A VIEW OF<br>FUTURE CHALLENGES AND GOALS<br>: G. Chryssolouris, D. Mavrikios, N. Papakostas, D. Mourtzis |    |
| 2  | OPTICAL METROLOGY IN MANUFACTURE<br>: A. Weckenmann, J. Hoffmann                                                                                            |    |
| 3  | UNCONVENTIONAL CUTTING TECHNOLOGIES IN ORTHOPAEDIC SURGERY                                                                                                  |    |

|    | : J. A. McGeough, A. Okada, D. MacMillan, B. Flynn                                                                                                                                             |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4  | SUSTAINABLE MACHINING: NEW CHALLENGEES IN DEVELOPING PREDICTIVE<br>MODELS FOR DRY, NEAR-DRY AND CRYOGENIC MACHINING<br>: I. S. Jawahir, O. W. Dillon, Jr., S. Chen, I. H. Jaafar, A. Deshpande | ] |
| 5  | HIGH- SPEED MACHINING OF TITANIUM ALLOYS<br>: Mustafizur Rahman, Zhi-Gang Wang and Yoke-San Wong                                                                                               |   |
| 6  | NANO-FINISHING TECHNIQUES AND PULSATING FLEXIBLE MAGNETIC ABRASIVE<br>BRUSH: AN OVERVIEW<br>: V. K. Jain                                                                                       | • |
|    |                                                                                                                                                                                                |   |
| B. | MACHINING                                                                                                                                                                                      |   |
| 47 | BRAZING OF DIAMOND GRITS WITH AG-CU-ZN ALLOY ACTIVATED BY CR OR TI<br>POWDER UNDER DIFFERENT ENVIROMENTS<br>: Y. M. Zhou , F .L. Zhang , K. X. Fu , C. Y. Wang                                 | 2 |
| 64 | AN EXPERIMENTAL INVESTIGATION ON THE MACHINABILITY OF POWDER<br>METAL STEELS<br>: A. K. Srivastava                                                                                             | 2 |
| 67 | MODELLING AND PREDICTION OF CUTTING FORCE BY AI, RSM AND CANFIS IN<br>MILLING<br>: K. Kadirgama , K. A. Abou-El-Hossein , B. Mohammad                                                          | 2 |
| 73 | TOOL LIFE INVESTIGATION OF PVD TIALN COATED CARBIDE INSERT WHEN<br>TURNING HARDENED TOOL STEEL<br>: M. Y. Noordin, Y. C. Tang, D. Kurniawan                                                    | 4 |
| 88 | OPTIMIZATION OF SURFACE ROUGHNESS PREDICTION MODEL IN END MILLING<br>TITANIUM ALLOY (Ti-6AL4V)<br>: S. Sharif, A.S. Mohruni , M.Y. Noordin , V.C. Venkatesh                                    | 4 |
| 91 | EFFECT OF GRIT SIZE ON PERFORMANCE DURING GRINDING OF AL / SiC <sub>P</sub> MMC<br>WITH DIAMOND WHEEL                                                                                          | 1 |

|    | : B. Anand Ronald, K. Sasikanth, L. Vijayaraghavan and R. Krishnamurthy                                                                                                                           |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 01 | SURFACE QUALITY IMPROVEMENT WITH SOLID LUBRICATION IN CERAMIC<br>GRINDING<br>: Sanjay Agarawal, P. Venkateswara Rao                                                                               |   |
| 11 | SURFACE ROUGHNESS AND CUTTING FORCES WHILE MACHINING Cr-Mo ALLOY<br>STEEL USING COATED CERAMIC TOOL<br>:S. Thamizhmanii , Mohd Amri Bin Lajis, S. Hassan                                          |   |
| 13 | WEAR OF NANO-COATED CARBIDE TOOLS IN END MILLING OF STAINLESS STEEL<br>: W. Y. H. Liew, W. L. Teh, X. Ding                                                                                        |   |
| 31 | <u>STUDY ON TOOL FAILURE MODES AND WEAR MECHANISM WHEN DRILLING</u><br>TITANIUM ALLOY<br>: E. A. Rahim, S. Sharif                                                                                 | , |
| 68 | <mark>DESIGN AND MANUFACTURE OF STRAIGHT BEVEL GEAR FOR PRECISION</mark><br>FORGING DIE BY DIRECT MILLING<br>: K. Kawasaki, K. Shinma                                                             | , |
| 71 | MICROSTRUCTURE STUDIES AND SURFACE ROUGHNESS OBSERVATION IN<br>MACHINING OF TITANIUM ALLOY Ti-6AI-4V<br>: S. Ramesh, L. Karunamoorthy, V. S. Senthilkumar                                         | 8 |
| 79 | EXPERIMENTAL STUDY OF EFFECT OF SURFACE ROUGHNESS OF BLANK<br>DIAMETER ON EXTERNAL THREADS WHEN THREADS ARE MANUFACTURED BY<br>ROLLING PROCESS ON SUP 9A MATERIAL<br>: P. S. Chauhan, K. C. Arora | 1 |
| 85 | ON HARD TURNING OF MARTENSITIC STAINLESS STEEL USING GEOMETRICALLY<br>MODIFIED COATED CARBIDE<br>: M. Y. Noordin, D. Kurniawan, S. Sharif, Y. C. Tang                                             | 9 |
| 90 | ROTARY ULTRASONIC MACHINING OF TITANIUM ALLOY (Ti-6Al-4V): EFFECTS OF<br>TOOL VARIABLES<br>: N. J. Churi, Z. J. Pei, C. Treadwell                                                                 | 9 |

| 02 | THE EFFECT OF MULTIPLE PASS CUTTING ON SURFACE INTEGRITY WHEN HARD<br>TURNING OF AISI D2 COLD WORK TOOL STEEL<br>: M. A. Kamely, M. Y. Noordin, V. C. Venkatesh |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 09 | PERFORMANCE OF DIFFERENT CUTTING TOOLS WHEN MACHINING DIE AND<br>MOULD MATERIALS<br>: Habeeb H. H., K. A. Abou-El-Hossein, Bashir Mohamad                       | 1 |
| 34 | <mark>MICROMECHANICAL FINITE ELEMENT ANALYSIS OF MACHINING OF UD-FRP<br/>COMPOSITES</mark><br>: G. Venu Gopala Rao, Puneet Mahajan, Naresh Bhatnagar            | 1 |
| 46 | SURFACE INTEGRITY OF AISI D2 WHEN TURNED USING COATED AND UNCOATED<br>CARBIDE TOOLS<br>: C. H. Che Haron, J. A. Ghani, G. A. Ibrahim                            | 1 |
| 47 | WEAR MECHANISM AND FAILURE MODE OF P10 TiN COATED CARBIDE TOOLS<br>: A. G. Jaharah, C. H. Che-Hassan, M. Z. Omar, J. Ghazali                                    | 1 |
| 58 | AN INVESTIGATION ON MORPHOLOGY OF HARD-BRITTLE SILICON SURFACE BY<br>DIAMOND GRINDING<br>: M. Konneh, S. Izman, M. Y. Ali                                       | 1 |
|    | PREDICTION OF TORQUE AND RATE OF PENETRATION IN ROCK-DRILLING USING<br>PDC BITS<br>: R. C. S. Mehta, R. S. Jadoun, N. K. Mehta                                  | 1 |
| 40 | PERFORMANCE ANALYSIS OF TIN/TIC-COATED ALUMINA INSERTS IN TURNING<br>: M. Mohd Razali, I. Ismawati, A. R. Md Nizam, B. Esmar, A. B. Mohd Hadzley, P. S. Sivarao | 1 |
| 47 | CRYOGENIC FACING OF TI 6AL-4V ALLOYS<br>: V. C. Venkatesh, S. Izman, T. C. Yap, N. S. M. El-Tayeb, P. V. Brevern                                                | 1 |

#### OPTIMIZATION OF SURFACE ROUGHNESS PREDICTION MODEL IN END MILLING TITANIUM ALLOY (Ti-6Al4V)

S. Sharif<sup>a</sup>, A.S. Mohruni<sup>b</sup>, M.Y. Noordin<sup>a</sup>, V.C. Venkatesh<sup>c</sup>

<sup>a</sup> Department of Manufacturing and Industrial Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia
 <sup>b</sup> Department of Mechanical Engineering, Sriwijaya University, Inrdralaya, 30662, Indonesia
 <sup>c</sup> Faculty of Engineering and Technology, Multimedia University, 75450, Melaka, Malaysia.

*E-mails:* safian@fkm.utm.my, mohrunias@yahoo.com

#### ABSTRACT

This paper reports on the development of predicted mathematical models for surface roughness when end milling titanium alloy (Ti-6Al-4V) using uncoated solid carbide under flood conditions. Factorial design of experiment coupled with response surface methodology (RSM) were used in developing the surface roughness models in relation to the primary machining variables such as cutting speed, feed and radial rake angle. 3 D response surface contours were also constructed and used in determining the optimum cutting conditions for a particular range of surface roughness values. The adequacy of the predictive models was verified by ANOVA. Experimental results showed that lower surface roughness can be obtained by employing higher cutting speed, low feed rate and high radial rake angle value when end milling Ti-6Al4V.

Keywords: Surface roughness, End milling, Titanium Alloys, Response Surface Methodology (RSM)

#### 1. INTRODUCTION

Increasing trend in using titanium alloy for airframe structures is mainly due to its high resistance to oxidation at elevated temperature and its low weight-to-strength ratio. However, due to poor machinability of titanium alloys, the selection of acceptable machining conditions is crucial.

Surface integrity such as surface roughness is very critical to the functionality of a machined components. It influences several functional attributes of a part, such as coefficient of friction, mating characteristics, fatigue, heat transfer etc. Thus measurement of surface finish represents one of the most important aspects in the analysis of machining process. Previous studies [1][2] have shown that the appropriate range of feeds and cutting speeds, which provide a satisfactory surface finish and tool life is very limited.

Although in the past, many studies [3][4][5] had been carried out to predict the surface roughness values during end milling operation in terms of the primary machining parameters, the effect of tool geometry was not taken into consideration.

Therefore, an effort has been made in this investigation to evaluate the influence of tool geometry (radial rake angle), cutting speed and feed rate when end milling Ti-6Al4V using solid carbide tool.

The aim of this study was to develop predicted mathematical models (first and second order) for surface roughness when end milling titanium alloy (Ti-6Al-4V) using uncoated solid carbide under flood conditions. Response surface methodology (RSM) was adopted [6] which is one of most useful tools for modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response.

#### 2. DESCRIPTION OF MATHEMATICAL MODEL

The mathematical surface roughness model (response surface) in end milling in relation to the independent variables investigated can be expressed as

$$R_a = CV^k f_z^l \gamma_o^m \tag{1}$$

where  $R_a$  is the experimental (measured) surface roughness (µm),  $f_z$  is the feed per tooth (mm tooth<sup>-1</sup>),  $\gamma_0$  is the radial rake angle (°) and C, k, l, m are model parameters to be estimated using the experimental data.

To facilitate the determination of constants and exponents, this mathematical model will have to be linearized by performing a logarithmic transformation as follow:

$$\ln R_a = \ln C + k \ln V + l \ln f_z + m \ln \gamma_a$$
<sup>(2)</sup>

The linear model of Eq. (2) is

$$y = \beta_{o} x_{o} + \beta_{1} x_{1} + \beta_{2} x_{2} + \beta_{3} x_{3}$$
(3)

where y is the true response of surface roughness on a logarithmic scale  $x_o = 1$  (dummy variable),  $x_1$ ,  $x_2$ ,  $x_3$  are logarithmic transformation of cutting speed, feed and radial rake angle respectively, while  $\beta_o$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are the parameters to be estimated. Eq. (3) can also be written as

$$\hat{y}_1 = y - \varepsilon = b_0 x_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$
 (4)

where  $\hat{y}_l$  is estimated response,  $\varepsilon$  the experimental error and the b<sub>i</sub> values are estimates of the  $\beta_i$  parameters.

The second order model can be extended from the first order model's equation as

$$\hat{y}_{2} = b_{o}x_{o} + b_{1}x_{1} + b_{2}x_{2} + b_{12}x_{1}x_{2} + b_{13}x_{1}x_{3} + b_{23}x_{2}x_{3} + b_{11}x_{1}x_{1} + b_{22}x_{2}x_{2} + b_{33}x_{3}x_{3}$$
(5)

where  $\hat{y}_2$  is the estimated response based on the second order equation. Validity of the selected model used for optimizing the process parameters has to be tested using ANOVA.

#### 3. EXPERIMENTAL DETAILS

#### 3.1 Experimental Design

The design of experiment has a major effect on the number of experiments needed. Therefore, it is essential to have a well-designed experiment so that the number of experiments required can be minimized. In this study, a 2 level factorial design using 3F1-factorial design was used as screening trials of the experiment to determine the significant factors. Since, the factorial points in the design are not replicated, it is useful to add 4 center points in screening trials. This enables the construction of an estimate of error with  $n_c$ -1 and to observe the effect of nonlinearity in the region of exploration[7].

In order to obtain more information in the extended observation region, the central composite design (CCD) was used as the design of experiment, which easily augmented from 3F1-factorial design with star points as presented in Fig. 1.

Proceedings of ICOMAST2006 International Conference on Manufacturing Science and Technology August 28-30, 2006, Melaka, Malaysia

2224 7 6 13 910 14 17 18 1 2122  $x_3$   $x_1$  2122  $x_1$  2122  $x_1$   $x_1$   $x_2$   $x_2$   $x_1$   $x_2$   $x_1$   $x_2$   $x_2$   $x_1$   $x_2$   $x_2$   $x_2$   $x_1$   $x_2$   $x_2$   $x_1$   $x_2$   $x_2$   $x_2$   $x_2$   $x_2$   $x_2$   $x_2$   $x_3$   $x_2$   $x_1$   $x_2$   $x_2$   $x_3$   $x_2$   $x_2$   $x_3$   $x_3$   $x_2$   $x_3$   $x_3$   $x_2$   $x_3$   $x_3$   $x_2$   $x_3$   $x_3$ 

**Fig. 1** The CCD design used in experiments

The distance between center points and star points  $\alpha = 1.4142$ , which was calculated according to previous study [2] for  $n_c = 4$  with 3 factors.

#### 3.2 Coding of the independent variables

The variables were coded by taking into account the capacity and limiting cutting conditions of the milling machine. Using the following transformations

$$x = \frac{\ln x_n - \ln x_{n0}}{\ln x_{n1} - \ln x_{n0}}$$
(6)

where x is the coded value of any factor corresponding to its natural value  $x_n$ .  $x_{nl}$  is the +1 level and  $x_{n0}$  is the natural value of the factor corresponding to the base of zero level [2][3][4][5][8] [9]0. The level and coding of the independent variables are presented in **Table 1**.

| Table 1 Level of independent variables for 1 |
|----------------------------------------------|
|----------------------------------------------|

| Levels                            | Lowest  | Low  | Center | High | Highest |
|-----------------------------------|---------|------|--------|------|---------|
| Coding                            | -1.4142 | -1   | 0      | 1    | 1.4142  |
| Cutting<br>Speed, V               | 124.53  | 130  | 144.22 | 160  | 167.03  |
| Feed, f <sub>z</sub>              | 0.025   | 0.03 | 0.046  | 0.07 | 0.083   |
| Radial Rake<br>Angle,<br>(RRA), γ | 6.16    | 7    | 9.54   | 13   | 14.78   |

#### **3.3Experimental set-up**

A Taylor Hobson Surftronic +3 was used to measure the surface roughness on the machined workpiece of the Ti-6Al-4V rectangular block.

End milling tests were carried out on a CNC MAHO 700S machining centre with a constant  $a_a$  (axial depth of cut) 5 mm and  $a_p$  (radial depth of cut) 2 mm under wet conditions using 6% of water base coolant. Fresh solid carbide end mill, grade K30 with different radial rake angle was used for each machining trials. A sequentially experiments was conducted for screening the significant factors using 3F1-factorial design augmented with 4 center points and followed with CCD design with 1 replication for each star point. The analysis of mathematical models was carried out using Design Expert 6.0 package for both first and second order models.

The cutting conditions, factors used in the experimental trials and the surface roughness values obtained is presented in Table 2.

| Table 2 Cutting condition in coded factors and R <sub>a</sub> results |           |          |                        |          |              |  |  |  |  |
|-----------------------------------------------------------------------|-----------|----------|------------------------|----------|--------------|--|--|--|--|
|                                                                       |           | Factor 1 | Factor 2               | Factor 3 | Surface      |  |  |  |  |
| Standard                                                              | Туре      | А,       | В,                     |          | roughness,   |  |  |  |  |
|                                                                       |           | V(m/min) | f <sub>z</sub> (mm/th) | γ (°)    | $R_a(\mu m)$ |  |  |  |  |
| 1                                                                     | Factorial | -1       | -1                     | -1       | 0.365        |  |  |  |  |
| 2                                                                     | Factorial | 1        | -1                     | -1       | 0.256        |  |  |  |  |
| 3                                                                     | Factorial | -1       | 1                      | -1       | 0.498        |  |  |  |  |
| 4                                                                     | Factorial | 1        | 1                      | -1       | 0.464        |  |  |  |  |
| 5                                                                     | Factorial | -1       | -1                     | 1        | 0.428        |  |  |  |  |
| 6                                                                     | Factorial | 1        | -1                     | 1        | 0.252        |  |  |  |  |
| 7                                                                     | Factorial | -1       | 1                      | 1        | 0.561        |  |  |  |  |
| 8                                                                     | Factorial | 1        | 1                      | 1        | 0.512        |  |  |  |  |
| 9                                                                     | Center    | 0        | 0                      | 0        | 0.464        |  |  |  |  |
| 10                                                                    | Center    | 0        | 0                      | 0        | 0.444        |  |  |  |  |
| 11                                                                    | Center    | 0        | 0                      | 0        | 0.448        |  |  |  |  |
| 12                                                                    | Center    | 0        | 0                      | 0        | 0.424        |  |  |  |  |
| 13                                                                    | Axial     | -1.4142  | 0                      | 0        | 0.328        |  |  |  |  |
| 14                                                                    | Axial     | -1.4142  | 0                      | 0        | 0.324        |  |  |  |  |
| 15                                                                    | Axial     | 1.4142   | 0                      | 0        | 0.236        |  |  |  |  |
| 16                                                                    | Axial     | 1.4142   | 0                      | 0        | 0.240        |  |  |  |  |
| 17                                                                    | Axial     | 0        | -1.4142                | 0        | 0.252        |  |  |  |  |
| 18                                                                    | Axial     | 0        | -1.4142                | 0        | 0.262        |  |  |  |  |
| 19                                                                    | Axial     | 0        | 1.4142                 | 0        | 0.584        |  |  |  |  |
| 20                                                                    | Axial     | 0        | 1.4142                 | 0        | 0.656        |  |  |  |  |
| 21                                                                    | Axial     | 0        | 0                      | -1.4142  | 0.304        |  |  |  |  |
| 22                                                                    | Axial     | 0        | 0                      | -1.4142  | 0.288        |  |  |  |  |
| 23                                                                    | Axial     | 0        | 0                      | 1.4142   | 0.316        |  |  |  |  |
| 24                                                                    | Axial     | 0        | 0                      | 1.4142   | 0.348        |  |  |  |  |

#### 4. RESULTS AND DISCUSSIONS

#### 4.1 Development first order model using CCD design.

From the experimental results, empirical equations were developed to estimate surface roughness and the significant parameters involved i.e. cutting speed, feed rate and radial rake angle. The first order model obtained from above functional relationship using the RSM method is as follows:

 $\hat{y}_1 = -0.87922 - 0.13082x_1 + 0.23561x_2 + 0.04513x_3 \tag{7}$ 

By substituting Eq. 6 in Eq. 7, the transformed equation of surface roughness prediction is as follows:

(8)

$$R_a = 871.937V^{-1.20007} f_z^{-0.55014} \gamma^{0.14581}$$

The analysis of variance (ANOVA) of linear CCD model is as follows:

| Table 3 ANOV | A of linear | CCD model |
|--------------|-------------|-----------|
|--------------|-------------|-----------|

| ANOV        | ٩fo | or Response Surfa    | ce Linear  | Model      |       |          |             |
|-------------|-----|----------------------|------------|------------|-------|----------|-------------|
| Analysis of | va  | riance table [Partia | I sum of s | squares]   |       |          |             |
|             |     | Sum of               |            | Mean       | F     |          |             |
| Source      |     | Squares              | DF         | Square     | Value | Prob > F |             |
| Model       |     | 0.60                 | 3          | 0.20       | 14.97 | 0.0012   | significant |
|             | Α   | 0.14                 | 1          | 0.14       | 10.29 | 0.0125   |             |
|             | В   | 0.44                 | 1          | 0.44       | 33.40 | 0.0004   |             |
|             | С   | 0.016                | 1          | 0.016      | 1.23  | 0.3005   |             |
| Residual    |     | 0.11                 | 8          | 0.013      |       |          |             |
| Lack of I   | it  | 0.10                 | 5          | 0.020      | 14.84 | 0.0251   | significant |
| Pure Err    | or  | 4.134E-003           | 3          | 1.378E-003 |       |          |             |
| Cor Total   |     | 0.70                 | 11         |            |       |          |             |

From the ANOVA, it is obvious to recognize that the lack of fit (LOF) of the linear CCD model was significant. Therefore, this model cannot be used to predict surface roughness value.

#### 4.2 Development second order model using 3F1 design

The 3F1-model in coded variables, which was obtained using the experimental data in Table 2 from standard 1 to 12, is as follows:  $\hat{y} = -0.91374 - 0.13082 x_1 + 0.23561 x_2 + 0.04513 x_3$ 

$$+ 0.090288 x_1 x_2$$
 (9)

To prove the adequacy of the model, ANOVA was carried out and results are presented in Table 4.

|                                    | I able                                              |             |             |           |          |                 |  |  |
|------------------------------------|-----------------------------------------------------|-------------|-------------|-----------|----------|-----------------|--|--|
| Response:                          | Surface Rough                                       | inensfitem: | Natural log | Constant: | 0        |                 |  |  |
| ANOVA for Selected Factorial Model |                                                     |             |             |           |          |                 |  |  |
| Analysis of va                     | Analysis of variance table [Partial sum of squares] |             |             |           |          |                 |  |  |
|                                    | Sum of                                              |             | Mean        | F         |          |                 |  |  |
| Source                             | Squares                                             | DF          | Square      | Value     | Prob > F |                 |  |  |
| Model                              | 0.66                                                | 4           | 0.17        | 78.99     | < 0.0001 | significant     |  |  |
| A                                  | 0.14                                                | 1           | 0.14        | 65.29     | 0.0002   |                 |  |  |
| B                                  | 0.44                                                | 1           | 0.44        | 211.80    | < 0.0001 |                 |  |  |
| С                                  | 0.016                                               | 1           | 0.016       | 7.77      | 0.0317   |                 |  |  |
| AB                                 | 0.065                                               | 1           | 0.065       | 31.10     | 0.0014   |                 |  |  |
| Curvature                          | 0.029                                               | 1           | 0.029       | 13.63     | 0.0102   | significant     |  |  |
| Residual                           | 0.013                                               | 6           | 2.097E-003  |           |          |                 |  |  |
| Lack of Fit                        | 8.447E-003                                          | 3           | 2.816E-003  | 2.04      | 0.2861   | not significant |  |  |
| Pure Error                         | 4.134E-003                                          | 3           | 1.378E-003  |           |          |                 |  |  |
| Cor Total                          | 0.70                                                | 11          |             |           |          |                 |  |  |

Table 4 ANOVA of 2E1 featorial model

This equation is valid for the end milling of titanium alloy, Ti-6Al-4V using solid carbide under wet conditions with the following range of respective cutting speed V, feed per tooth  $f_z$  and radial rake angle  $\gamma$ :  $130 \le V \le 160 \text{ m.min}^{-1}$ ;  $0.03 \le f_z \le 0.07 \text{ mm/tooth}$ ;  $7 \le \gamma \le 13$  (°). Some of possible solutions for the 3F1 model are presented in Table 5

Table 5 Possible solutions of 3F1-factorial model

| Constraints   |               |              |               |               |              |            |
|---------------|---------------|--------------|---------------|---------------|--------------|------------|
|               |               | Lower        | Upper         | Lower         | Upper        |            |
| Name          | Goal          | Limit        | Limit         | Weight        | Weight       | Importance |
| Cutting speed | is in range   | 130          | 160           | 1             | 1            | 3          |
| Feed rate fz  | is in range   | 0.03         | 0.07          | 1             | 1            | 3          |
| Rake angle ra | is in range   | 7            | 13            | 1             | 1            | 3          |
| Surface Rough | minimize      | 0.251999     | 0.561         | 1             | 1            | 3          |
| Solutions     |               |              |               |               |              |            |
| Number C      | utting speed  | Feed rate fz | Rake angle ra | Surface Rougł | Desirability |            |
| 1             | <u>158.19</u> | <u>0.03</u>  | <u>7.19</u>   | 0.250829      | <u>1.000</u> | Selected   |
| 2             | 159.96        | 0.03         | 7.95          | 0.246998      | 1.000        |            |
| 3             | 157.74        | 0.03         | 7.00          | 0.251718      | 1.000        |            |
| 4             | 159.79        | 0.03         | 7.06          | 0.247255      | 1.000        |            |
| 5             | 159.59        | 0.03         | 7.57          | 0.24795       | 1.000        |            |
| 6             | 158.59        | 0.03         | 7.05          | 0.248904      | 1.000        |            |
| 7             | 159.86        | 0.03         | 9.23          | 0.251856      | 1.000        |            |
| 8             | 159.43        | 0.03         | 7.55          | 0.247714      | 1.000        |            |
| 9             | 159.46        | 0.03         | 8.67          | 0.251612      | 1.000        |            |
| 10            | 160.00        | 0.03         | 7.00          | 0.251976      | 1.000        |            |
| 11            | 160.00        | 0.03         | 9.90          | 0.253603      | 0.992        |            |
| 12            | 156.90        | 0.03         | 7.00          | 0.254141      | 0.989        |            |
| 13            | 160.00        | 0.03         | 10.71         | 0.256729      | 0.977        |            |
| 14            | 160.00        | 0.03         | 12.65         | 0.264332      | 0.940        |            |
| 15            | 160.00        | 0.03         | 12.75         | 0.264702      | 0.939        |            |

The response surface of 3F1-model (Fig. 2) reveals that the most significant factor influencing the surface roughness was feed rate and followed by cutting speed and radial rake angle.

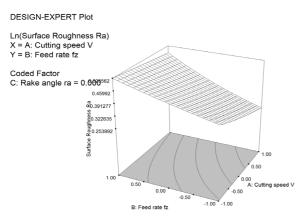



Fig. 2 The response surface of the 3F1-model

4.3 Development second order model using CCD design

Further evaluation on the higher order model was carried out using the CCD, which is achieved with augmentation of 3F1factorial design and additional replicated star points (Fig. 1). Results in Table 6 indicate that the quadratic CCD model is more significant than linear model and it is also proven that linear model has a significant LOF. Therefore, the quadratic model was chosen in order to build the CCD model.

|                  | urface Roug Tran<br>The Cubic Model |          | Natural log  | Constant:    | 0                  |           |
|------------------|-------------------------------------|----------|--------------|--------------|--------------------|-----------|
| Sequential Mod   | lel Sum of Square                   | s        |              |              |                    |           |
|                  | Sum of                              |          | Mean         | F            |                    |           |
| Source           | Squares                             | DF       | Square       | Value        | Prob > F           |           |
| Mean             | 23.97                               | 1        | 23.97        |              |                    |           |
| Block            | 0.35                                | 1        | 0.35         |              |                    |           |
| Linear           | 1.46                                | 3        | 0.49         | 22.39        | < 0.0001           |           |
| 2FI              | 0.071                               | 3        | 0.024        | 1.10         | 0.3766             |           |
| <u>Quadratic</u> | <u>0.30</u>                         | <u>3</u> | <u>0.099</u> | <u>28.42</u> | <u>&lt; 0.0001</u> | Suggested |
| Cubic            | 0.027                               | 4        | 6.807E-003   | 3.41         | 0.0585             | Aliased   |
| Residual         | 0.018                               | 9        | 1.998E-003   |              |                    |           |
| Total            | 26.18                               | 24       | 1.09         |              |                    |           |

The second order surface roughness model thus developed is given below:

 $\hat{y} = -0.9303 - 0.12103 x_1 + 0.273219 x_2 + 0.042714 x_3 + 0.902088 x_1 x_2 - 0.02446 x_1 x_3 + 0.00926 x_2 x_3$ (10) - 0.1139  $x_1^2 + 0.06555 x_2^2 - 0.05519 x_3^2$ 

To check the adequacy of the proposed second order CCD model, ANOVA was used and results are shown in the Table 7.

| Table 7 ANOVA for the higher order CCD m | model |
|------------------------------------------|-------|
|------------------------------------------|-------|

| Surface Roug    | næresfoRen:                                                                                                                                                                               | Natural log                                                                                                                                                                                                                                                                                                                                                                                                                                             | Constant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| or Response S   | urface Quadr                                                                                                                                                                              | atic Model                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| riance table [F | artial sum of                                                                                                                                                                             | squares]                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| Sum of          |                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| Squares         | DF                                                                                                                                                                                        | Square                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prob > F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| 0.35            | 1                                                                                                                                                                                         | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| 1.83            | 9                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | significant                                                                                                                                                                                                                                                         |
| 0.23            | 1                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| 1.19            | 1                                                                                                                                                                                         | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 343.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| 0.029           | 1                                                                                                                                                                                         | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 0.16            | 1                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| 0.052           | 1                                                                                                                                                                                         | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 0.037           | 1                                                                                                                                                                                         | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 0.065           | 1                                                                                                                                                                                         | 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 4.785E-003      | 1                                                                                                                                                                                         | 4.785E-003                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 6.860E-004      | 1                                                                                                                                                                                         | 6.860E-004                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| 0.045           | 13                                                                                                                                                                                        | 3.478E-003                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| 0.027           | 4                                                                                                                                                                                         | 6.807E-003                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | not significant                                                                                                                                                                                                                                                     |
| 0.018           | 9                                                                                                                                                                                         | 1.998E-003                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| 2.22            | 23                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
|                 | or Response Si<br>riance table [F<br>Sum of<br>Squares<br>0.35<br>1.83<br>0.23<br>1.19<br>0.029<br>0.16<br>0.052<br>0.037<br>0.065<br>4.785E-003<br>6.860E-004<br>0.045<br>0.027<br>0.018 | Arriance table [Partial sum of<br>Sum of           Squares         DF           0.35         1           1.83         9           0.23         1           1.19         1           0.029         1           0.16         1           0.052         1           0.052         1           0.065         1           4.785E-003         1           6.860E-004         1           0.045         13           0.027         4           0.018         9 | Arresponse Surface Quadratic Model<br>rriance table [Partial sum of squares]         Mean           Squares         DF         Squares           0.35         1         0.35           1.83         9         0.20           0.23         1         0.23           1.19         1         1.19           0.029         1         0.029           0.16         1         0.052           0.037         1         0.037           0.065         1         0.065           4.785E-003         1         4.785E-003           6.860E-004         1         6.860E-004           0.045         13         3.478E-003           0.027         4         6.807E-003           0.028         9         1.998E-003 | Surface Qualization Model<br>mance table [Partial sum of squares]           Sum of         Mean         F           Squares         DF         Square         Value           0.35         1         0.35         1           1.83         9         0.20         58.31           0.23         1         0.33         67.39           1.19         1         1.19         343.45           0.029         1         0.029         8.39           0.16         1         0.052         14.83           0.052         1         0.052         14.83           0.052         1         0.052         14.83           0.037         1         0.037         10.51           1.065         1         0.065         18.75           4.785E-003         1         4.785E-003         1.38           6.860E-004         1         6.860E-004         0.20           0.045         13         3.478E-003         3.41           0.027         4         6.807E-003         3.41           0.018         9         1.987E-003         3.41 | Sum of squares guares           Squares         DF         Square         Value         Prob > F           0.35         1         0.35          0.0011           0.35         1         0.35             1.83         9         0.20         58.31         < 0.0001 |

ANOVA results indicated that the second order CCD model was valid. The range of the cutting speed V, feed per tooth  $f_z$  and radial rake angle  $\gamma$  are:  $124.53 \leq V \leq 167.03 \ m.min^{-1}; 0.025 \leq f_z \leq 0.083 \ mm/tooth; 6.16 \leq \gamma \leq 14.78 \ (^{\circ})$  respectively. Results of the surface roughness values at various conditions for the second order CCD model are presented in Table 8.

Table 9 shows the possible solutions of surface roughness values for second order CCD model when using feed rate,  $f_z = 0.03$  mm.min<sup>-1</sup> and radial rake angle,  $\gamma = 7.19^{\circ}$  at various cutting speeds. Almost similar results were obtained when using the 3F1-model (Table 5).

| Proceedings of ICOMAST2006                                       |
|------------------------------------------------------------------|
| International Conference on Manufacturing Science and Technology |
| August 28-30, 2006, Melaka, Malaysia                             |

| Constraints   |               |              |               |               |              |            |
|---------------|---------------|--------------|---------------|---------------|--------------|------------|
|               |               | Lower        | Upper         | Lower         | Upper        |            |
| Name          | Goal          | Limit        | Limit         | Weight        | Weight       | Importance |
| Cutting speed | is in range   | 124.53       | 167.03        | 1             | 1            | 3          |
| Feed rate fz  | is in range   | 0.025        | 0.08          | 1             | 1            | 3          |
| Rake angle ra | is in range   | 6.16         | 14.78         | 1             | 1            | 3          |
| Surface Rough | minimize      | 0.236001     | 0.656         | 1             | 1            | 3          |
| Solutions     |               |              |               |               |              |            |
| Number C      | utting speed  | Feed rate fz | Rake angle ra | Surface Rougł | Desirability |            |
| 1             | <u>166.54</u> | <u>0.05</u>  | <u>13.35</u>  | 0.22755       | <u>1.000</u> | Selected   |
| 2             | 158.75        | 0.03         | 6.16          | 0.214314      | 1.000        |            |
| 3             | 156.14        | 0.03         | 6.17          | 0.228876      | 1.000        |            |
| 4             | 166.88        | 0.04         | 8.53          | 0.199685      | 1.000        |            |
| 5             | 164.28        | 0.03         | 10.95         | 0.196401      | 1.000        |            |
| 6             | 165.46        | 0.04         | 8.96          | 0.213899      | 1.000        |            |
| 7             | 160.56        | 0.03         | 12.32         | 0.219077      | 1.000        |            |
| 8             | 158.86        | 0.03         | 11.17         | 0.229874      | 1.000        |            |
| 9             | 165.85        | 0.04         | 12.04         | 0.202071      | 1.000        |            |
| 10            | 159.19        | 0.03         | 11.31         | 0.230573      | 1.000        |            |
| 11            | 156.07        | 0.03         | 13.90         | 0.234346      | 1.000        |            |
| 12            | 165.70        | 0.05         | 14.68         | 0.228068      | 1.000        |            |
| 13            | 165.27        | 0.04         | 14.38         | 0.198673      | 1.000        |            |
| 14            | 124.53        | 0.03         | 6.16          | 0.290006      | 0.798        |            |
| 15            | 124.53        | 0.03         | 14.78         | 0.332988      | 0.663        |            |

Table 9 Possible solutions for the second order CCD model with  $f_z$  =0.03 mm/tooth and  $\gamma$  = 7.19°

| Constraints      |                 |                 |                 |              |              |            |
|------------------|-----------------|-----------------|-----------------|--------------|--------------|------------|
|                  |                 | Lower           | Upper           | Lower        | Upper        |            |
| Name             | Goal            | Limit           | Limit           | Weight       | Weight       | Importance |
| Cutting speed    | is in range     | 124.53          | 167.03          | 1            | 1            | 3          |
| Feed rate fz is  | s target = 0.00 | 0.025           | 0.08            | 1            | 1            | 3          |
| Rake angle ra is | s target = 7.1  | 6.16            | 14.78           | 1            | 1            | 3          |
| Surface Rough    | minimize        | 0.236001        | 0.656           | 1            | 1            | 3          |
|                  |                 |                 |                 |              |              |            |
| Solutions        |                 |                 |                 |              |              |            |
| Number C         | utting speed    | Feed rate fz Ra | ake angle ra Su | urface Rougł | Desirability |            |
| 1                | <u>158.70</u>   | <u>0.03</u>     | <u>7.19</u>     | 0.226525     | <u>1.000</u> | Selected   |
| 2                | 164.75          | 0.03            | 7.19            | 0.189501     | 1.000        |            |
| 3                | 162.04          | 0.03            | 7.19            | 0.20624      | 1.000        |            |
| 4                | 164.84          | 0.03            | 7.19            | 0.188992     | 1.000        |            |
| 5                | 160.20          | 0.03            | 7.19            | 0.217484     | 1.000        |            |
| 6                | 166.10          | 0.03            | 7.19            | 0.181176     | 1.000        |            |
| 7                | 164.57          | 0.03            | 7.19            | 0.19062      | 1.000        |            |
| 8                | 158.25          | 0.03            | 7.20            | 0.229312     | 1.000        |            |
| 9                | 124.53          | 0.03            | 7.19            | 0.309524     | 0.902        |            |
| 10               | 124.69          | 0.03            | 7.19            | 0.309916     | 0.902        |            |
| 11               | 124.53          | 0.03            | 7.22            | 0.310004     | 0.900        |            |

Fig. 3 shows that at the midpoint of the experiments, the response surface forms a curve that is not covered by the 3F1 model. This extended region was obtained when the second order CCD model was used in developing the surface roughness model. Both contours had a similar trend at higher cutting speed. In contrary at lower cutting speed, the trend of the contour tends to increase.

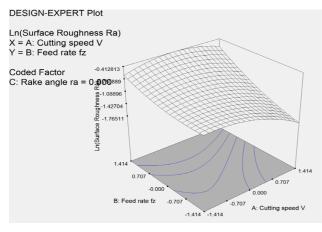



Fig. 3 The response surface of the second order CCD-model

#### 5. CONCLUSIONS

- 1. Cutting speed, feed rate and radial rake angle are the primary factors influencing the surface roughness when end milling Ti-6Al4V.
- 1. Two second order models can represent the functional relationship between the investigated cutting parameters. They are 3F1 and second order CCD models with different covering region of experimental data.
- 2. Based on the second order CCD model, lower surface roughness can be obtained by employing higher cutting speed, low feed rate and higher radial rake angle.
- 3. Compared to linear CCD model, the results of 3F1-model are better in terms of curvature effect, which is not covered by the linear CCD model.
- 4. The second order CCD model produced almost the same results to that of 3F1-model when tested at feed rate,  $f_z = 0.03 \text{ mm.min}^{-1}$  and radial rake angle,  $\gamma = 7.19^{\circ}$ .

#### ACKNOWLEDGEMENTS

The authors wish to thank the Research Management Center, UTM and the Ministry of Science, Technology and Innovation Malaysia for their financial support to the above project through the IRPA funding 03-02-02-0068 PR0074/03-01 – Vote no. 74545.

#### REFERENCES

- M. Dumitrescu, M.A. Elbestawi, T.I. El-Wardhany, Mist coolant applications in high speed machining of advanced materials, In. Metal Cutting and High speed Machining, Edited by D. Dudzinksi, A. Molinari, H. Schulz, Kluwer, (2001) 329-339.
- [2]. S. Sharif, A.S. Mohruni, M.Y. Noordin, Modeling of tool life when end milling on Titanium Alloy (Ti-6Al-4V) using response surface methodology, Proceeding of 1<sup>st</sup> International Conference & 7<sup>th</sup> AUN/SEED-Net Field wise Seminar on Manufacturing and Material Processing, Kuala Lumpur, Malaysia, 14-15 March 2006 127-132.
- [3]. N.S.K. Reddy, P.V. Rao, A Genetic Algorithmic approach for optimization of surface roughness prediction model in dry milling, Machining Science and Technology 9 (1) (2005) 63-84.
- [4]. Y. Sahin, A.R. Motorcu, Surface roughness model for machining mild steel with coated carbide tool, Material & Design 26 (4) (2005) 321-326.
- [5]. A. Mansour, H. Abdalla, Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN32) in dry condition, Journal of Materials Processing Technology, 124 (1-2) (2002) 183-191.
- [6]. M.Y. Noordin, V.C. Venkatesh, S. Sharif, S. Elting, A. Abdullah, Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, Journal of Materials Processing Technology 145 (1) (2004) 46-58.
- [7]. R.H. Myers, D.C. Montgomery, Response surface Methodology: Process and Product Optimization using Designed Experiments 2<sup>nd</sup> Edition, Wiley, 2002.
- [8]. M. Alauddin, M.A. El Baradie, M.S.J. Hasmi, Optimization of surface finish in end milling Inconel 718, Journal of Materials Processing Technology, 56 (1) (1996) 54-65.
- [9]. I.A. Choudhury, M.A. El-Baradie, Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology, Journal of Materials Processing Technology, 95 (1) (1999) 30-39.
- [10].N.S.K. Reddy, P.V. Rao, Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling, The International Journal of Advanced Manufacturing Technology, 26 (11-12) (2005) 1202-121